定积分及其应用

合集下载

高等数学第五章定积分及其应用

高等数学第五章定积分及其应用

⾼等数学第五章定积分及其应⽤第五章定积分及其应⽤第⼀节定积分概念1、内容分布图⽰★曲边梯形★曲边梯形的⾯积★变速直线运动的路程★变⼒沿直线所作功★定积分的定义★定积分存在定理★定积分的⼏何意义★定积分的物理意义★例1 ★定积分的近似计算★例2★内容⼩结★课堂练习★习题5-1 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1利⽤定积分的定义计算积分01dx x 2?.讲解注意:例2的近似值.⽤矩形法和梯形法计算积分-102dx ex讲解注意:第⼆节定积分的性质1、内容分布图⽰★性质1-4★性质5及其推论★例1★性质6★例2★例3★性质7★例4★函数的平均值★例5★内容⼩结★课堂练习★习题5-2★返回2、讲解注意:例1⽐较积分值dx e x ?-2和dx x ?-2的⼤⼩.讲解注意:例2估计积分dx xπ+03sin 31的值.讲解注意:例3估计积分dx xxππ/2/4sin 的值.讲解注意:例4设)(x f 可导1)(lim =+∞→x f x 求且,,dt t f tt x x x ?++∞→2)(3sin lim .讲解注意:例5计算纯电阻电路中正弦交流电t I i m ωsin =在⼀个周期上的()功率的平均值简称平均功率.讲解注意:第三节微积分基本公式1、内容分布图⽰★引例★积分上限函数★积分上限函数的导数★例1-2★例3★例4★例5★例6★例7-8 ★例9★例10★例11★例12★例13★例14★内容⼩结★课堂练习★习题5-3★返回2、讲解注意:3、重点难点:4、例题选讲:例1?x tdt dxd 02cos 求[].讲解注意:例2dt e dxdx t ?321求[].讲解注意:例3.)()((3);)()((2);)((1).,)(00sin cos )(?-===x x x x t f dt t x f x F dt t xf x F dt e x F x f 试求以下各函数的导数是连续函数设讲解注意:例4求.1cos 02x dte x t x ?-→讲解注意:设)(x f 在),(+∞-∞内连续0)(>x f .证明函数且,??=xxdtt f dtt t x F 00)()()(在),0(+∞内为单调增加函数.f 例5讲解注意:例6],1[)ln 21()(1上的最⼤值与最⼩在求函数e dt t t x I x ?+=.值讲解注意:例7求.dx x ?12讲解注意:例8求.1dxx ?--12讲解注意:例9设求??≤<≤≤=215102)(x x x x f ?2讲解注意:例10.|12|10-dx x 计算讲解注意:.cos 1/3/22?--ππdx x 计算例11讲解注意:例12求.},max{222?-dx x x讲解注意:例13计算由曲线x y sin =在,0π之间及x .轴所围成的图形的⾯积x =x =A讲解注意:例14?,./5.,362了多少距离问从开始刹车到停车刹车汽车以等加速度到某处需要减速停车速度⾏驶汽车以每⼩时s m a km -=汽车驶过设讲解注意:第四节换元法积分法和分部积分法1、内容分布图⽰★定积分换元积分法★例1★例2★例3★例4★定积分的分部积分法★内容⼩结★课堂练习★习题5-4★返回★例5★例6★例7★例16★例17★例182、讲解注意:3、重点难点:4、例题选讲:例1计算.sin cos /25?πxdx x讲解注意:例2?a0dx 计算.0a >)(-2x 2a讲解注意:例3计算.sin sin 053?π-dx x x讲解注意:例4计算定积分dx x x ++412.2?讲解注意:例5当)(x f 在],[a a -上连续,,,)(x f 为偶函数当当有(1)(2)则 ??-=aaadx x f dx x f 0)(2)()(x f 为奇函数有?-=aa dx x f 0)(.;讲解注意:例6.--+dx e x x x 计算讲解注意:例7计算.11cos 21122?--++dx x xx x讲解注意:例8若)(x f 在]1,0[上连续证明,(1)?=00)(cos )(sin dx x f dx x f ;(2)πππ=)(sin 2)(sin dx x f dx x xf ,由此计算?π+02cos 1sin dx x x x ./2π/2π讲解注意:例9计算.arcsin 0?xdx 1/2讲解注意:例10计算.2cos 10+x xdx/4π讲解注意:例11计算.sin 0?xdx /2π2x讲解注意:例12.1dx e x 计算1/2讲解注意:例13.1)1ln(102++dx x x 求定积分讲解注意:例14-22ln e e dx x x求.讲解注意:例15.,612ln 2x e dt xt 求已知?=-π讲解注意:例16).(,)(13)()(1022x f dx x f x x x f x f 求满⾜⽅程已知? --=讲解注意:例17证明定积分公式xdx I n n n 0--?-??--?-=n n n n n n n n n n ,3254231,22143231π为正偶数.为⼤于1的正奇数./2π/2π??讲解注意:例18?