中考数学复习:专题4-12 网格中的勾股定理

合集下载

专题05勾股定理与网格问题解析版

专题05勾股定理与网格问题解析版

专题05 勾股定理与网格问题必备知识点1.勾股定理的性质定理:直角三角形两直角边的平方和等于斜边的平方(即:在Rt △ABC 中,如果a ,b 为直角边,c 为斜边,那么。

)勾股定理的变式:、、、2. 勾股定理与网格问题该问题主要考查的知识点就是根据网格的长度,并应用勾股定理求边长,及面积的问题,求面积一般用分割法或大图形减小图形面积进行求解。

一、单选题1.如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为( )A .12BCD【分析】如图,连接格点CD ,设1个网格的边长为x ,根据格点的长度求出BD ,CD 边的长度,根据勾股定理证明∠BDC =∠ADC =90°,再计算sin ∠A=CD AC计算即可.【详解】解:如图,连接格点CD ,设1个网格的边长为x ,则BD CD == ,2BC x =c b 222a =+b c a 222-=a c 222b -=b a c 22+=b c 22a -=知识导航题型精炼∴222BD CD BC +=∴∠BDC =∠ADC =90°,∴sin ∠A= CD AC又AC ===∴sin ∠A= CD AC =故选:C【点睛】本题考查了网格中解直角三角形、勾股定理及其逆定理、锐角的三角函数,根据网格特点构造直角三角形是关键.2.如图,网格中的每个小正方形边长为1,点A ,B 都在小正方形的顶点上,线段AB 与网格线MN 交于点C ,则AC 的长为( )A .32B .43C .54D .65【分析】先利用勾股定理求出AB 的长,再利用A 字模型相似三角形证明△ANC ∽△ADB ,然后利用相似三角形的性质进行计算即可解答.【详解】解:如图:由题意得:AB = ==5,∵CN //BD ,∴∠ANC =∠ADB ,∠ACN =∠ABD ,∴△ANC ∽△ADB ,∴AN AC AD AB =,∴145AC =,∴AC =54,故选:C .【点睛】本题考查了勾股定理,相似三角形的判定与性质,熟练掌握A 字模型相似三角形是解题的关键.3.在如图所示的网格中,小正方形的边长均为1,ABC V 的顶点都是格点,则tan BAC Ð的值为( )A B C .12D 【分析】连接格点D 、C ,则由勾股定理及其逆定理,易得CD ⊥AB ,从而在Rt △ADC 中,由正切函数的定义即可求得结果.【详解】如图,连接格点D 、C ,则CD ==AD ==AC∵(222+=,即222CD AD AC +=,∴CD AB ^,在Rt △ADC 中,1tan 2CD BAC AD Ð===.故选:C .【点睛】本题考查了勾股定理及其逆定理,正切函数的定义等知识,把非直角三角形中锐角三角函数问题转化为直角三角形中锐角三角函数问题是本题的关键与难点.4.如图,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则∠ABC 的正切是( )A .2B .12CD 【分析】过点B 作BD AC ^于点D ,过点C 作CE AB ^于点E ,则3BD AD ==,1CD =,利用勾股定理可求出AB ,BC 的长,利用等面积法可求出CE 的长,由勾股定理求出BE ,再利用正切的定义可求出ABC Ð的正切值.过点B 作BD AC ^于点D ,过点C 作CE AB ^于点E ,则3BD AD ==,1CD =,如图所示.AB ==BC ==在ABC V 中,由等面积法得:1122AC BD AB CE ×=×,即112322CE ´´=´,CE \=在Rt BEC △中,BE ===12tan CE ABC BE \Ð===.故选:B .【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,利用面积法及勾股定理求出长度是解题的关键.5.如图,小正方形的边长均为1,则A 、B 、C 、D 四个选项中的三角形(阴影部分)与ABC V 相似的是( )A .B .C .D .【分析】先求出已知三角形三边长,再分别求出选项中三角形三边长,按小中大进行求比值看是否相等即可判断解:根据勾股定理AC ,BC =2,AB ,A .三条线段长分别为1,故选项A 中的三角形与ABC V 相似;B 3,31110¹¹,,故选项B 中的三角形不与ABC V 相似;C .三条线段长分别为1, ,¹¹,故选项C 中的三角形不与ABC V 相似;D .三条线段长分别为2,¹¹,故选项D 中的三角形不与ABC V 相似.故选择A .【点睛】本题考查三角形相似判定,掌握相似三角形的判定方法是解题关键.6.如图,点A 、B 、C 、D 都在边长为1的网格格点上,以A 为圆心,AE 为半径画弧,弧EF 经过格点D ,则扇形AEF 的面积是( )A.54pB.98pC.πD.2p【分析】根据题意以及网格的特点求得45CAFÐ=°,圆弧的半径为AD=,进而根据扇形面积公式进行计算即可.【详解】依题意,点A、B、C、D都在边长为1的网格格点上,45CAF\Ð=°,AD==,\扇形AEF54p.故选A.【点睛】本题考查了网格的特点,勾股定理,扇形面积,根据网格的特点求得圆心角和半径是解题的关键.7.如图,网格中的每个小正方形的边长为1,四边形的顶点A,B,C,D都在格点上,则下面5A.AB B.BC C.CD D.AD【分析】根据勾股定理求得每条线段的长度即可.【详解】解:AB=BC=3,CD=AD=AD,故选:D.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.8.如图,由小正方形组成的网格图,每个小正方形的边长均为1,图中标有线段AB,CD,EF,GH,其中能构成一个直角三角形三边的是()A.AB,EF,CD B.AB,EF,GH C.AB,CD,GH D.CD,EF,GH 【分析】根据网格图,分别求出AB,CD,EF,GH,再根据勾股定理的逆定理判断是否能构成直角三角形.【详解】∵由小正方形组成的网格图,每个小正方形的边长均为1∴ABCD=EF=GH=A、(22222¹,故不符合题意;+=+=13AB CD EFB、22222¹,故不符合题意;AB GH EF+=+=18C、(222222AB CD GH,故符合题意;+=+=13==D、(22222¹,故不符合题意;CD GH EF+=+=21故答案选:C【点睛】本题考查勾股定理和勾股定理的逆定理.根据网格图找出四条线段的长度是本题的关键.V的三个顶点A,B,C都9.如图,在5×5的网格中,每个格点小正方形的边长为1,ABC在网格格点的位置上,则ABC V 的边AB 上的高为( )A B C D 【分析】如图,过C 作CH AB ^于,H 利用勾股定理先求解,AB 再利用等面积法求解高CH 即可.【详解】解:如图,过C 作CH AB ^于,H由勾股定理可得:AB == 而2,BC =11222,,22ABC ABC S S CH \=´´==V V4,=CH \== 故选:.C 【点睛】本题考查的是勾股定理的应用,二次根式的除法运算,利用等面积法列方程,掌握网格与勾股定理的密切联系是解题的关键.10.如图,将ABC V 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则cos CAB Ð的值是( )ABC .2D .12【分析】取AC 上小正方形对角线CD 的端点D ,连结BD ,BD 为小正方形的对角线,利用勾股定理逆定理可得∠CDB =90°,由勾股定理ABADcos ∠CAB即可.【详解】解:取AC上小正方形对角线CD 的端点D ,连结BD ,∵BD 为小正方形的对角线,∴BD∵CD 是小正方形对角线,∴CD∵BD 2+CD 2=2+2=4=BC 2,∴∠CDB =90°,∴∠ADB =90°,由勾股定理AB ,ADcos ∠CAB.故选择:B.【点睛】本题考查网格中直角三角形,勾股定理,锐角三角函数,掌握网格中直角三角形判定与性质,勾股定理,锐角三角函数定义是解题关键.二、填空题11.如图,在边长1正网格中,A 、B 、C 都在格点上,AB 与CD 相交于点D ,则sin ∠ADC =_____.【分析】将转化成其他相等的角,在直角三角形中,利用正弦函数值的定义求解即可.【详解】解:延长CD 交正方形的另一个顶点为,连接BE ,如下图所示:由题意可知:,,根据正方形小格的边长及勾股定理可得:,在中,,ADC ÐE 90BED Ð=°ADC BDE Ð=ÐBE =BD =\RtBDE sin BE BDE BD Ð==sin sin ADC BDE \Ð=Ð=.