π05.2cos dx x 求讲解注意:第五节定积分的⼏何应⽤1、内容分布图⽰★平⾯图形的⾯积A ★例1 ★例2 ★平⾯图形的⾯积B ★例3 ★例4 ★平⾯图形的⾯积C ★例5 ★平⾯图形的⾯积D★例6 ★例7 ★例8 旋转体★圆锥★圆柱★旋转体★旋转体的体积★例9 ★例 10 ★例 11 ★平⾏截⾯⾯积为已知的⽴体的体积★例 12 ★例 13 ★内容⼩结★课堂练习★习题5-5 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1]1,1[]1,0[2之间的⾯积.和轴上⽅在下⽅与分别求曲线-∈∈=x x x x y讲解注意:例2],1[ln 之间的⾯积.轴上⽅在下⽅与求e x x y =讲解注意:例3.1,1,03所围图形⾯积与直线求=-===x x y x y讲解注意:例44,0,042所围图形⾯积.和直线求由曲线===-=x x y x y讲解注意:例5.2所围成平⾯图形的⾯积与求由抛物线x y x y ==讲解注意:例642,2,所围成图形的⾯积.求由三条直线=-=+=y x y x x y422围成图形的⾯积与求+-==x y x y讲解注意:例8.0cos sin 之间所围图与在和求由曲线π====x x x y x y 形的⾯积讲解注意:例9r 圆锥体的直线、h x =及x 轴围直线连接坐标原点O 及点),(r h P 成⼀个直⾓三⾓形.x 轴旋转构成⼀个底半径为计算圆锥体的体积.h ,将它绕⾼为,的讲解注意:例10.12222y x V V y x by a x 和积轴旋转所得的旋转体体轴和分别绕求椭圆=+讲解注意:例112,22轴旋转⽽成的旋转体的体积.轴和所围成的图形分别绕求由曲线y x x y x y -==讲解注意:例12⼀平⾯经过半径为R 的圆柱体的底圆中⼼计算这平⾯截圆柱体所得⽴体的体积.并与底⾯交成,,⾓讲解注意:例13.的正劈锥体的体积的圆为底、求以半径为h R ⾼位平⾏且等于底圆直径的线段为顶、讲解注意:第六节积分在经济分析中的应⽤1、内容分布图⽰★由边际函数求原经济函数★需求函数★例1★总成本函数★例2★总收⼊函数★例3★利润函数★例4由边际函数求最优问题★例5★例6其它经济应⽤★例7⼴告策略★消费者剩余★例8★国民收⼊分配★例9★返回2、讲解注意:3、重点难点:4、例题选讲:例1),80,(80,4) (,==-='q pp qp格的函数关系.时即该商品的最⼤需求量为且边际需求的函数已知对某商品的需求量是价格求需求量与价讲解注意:例2, 90,2)(0.2 ==ceqCq 求总成本函数.固定成本的函数若⼀企业⽣产某产品的边际成本是产量讲解注意:例310,40),/(2100)(个单位时单位时的总收⼊及平均收⼊求⽣产单位元单位时的边际收⼊为已知⽣产某产品-='q q R q 并求再增加⽣产所增加的总收⼊.讲解注意:例45,10,413)(,225)(0==-='-='q c q q C q q R 时的⽑利和纯利.求当固定成本为边际成本已知某产品的边际收⼊讲解注意:例5吨产品时的边际成本为某企业⽣产q )/30501)(吨元q q C +='(?,900试求产量为多少时平均成本最低元且固定成本为讲解注意:例6q q q C q q R ,1(3)?(2);54(1)),/(/44)(),/(9)(+='-='求总成本函数和利润函数.万元已知固定成本为当产量为多少时利润最⼤万台时利润的变化量万台增加到试求当产量由其中产量万台万元成本函数为万台万元假设某产品的边际收⼊函数为以万台为单位.边际讲解注意:例70.02,10%,,100000,130000)(,.10%,1000000t e t 则决如果新增销售额产⽣的利润超过⼴告投资的美元的⼴告活动对于超过按惯例⾏⼀次类似的总成本为以⽉为单位下式的增长曲线⼴告宣传期间⽉销售额的变化率近似服从如根据公司以往的经验平均利润是销售额的美元某出⼝公司每⽉销售额是美元的⼴告活动.试问该公司按惯例是否应该做此⼴告.1000000公司现在需要决定是否举定做⼴告讲解注意:8例.2,318)(-=CS q q D 并已知需求量为如果需求曲线为个单位试求消费者剩余,表⽰某国某年国民收⼊在国民之间分配的劳伦茨曲线可近似地由讲解注意:第七节⼴义积分1、内容分布图⽰★⽆穷限的⼴义积分★⽆穷限的⼴义积分⼏何解释★例1★例2★例3★例4★例5★例6★⽆界函数的⼴义积分例7★例8★例9★例10★例11★例12★例13★内容⼩结★课堂练习★习题5-7★返回★2、讲解注意:3、重点难点:4、例题选讲:例1?∞+-0.dx e x 计算⽆穷积分讲解注意:例2.sin 0的收敛性判断⽆穷积分∞+xdx讲解注意:例312?∞+∞-+x dx计算⼴义积分讲解注意:例4计算⼴义积分.1sin 12∞+dx x x 2/π讲解注意:例5计算⼴义积分∞+-pt dt e 且0>p 时收敛p 是常数,(). t 0讲解注意:例6证明⼴义积分∞+11dxx p当1>p 时收敛当1≤p 时发散.,讲解注意:例7计算⼴义积分).0(022>-?a x a dxa讲解注意:例8证明⼴义积分11dx x q当1""讲解注意:例9计算⼴义积分.ln 21x dx讲解注意:例10计算⼴义积分.30dx1=x 瑕点)1(2/3-x .讲解注意:例11计算⼴义积分?∞+03+x x dx1().讲解注意:例12.)1(arcsin 10-dx x x x计算⼴义积分讲解注意:例13.11105?∞+++x x x dx 计算⼴义积分讲解注意:。