【点睛】本题主要是考查了勾股定理和求解正弦值,熟练地找到所求角在的直角三角形,利用正弦函数值的定义进行求解,这是解决该题的关键.12.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan AOC Ð的值______.【分析】连接BE ,OE BEBO根据勾股定理的逆定理判定△OBE 是直角三角形,从而计算正切值即可.【详解】∵连接BE ,OEBE,BO∴,∴△OBE 是直角三角形,∴=tan ∠BOE ==3,故答案为:3.【点睛】==2222021820BO EO EB ==+=+=tan AOC ÐBE EO =本题考查了网格上的三角函数的正切计算,熟练运用勾股定理,勾股定理的逆定理,正切的定义即对边与邻边的比值,是解题的关键.13.如图,网格中的小正方形边长都是1,则以O 为圆心,OA 为半径的 AB 和弦AB 所围成的弓形面积等于___________.【分析】根据勾股定理求出半径AO 的长度,然后根据弓形面积=扇形OAB 的面积-三角形OAB 的面积,求解即可.【详解】解:由勾股定理得,由网格的性质可得,是等腰直角三角形,∴和弦所围成的弓形面积=.故答案为:.【点睛】此题考查了网格的特点和性质,勾股定理,扇形面积公式等知识,解题的关键是正确分析出弓形面积=扇形面积-三角形OAB 的面积.14.如图所示的网格是正方形网格,∠APB =___°.【分析】延长AP交格点于D ,连接BD ,由勾股定理得到,勾股定理的逆定理得到为等腰直角三角形,即可求解.【详解】解:延长AP交格点于D ,连接BD ,OA ==90AOB Ð=°AOB D AB AB290112436022AO AO BO p p °´´-=´=-°g g ()24p -PD BD PB ==PDB △由勾股定理得:∵∴∴为等腰直角三角形,∴∴故答案为【点睛】本题考查了勾股定理、勾股定理的逆定理、等腰直角三角形的判定和性质等知识,正确的作出辅助线是解题的关键.15.如图,正方形网格中每个小正方形的边长为1,在ABC V中,点A 、B 、C 均在小正方形的顶点上,点D 为AB 边的中点,则线段CD 的长为_________.【分析】根据勾股定理列式求出AB、BC 、AC ,再利用勾股定理逆定理判断出△ABC 是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:根据勾股定理,,,∴AC2+BC2=AB2=26,∴△ABC 是直角三角形,∠ACB=90°∵点D 为AB 的中点,PD BD ===PB ==222+=222()()()PD BD PB +=PDB △45DPB Ð=°18045135APB Ð=°-°=°135°AB =AC =BC =∴CD=.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.16.如图,已知每个小方格的边长均为1,则ABCV与CDE△的周长比为_________.【分析】设、分别与交于点、,则,可得到,在网格图中,利用锐角三角函数值得到,继而,可得到,证得,然后分别求出、,即可解答.【详解】如图,设、分别与交于点、,则,∴,∵,,∴,∴,∴,,由图可知:,12AF DG BE F G//AF DG FA G C D GÐ=ÐB A F E D GÐ=ÐB A G C D EÐ=Ð//AB DE ABC DEC:△△AB DEAF DG BE F G//AF DGFA G C D GÐ=Ð21t an42B A FÐ==1t an2E D GÐ=B A F E D GÐ=ÐB A GCD EÐ=Ð//AB DEABC DEC:△△AB==DE=∴ ,即与的相似比为 ,∴与的周长比为故答案为:【点睛】本题主要考查了网格图中的两个相似三角形周长之比,解题的关键是找到相似三角形的相似比.三、解答题17.如图,在边长为1的6×6的小正方形网格图中,点A ,B 均在格点上.(1)求出线段AB 的长度;(2)用无刻度直尺作出以AB 为斜边,直角顶点在格点上的所有格点直角三角形,用字母C 1,C 2,…标出直角顶点;(3)用无刻度直尺作出(2)中其中一个面积最大的直角三角形以A 为对称中心的中心对称图形.