3(专升本内容)定积分及其应用

3(专升本内容)定积分及其应用

b
b
b
f R[a, b], g R[a, b] f g R[a, b]
性质2
a kf ( x )dx k a f ( x )dx
b
b
k ( 为常数)
b
性质3
性质4
a f ( x )dx a f ( x )dx c
b
c
f ( x )dx
a 1 dx a

r 1 ( )
r 2 ( )
d

o

x
o
x
1 2 A [ ( )] d 2
1 2 2 A [ 2 ( ) 1 ( )]d 2
(2) 体积
o
a
A( x )
x x dx
b
y
V
x x x dx
a A( x )dx
(2)分部积分法

b
a
udv [uv ] vdu
7、常用的积分等式:

a
a
2 a f ( x)dx , f ( x) f ( x) 0 f ( x)dx ; 0 , f ( x) f ( x)
a l a
f ( x l ) f ( x) :
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.

b
f ( x )dx alim a f ( x )dx blim 0
0
b
f ( x )dx
(2)无界函数的广义积分
a f ( x )dx lim0 a
a f ( x )dx lim0 a
判断瑕点:考察f(x)的间断疑点处是否f(x)→ ∞.

定积分及其应用

定积分及其应用

①.若a=b, 则
b
f (x)dx 0.
a
②.若a>b, 则
b
a
f(x)dx f(x)dx.
a
b
从而可消除对定积分上下限的大小限制.
四.定积分的几何意义
由定义1知, 当连续函数
f (x) 0 且a<b时, 定积分
b f ( x ) d x 表示一个在 x 轴上方的曲边梯形的面积; a
当 f (x) 0, 且 a < b时,
[a, b]的一个局部(小区间)来看, 它也是一个变量;
但因ƒ(x)连续, 从而当Δ x →0时, Δy→0,
故可将此区间的高近似看为一个常量,
从而此区间对应的小窄曲边梯形CEFH
y
y=ƒ(x)
A
C
B
Δy {
DH
的面积近似等于小窄矩形DEFH的面积.
oa
EF
x x+Δx b x
因而, 如果把区间[a, b]任意地划分为n个小区间, 并在每一
就有定积分的定义:
定义1.设ƒ(x)在[a, b]上有定义, 点 a x 0 x 1 x 2 x n 1 x n b
将区间[a, b]任意地划分为n个小区间; 每个小区间
[ xi1 , xi ]
的长度为 xi xi xi1(i1,2, ,n),在每个小区间 [ xi1 , xi ]
n
个区间上任取一点, 再以该点的高来近似代替该小区间上窄曲边 梯形的高, 从而每个窄曲边梯形就可近似地
视为一个小窄矩形, 而且全部窄矩形的面积之和也可作为曲边 梯形面积的近似值.
要想得精确值, 只需区间[a, b]的分法无限细密(即每个小区 间的长度Δ x →0)时, 全部窄矩形的面积之和的极限一定是曲边