【分析】(1)由图可知,由勾股定理得,计算求解即可;(2)当时,如图点,当时,如图点,当时,如图点;依次连接即为所求;(3)题意知且最大,画的以A 为对称中心的中心对称图形如图所示.(1)解:由图可知,由勾股定理得∴线段AB.(2)解:如图1所示::2:1A B D E ==ABC V CDE △2:1ABC V CDE △2:12:1AB =21019AB ==+14C C 、21028AB ==+25C C 、21055AB ==+36C C 、n A B C 、、36ABC ABC S S =V V 3ABC △AB C ¢¢△AB ==当时,如图点,依次连接,即为所求;当时,如图点,依次连接,即为所求;当时,如图点,依次连接,即为所求.(3)解:由题意知且最大∴画的以A 为对称中心的中心对称图形如图2所示【点睛】本题考查了勾股定理的应用,中心对称图形,直角三角形等知识.解题的关键在于对知识的灵活运用.18.如图,由边长为1的小正方形组成的66´网格中,ABC V 顶点在网格上,点D 在BC 边上,且2BD CD =.(1)BD 长等于__________.21019AB ==+14C C 、1A B C 、、4A B C 、、21028AB ==+25C C 、2A B C 、、5A B C 、、21055AB ==+36C C 、3A B C 、、6A B C 、、36ABC ABC S S =V V 3ABC △AB C ¢¢△(2)请你仅用无刻度的直尺在边AB 上找点E ,使得BDE V 与ABC V 相似.(要求画出两种情形)【分析】(1)利用勾股定理求解即可;(2)根据相似三角形的判定方法,作出图形即可.(1)解:BD故答案为:(2)如左图,画DE ∥CA ,△BDE 即为所求;如右图,画,△BDE 即为所求.【点睛】本题考查作图﹣相似变换,解题的关键是掌握相似三角形的判定方法,属于中考常考题型.19.在所给的88´的正方形网格中,按下列要求操作:(单位正方形的边长为1)(1)请在第二象限内的格点上找一点C ,使ABC V 是以AB 为底的等腰三角形,且腰长是无理数,求点C 的坐标;(2)画出ABC V 以点C 为中心,旋转180°后的A B C ¢¢V ,并求A B C ¢¢V 的面积.【分析】BD AB BE BC ==(1)根据题意,腰长为无理数且为以AB 为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积.(1)解:如图所示,点的坐标为;(2)如图所示:点的坐标,点的坐标为,∵旋转180°后的的面积等于的面积,,∴,∴的面积为4.【点睛】题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键.20.如图,在10×10的正方形网格中,每个小正方形的边长为1.已知点A 、B 都在格点上(网格线的交点叫做格点),且它们的坐标分别是A (2,-4)、B (3,-1).(1)点B 关于y 轴的对称点的坐标是;(2)若点C 的坐标是(0,-2),将△ABC 先沿y 轴向上平移4个单位长度后,再沿y 轴翻折得到△A 1B 1C 1,画出△A 1B 1C 1,B 1点的坐标是 ;ABC V C ()1,1-BC AC ==A ¢()0,2-B ¢()20,A B C ¢¢V ABC V AB CD ===11422A B C S AB CD ¢¢=×=´=△''A B C V(3)111A B C △的面积为___;(4)在现有的网格中,到点B 1距离为10的格点的坐标是【分析】(1)直接根据轴对称的性质写出点B 关于y 轴的对称点的坐标即可;(2)根据题中方式平移并翻折,画出图形,写出坐标即可;(3)直接用所在矩形的面积减去周围三角形的面积即可得到答案;(4)利用勾股定理可得点B 1距离为10的格点的坐标.【详解】解:(1)点B 关于y 轴的对称点的坐标是,故答案为:;(2)如图△A 1B 1C 1即为所作,B 1点的坐标是,故答案为:;(3),故答案为:;(4)符合题意的点可以为:,,111A B C △(3,1)--(3,1)--()3,3-()3,3-111113*********A B C S =´-´´´-´´=△4(5,3)-(3,5)-故答案为:(5,-3)或(3,-5).【点睛】本题考查了轴对称变换以及平移变换、勾股定理,正确得出对应点位置是解本题的关键.。