第六章 定积分及其应用

第六章 定积分及其应用
β α
称为定积分的换元公式. 称为定积分的换元公式
定理2.4 设u(x),v(x)在区间 在区间[a,b]上有连续导数,则 上有连续导数, 定理 在区间 上有连续导数
∫ u( x) v′( x) dx = u( x)v( x)
a
b
b a
− ∫ u ′( x ) v ( x ) dx.
a
b
称为定积分的分部积分公式. 称为定积分的分部积分公式 例2 计算下列定积分
注: (1)定积分仅与被积函数及积分区间有关 , 而与积分变量 定积分仅与被积函数及积分区间有关 用什么字母表示无关.即 用什么字母表示无关 即

b
a
f ( x ) d x = ∫ f (t ) d t = ∫ f (u ) d u.
a a
b
b
(2)定积分的几何意义 定积分的几何意义: 定积分的几何意义
A=∫
b
1
1 1 dx = − 2 x x

1
1 = 1− . b
b
性质2 被积函数中的常数因子可以提到积分号的前面,即 性质 被积函数中的常数因子可以提到积分号的前面,

b
a
k f ( x ) dx = k ∫ f ( x ) dx
a
b
性质3 如果积分区间[a,b]被分点 分成区间 被分点c分成区间 性质 如果积分区间 被分点 分成区间[a,c]和[c,b],则 和 则
s ≈ ∑ v(ξ i ) ∆ t , (λ = max ∆ t i ).
i =1 1≤ i ≤ n n
(2)近似求和: )近似求和: (3)取极限: )取极限:
s = lim ∑ v (ξ i ) ∆ t i

第6章定积分及其应用解析

第6章定积分及其应用解析

xi xi xi1,(i 1,2,),在各小区间上任取
一点i (i xi ),作乘积 f (i )xi (i 1,2,)
n
并作和S f (i )xi ,
i 1
记||T|| max{x1, x2 , , xn } ,如果不论对[a, b]
怎样的分法,也不论在小区间[ xi1 , xi ]上
积 表
分 变
黎曼积分
达 式

[a , b] 上不可积 .
n

lim
T 0 i1
f (i )xi
不存在,则称
f (x) 在
注意:
1o. 定积分是积分和的极限,其结果是一个数,
它只与被积函数 f 和积分区间[a, b] 有关,而与
所用的积分变量的记号无关 .

b
b
b
f ( x)dx f (t)dt f (u)du .
例如,求由曲线y x 2 ,直线y 0, x 0, x 1所围
平面图形的面积。
公元前二百 多年前的阿 基米德就已 会用此法求 出许多不规 则图形的面 积
Aera=?
阿基米德
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
a
a
a
2o. 当 T 0, 分点个数n ;但反之不然.
3o. 若 f 在 [a, b]的某一个积分和的极限不存在 ,
或若 f 在 [a, b] 的某两个积分和的极限都存在但 极限值 不相等,则 f ( x) 在[ a , b ] 上不可积.
4o . 如果 f ( x) 在 [a, b] 上可积 , 则