中考数学勾股定理(讲义及答案)附解析

中考数学勾股定理(讲义及答案)附解析

一、选择题1.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .9 2.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .63.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③4.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1525.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .826.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )A .3B .3.3C .4D .4.58.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .610.有下列的判断: ①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形③如果△ABC 是直角三角形,那么a 2+b 2=c 2以下说法正确的是( )A .①②B .②③C .①③D .②二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.14.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.18.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.19.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.28.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠.求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.29.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.30.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 2.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 3.A解析:A【分析】作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形;由割补法可知四边形CDFE 的面积保持不变;△DEF 是等腰直角三角形2DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值42,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.4.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S 1,S 2,S 3,再利用S 1+S 2+S 3=15求解是解决问题的关键.5.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=12×CD×BC=12×3×4=6,∵P是BD的中点,∴S△PBC=12S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.9.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.12.45【分析】如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可【详解】如下图,延长BA 至网络中的点D 处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14.【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,BD BE DE64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.15.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.1671【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N 22''OM ON +. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.18.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD , ∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.19.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解. 【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ , 12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.20.【分析】根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4,∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DMBM ,进而可得BE +CF(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC ﹣∠AED =45°,理由如下:∵∠AED =∠ABE =α,∴∠BAE =180°﹣2α,∴∠CAE =∠BAE ﹣∠BAC =90°﹣2α,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =45°+α,∴∠AEC ﹣∠AED =45°;(3)如图,过点C 作CG ⊥AH 于G ,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;③在Rt AHB 中,由①知:6EH HB ==∴622 AH AE EH=+=+,22222256623AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN∠+∠=︒,∴AN DE⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为2033或1235. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=22236c a b a ∴=++根据优三角形的定义,分以下三种情况:当2a b c +=时,26236a a +=+,整理得24360a a -+=,此方程没有实数根。