定积分及其应用

定积分及其应用
1.建立坐标系,选定积分变量并确定积分区间; 2.找打相应的元素; 3.以此元素作积分表达式,在积分区间上求定积分.
下面我们将应用这一方法来讨论一些问题.
、平面图形的面积
根据围成平面图形的曲线的不同情况,我们分为以下两种情形
(1)由一条曲线 和直线x=a,x=b(a<b)及x轴围成的平面图形
O
(8,4)
-2
y
y+dy
4
A1
A2
(2,-2)
y2=2x
y=x-4
x
y
图6-11
O
x
a
b
xy=f(x)ຫໍສະໝຸດ 图 6-13( b) y x+dx
x
1
x
O
图6-14
x
图6-15
(a)
y
y+dy
2
1
y
O
(b)
O
a
A(x)
b
x
图 6-16
O B x a P Q
01
02
A
a
x
R
03
图6-17
y
当 在区间[a,b]上的值有正有负时,则由曲线 和直线x=a,x=b(a<b)及 x轴围成的曲边梯形的面积A是在x轴上方和下方的曲边梯形面积之差.
O
x
b
a
y=f ( x)
y=g( x)

图 6-9
x
y
O
x
x+dx
y
O
图6-10
y
a
b
x+dx
x
-a
本章的基本要求 理解定积分的概念,了解定积分的性质,知道函数连续是可积的充分条件,函数有界是可积的必要条件;理解变上限积分作为其上限的函数及其求导定理,熟练掌握牛顿―莱布尼茨公式;熟练掌握定积分的换元法与分部积分法;掌握用定积分表达一些几何量(如面积和体积)的方法;了解反常积分及其收敛、发散的概念等. 重点 定积分的概念和性质, 牛顿―莱布尼茨公式, 定积分换元法和分部积分法, 利用定积分计算平面图形的面积.

定积分及其应用

定积分及其应用

六、参考概率书籍,说明分布函数怎么计算 参考概率书籍, (p231,13) , )
分布函数 取值充满整个实数 轴的随机变量,就不可能用分 轴的随机变量, 布列来表述它取值的概率规律, 布列来表述它取值的概率规律, 一般可统一用分布函数来表述。 一般可统一用分布函数来表述。 分布函数是定义在实数轴上而 取值为大于等于0且小于等于 且小于等于1 取值为大于等于 且小于等于 的实数,对于实轴上任何一点x, 的实数,对于实轴上任何一点 , 随机变量X的分布函数 的分布函数F( ) 随机变量 的分布函数 (x) 点的值为随机变量X小于 在x点的值为随机变量 小于 点的值为随机变量 小于x 这个事件发生的概率。 这个事件发生的概率。分布函 数是单调非降的右连续函数, 数是单调非降的右连续函数, 在负无穷大时为0, 在负无穷大时为 ,在正无穷大 时为1。 时为 。
三、不定积分与定积分有什么联系和区别
不 定 积 分 原函数的 集合; 集合;用 换元法计 算时在 的计算 回; 回; 原函 数的
在区间[a,b]上连续 ⑴若f(x)在区间 在区间 上连续 则∫ (a,x)f(t)dt=G(x)是f(x)在 是 在 区间上的一个原函数, 区间上的一个原函数,即 G’(X)=f(x) ,即φ’(x)= ∫ (a,x)f(t)dt= f(x)【第一基本 【 定 是连续函数, 若f(x)是连续函数,F(x) 是连续函数 的一个原函数, 是f(x)的一个原函数,则∫ 的一个原函数 (a,b)f(x)dx=F(b) F(a) 【第 基本定
需求函数:在某一特定时期内, ①需求函数:在某一特定时期内,市场上某种商品的各种可能的购买量与决 需求量Q是价格 是价格p的函 定这些购买量的因素的关系 Q(p)= ∫(0,p)Q(t)dt+Q0 需求量 是价格 的函 价格为0时需求量最大 时需求量最大。 数,价格为 时需求量最大。 ②总成本函数:产品成本是以货币形式实现的企业生产销售产品全部费用支 总成本函数: 固定成本+变动成本 变动成本=总成本 出,固定成本 变动成本 总成本 C(x)= ∫(0,x)C′(t)dt+C0 C0=C 价格× ③总收入函数:总收入=价格×销售量 总收入函数:总收入 价格 R(x)= ∫(0,x)R′(t)dt (∫(0,x)L′(t)dt产量 产量 利润=收入 ④利润函数:利润 收入-成本 L(x)= ∫(0,x)L′(t)dt-C0 利润函数 利润 收入- - 时的毛利, 为x时的毛利,毛利减去固定成本为纯利) 时的毛利 毛利减去固定成本为纯利)

高等数学-定积分及其应用ppt课件.ppt

高等数学-定积分及其应用ppt课件.ppt
一、引例
在变速直线运动中, 已知位置函数
与速度函数
之间有关系:
物体在时间间隔
内经过的路程为
这种积分与原函数的关系在一定条件下具有普遍性 .
5.3 定积分的计算
则积分上限函数
证:
则有
定理1. 若
5.3.1 牛顿 – 莱布尼兹公式
说明:
1) 定理 1 证明了连续函数的原函数是存在的.
2) 变限积分求导:
5.6.1 广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积
可记作
其含义可理解为
1 连续函数在无限区间上的积分
定义1. 设

存在 ,
则称此极限为 f (x) 在区间 的广义积分,
记作
这时称广义积分
收敛 ;
如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若
公式, 复化求积公式等,
并有现成的数学软件可供调用.
性质1 常数因子可提到积分号外 性质2 函数代数和的积分等于它们积分的代数和。
5.2 定积分的简单性质
性质3 若在区间 [ a , b ]上 f (x)≡K,则 性质4 定积分的区间可加性 若 c 是 [ a , b ] 内的任一点,则
的面积 .
解:
例3. 汽车以每小时 36 km 的速度行驶 ,
速停车,
解: 设开始刹车时刻为
则此时刻汽车速度
刹车后汽车减速行驶 , 其速度为
当汽车停住时,


故在这段时间内汽车所走的距离为
刹车,
问从开始刹
到某处需要减
设汽车以等加速度
车到停车走了多少距离?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i 1
y=f(x)
f(ξi) 0 a x0 x1 x2 xi1ξixi
xn1 xn b x
返回
(4)取极限:当分割无限时,所有小矩 形的 面积之和的极限 就是曲边梯形面积A的精确 值。
n
分割越细, f (i )xi 就越接近于曲边梯形 i 1
的面积A,当 小区间长度最大值趋近于零,即
0 其中 为所有小区间的长度最大者,
数( x)
x
a
f
(t )dt 在[a, b]上具有导数,且它的导数
是(
x)
d dx
x
a
f (t)dt
f (x)
(a x b)
y

x x
( x x) a
f (t)dt
( x x) ( x)
x x
x
f (t)dt f (t)dt
a
a
( x)
o a x x x b x
返回
x
定积分及其应用
定积分的概念 定积分的积分法 微积分基本公式 定积分的应用
返回
曲边梯形面积 几何意义 定积分的概念 定积分的性质
返回
一.引例 曲边梯形面积
1.曲边梯形:
由连续曲线y=f(x),直线x=a,x=b及x轴所 围成的图形
y
y=f(x) 如何求面积?
ao
b
x
返回
2.思想方法(回顾割圆术)
的一个原函数,则ab f ( x)dx F (b) F (a).
证 已知F ( x)是 f ( x) 的一个原函数,

(
x)
x
a
f (t )dt 也是 f ( x)的一个原函数,
F( x) ( x) C x [a,b]
返回
令 x a F(a) (a) C,
(a)
a
a
f
(t )dt
b
b
b
a[ f (x) g(x)]dx a f (x)dx a g(x)dx
性质2: 设f (x)在[a, b]上可积, 则k f (x)在[a, b]可
积,

b
b
kf (x)dx k f (x)dx
( k为常数)
a
a
返回
性质3: (可加性)设f (x)在[a, b]上可积, a < c < b, 则f (x)分别在[a, c], [c, b]上可积, 且

max
1in
{x
i
}
时,和式
返回
n
f (i )x i
i 1
极限就是A,即
n
y
A
lim
0
i 1
f (i )x i
y=f(x)
f(ξi) 0 a x0 x1 x2 xi1ξixi
xn1 xn b x
返回
二、定积分的概念
1.定义: 设函数y=f(x)在区间[a,b]上有定义。在区间
[a,b]中任取分点
即:
m(b a)
b
f (x)dx M (b a)
a
返回
性质7: (中值性质) 设 f (x)在[a, b]上连续, 则在 [a, b]上至少存在一个点 , 使得
b
f (x)dx f ( )(b a)
(a b)
a
Hale Waihona Puke 证: 由于 f (x)在[a, b]上连续, 所以 f (x)在[a, b]
x
a f ( x)dx a f (t)dt
如果上限x 在区间[a, b]上任意变动,则对于
每一个取定的x 值,定积分有一个对应值,所以
它在[a, b]上定义了一个函数,