中考数学考点复习 勾股定理

中考数学考点复习   勾股定理

中考数学考点复习勾股定理一.选择题1. 在ABC 中,10AB =,AC =,BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或102.直角三角形有两边为3和4,则第三边的长为( )A. 5B. D. 无法确定3. 已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( )A 、40B 、80C 、40或360D 、80或3604. 乐乐婷想测量教学楼的高度,他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了 米,当他把绳子的下端拉开 米后,发现绳子下端刚好接触地面,则教学楼的高度是( )米.A. B. C. D.5.在平面直角坐标系中,以点M (6,8)为圆心,2为半径的圆上有一动点P ,若A (﹣2,0),B (2,0),连接PA ,PB ,则当PA 2+PB 2取得最大值时,PO 的长度为( )A .8B .10C .12D ..6.如图,在Rt ABC ∆中,90,45,B BCA AC ︒︒∠=∠==点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .2BC 1D .17.如图,两棵树高分别为6m ,2m ,两树相距5m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞( )A .4mB . mC .3mD .9m 8.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是( )A .B .C .13D .59.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距_________A 25海里B 30海里C 35海里D 40海里10. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =6,大正方形的面积为16,则小正方形的面积为( )A .8B .6C .4D .311.如图,有一个圆锥,高为8cm ,底面直径为12cm.在圆锥的底边B 点处有一只蚂蚁,它想吃掉圆锥顶部A 处的食物,则它需要爬行的最短路程是( )A.8cmB.9cmC. 10cmD. 11cm12. 如图,在矩形ABCD 中,BC ,ADC ∠的平分线交边BC 于点E ,AH DE ⊥于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O .给出下列命题:①AEB AEH ∠=∠;②DH =;③12HO AE =;④BC BF -.其中正确命题为( )A .①②B .①③C .①③④D .①②③④13.观察图形,可以验证( )A .a 2+b 2=c 2 B.(a ﹣b )2=a 2﹣2ab+b 2 C.a 2﹣b 2=(a+b )(a ﹣b ) D.(a+b )2=a 2+2ab+b 214.如图,等腰ABC 中,10AB AC ==,12BC =,点D 是底边BC 的中点,以A 、C 为圆心,大于12AC 的长度为半径分别画圆弧相交于两点E 、F ,若直线EF 上有一个动点P ,则线段PC PD +的最小值为( )A .6B .8C .10D .1215.如图,点E 是矩形ABCD 的边AB 的中点,点F 是边CD 上一点,连接ED ,EF ,ED 平分∠AEF ,过点D 作DG ⊥EF 于点M ,交BC 于点G ,连接GE ,GF ,若FG ∥DE ,则AB AD的值是( )A .32B .2CD 二.填空题16. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .17. 若直角三角形的两直角边的长的比是:512,斜边长是26,则斜边上的高是 .18.19. 如图所示,一架梯子 长 米,顶端 靠在墙 上,此时梯子下端 与墙角 的距离为 米,当梯子滑动后停在 的位置上,测得 长为 米.则梯子顶端 沿墙下移了________米.20. 一长方体如图,在A 处有一只蚂蚁,它想吃到上底面B 点的食物,它沿长方体的侧面爬行的最短距离是 .21. 如图是单位长度为1的网格图,A 、B 、C 、D 是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成________个直角三角形.22.如图是用八个全等的直角三角形拼接而成.记图中正方形 ,正方形 ,正方形 的面积分别为 , , .若 ,则 的值是________.23.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,,则是________.24.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8,设CD=x .则AC+CE 的最小值是_____.25.如下图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为________.26. 如图,在等腰ABC 中,5AC BC ==,6AB =,D ,E 分别为AB ,AC 边上的点,将边AD 沿DE 折叠,使点A 落在CD 上的点F 处.当点F 与点C 重合时,AD =________.27.如图,是一个三级台阶,它的每一级的长、宽、高分别为,,20dm 3dm 2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路...程.是 .在一个长为13米,宽为8米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD 平行且大于AD ,木块的正视图是边长为1米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是________米.28.29. 如图,在ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ;已知3CE =,5BE =,则AC 的长为________.30.如图,是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5 m 的半圆,其边缘AB =CD =20 cm ,小明要在AB 上选取一点E ,能够使他从点D 滑到点E 再到点C 的滑行距离最短,则他滑行的最短距离为__________ m .(π取3)三.解答题31.如图,在△ABC 中,AB =17cm ,AC =8cm ,BC =15cm ,将AC 沿AE 折叠,使得点C 与AB 上的点D 重合.(1)证明:△ABC 是直角三角形;(2)求△AEB 的面积.32. 如果m ,n 是任意给定的正整数(m >n ),证明:m 2+n 2,2mn ,m 2﹣n 2是勾股数(又称毕达哥拉斯数).33.如图,在垂直于地面的墙上2m 的A 点斜放一个长2.5m 的梯子,由于不小心,梯子在墙上下滑0.5m .求梯子在地面上滑出的距离BB ′的长度.34.如图,在中,,为边上一点,且,.(1)求的长; (2)若,求的面积.35.如图,在四边形ACDB 中,CD BD ⊥,4CD =,BCD △的面积为6,12AC =,13AB =,(1)求BC 的长;(2)求ABC 的面积.36.如图,在中,点、分别是,边中点于,延长,过作于. (1)求证:. (2)若,,求的长度.37. 如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在E 处,BE 交AD 于点F .(1)判断BDF 的形状,并说明理由;(2)若6AB =,10AD =,求BDF 的面积.38.已知:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l .(1)填表:(2)如果a +b -c =m ,观察上表猜想:S l= (用含有m 的代数式表示). (3)证明(2)中的结论.39.问题背景.在△ABC中,AB=,BC=,AC=,求这个三角形的面积,乐乐同学在解答这道题时先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(△ABC的三个顶点都在正方形的顶点处),如图所示,这样不需要求△ABC的高,而借用网格就能计算它的面积.(1)请直接写出△ABC的面积;(2)我们把上述方法叫做构图法,若△ABC中,AB,BC,AC三边的长分别为,,,请你在图2的正方形网格(每个小正方形的边长为a)中画出相应的△ABC.并求其面积.40.在四边形ABCD中,∠A=∠B=90°,BC=4,CD=6,E为AB边上的点.(1)连接CE,DE,CE⊥DE.①如图1,若AE=BC,求证:AD=BE;②如图2,若AE=BE,求证:CE平分∠BCD;(2)如图3,F是∠BCD的平分线CE上的点,连结BF,DF,BF=DF,求CF的长.41.如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO,AB边上的动点,点P,点Q同时从点A出发,若P以32个单位每秒的速度从点A向点O运动,点Q以2个单位每秒的速度从点A向点B运动,设运动时间为t.(1)如图1,已知点A的坐标为(a,b),且满足(a﹣3)2﹣b|=0,则A点坐标;(2)如图1,连接BP,OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形?若能,试求:①运动时间t;②此时四边形APDQ的面积;若不能,请说明理由.42.我们在探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边,与斜边满足关系式,称为勾股定理.(1)爱动脑筋的东东把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助东东完成验证的过程.(2)如图,在每个小正方形边长为的方格纸中,的顶点都在方格纸格点上.请在图中画出的高,利用上面的结论,求高的长.。