( x)
x
a
f
(t )dt .
称为积分上限函数
返回
积分上限函数的性质
定理1 如果 f ( x)在[a, b]上连续,则积分上限的函
0
-1 2
x2
|0-1
1 2
x2
|10 1
注意本题如不分段积分,则得如下错误结果:
1 x 2 dx 1 xdx 1 x 2 1 0
1
-1
2 -1
返回
定积分的积分法
换元积分法 分部积分法
返回
一、换元积分法
定理 假设
(1) f ( x)在[a, b]上连续;
(2)函数 x (t ) 在[ , ]上是单值的且有连续
例如:b
b
b
a f (x)dx a f (t)dt a f (y)dy
2) 规定: b
a f (x)dx 0 (a b)
b f(x)dx - a f(x)dx(a b)
a
b
返回
三、定积分的几何意义
A f (x) 0
1.
b a
f
(x)dx
-A
f (x) 0
A表示以y=f(X)为曲边的曲边梯形面积
底边,以曲线 y f (x)为曲边的曲边梯形的面积
等于同一底边而高为f () 的一个矩形的面积。
y
y=f(x)
f ( )
o
x
返回
例 估计定积分 1ex2 dx 的值 1
解 先求 f (x) ex2在[-1, 1]上的最大值和最小值 因 f (x) 2xe x2
得驻点 x = 0 而 f(0)=1 , f(-1)=f(1)=1/e
a x0 x1 x2 x3 xi1 xi xn1 xn b,
将区间[a, b]分成n个小区间:
[xi1, xi ] (i 1,2, , n)
其长度为 xi xi xi1 (i 1,2, , n)
在第i小区 间 [xi1,xi ]上,任取一点ξi(xi1 ξi xi )
0
F(a) C,
x
F ( x) a f (t)dt C,
x
a f (t)dt F ( x) F (a),
令x b
b
a f ( x)dx
F (b) F (a).
牛顿—莱布尼茨公式
返回
b
a
f
( x)dx
F (b)
F (a)
F ( x)ba
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.
作乘积 f(ξi )Δxi(i 1,2, ,n)的和式:
n
f (i )xi .
i 1
返回
n
如果和式
f (i )xi .极限存在,
i 1
n
A
lim
0
i 1
f (i )x i
其中
max
1in
{x
i
}
该极限值就称为f(x)在[a,
b]
上的定积分.记为
n
b
lim
0
f (i )x i
i 1
f (x)dx
且 f (xg(x). 则
b
a
f
(x)dx
b
a
g(x)
返回
性质6: (估值性质)设M 和m分别是 f (x)在[a, b]
上的最大值及最小值, 则
b
m(b a) f (x)dx M (b a) (a < b) a
证: m f (x) M
b
b
b
a mdx a f (x)dx a Mdx
则 m=1/e , M=1
于是有 2 / e e1 x2 dx 2 1 返回
微积分基本公式
问题提出 上限函数 牛-莱公式
返回
一、问题提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0,
求物体在这段时间内所经过的路程.
b
c
b
a f (x)dx a f (x)dx c f (x)dx
此时, c 称为内分点.
注意:
C点既可为(a, b)内的点,也可为(a,b)外的点
返回
性质4: 设在[a, b]上, f (x) 1. 则
b
b
a 1dx a dx b a
性质5: (比较性质)设f (x)、g(x)在[a, b]上可积,
导数;
(3)当t 在区间[ , ]上变化时, x (t ) 的值
在[a,b]上变化,且 ( ) a 、 ( ) b,

有 b a
f
(
x)dx
f [ (t)] (t)dt .
返回
应用换元公式时应注意:
(1)用 x (t )把变量x 换成新变量 t 时,积分限也
要相应改变,原上限对新上限,原下限对新下限.
y
y=f(x)>0
A
0a
bx
y
a 0
b x
A
y=f(x)<0
返回
2.如果f(x)在[a,b]上时正,时负,如下图
y
y=f(x)
A1 a 0 A2
A3
bx

b a
f
(x)dx
A1
A2
A3
3.结论:
b a
f
(
x)dx的值都可用区边梯形面积
的代数和表示 几何意义
返回
四、 定积分的性质
性质1 : 设f (x)、g(x)在[a, b]上可积, 则 f (x) g(x) 在[a, b]可积, 且
变速直线运动中路程为 T2 v(t )dt T1
另一方面这段路程可表示为 s(T2 ) s(T1 )
T2 v(t )dt
T1
s(T2 ) s(T1 ).
相关文档
最新文档