中考专题复习:解直角三角形,正方形网格中直角三角形解法归纳

中考专题复习:解直角三角形,正方形网格中直角三角形解法归纳

正方形网格中直角三角形解法归纳三角函数是整个初中很重要的一个知识点,题型很多,特别是与正方形网格结合的综合性题目,经常考到,所以今天整理了4个类型的题型分享给大家,掌握这几种题型,轻松得高分。

一、三角形的边与网格边重合在正方形网格中,每个正方形的边长为1,点A、B、C都在格点上,求sinA。

这是最基础的求三角函数的题型。

根据题意可以直接得出AB=3,BC=3,根据勾股定理可以得出AC=√(9+9)=3√2,所以sinA=3/3√2=√2/2;也可以利用等腰直角三角形直接得出答案。

二、三角形的边不在网格上同样的题型,点A、B、C都在格点上,求sinA。

这个题型需要先确定三角形ABC是不是直角三解形。

解题思路:先在RTAEB、RTCFB、RTADC中利用勾股定理把AB、BC、AC 求出来。

AB=2√2,BC=3√2,AC=√26,三条边满足勾股定理,所以这是一个直角三角形。

sinA=BC/AC=3√2/√26=√117/13。

不知道求AB、BC、AC的同学,要把三条边分别放在直角三角形中求。

正方形网格中所有在格点上的线段,都是可以构成直角三角形求出来的。

三、三边不在网格上也不是直角三角形在相同的已知条件下求sinC。

这种题型是三角形三边不在网格上,也不是直角三角形的类型。

一般要通过作图(要求:把要求的角放在直角三角形中),构成一个直角三角形。

然后利用端点在格点上的边都可以求出,这一性质,列出一个面积相等的式子求出BD,最后求sinC。

解题思路:过点B作BD⊥AC,根据同一个三角形的面积相同得出等式:1/2(2AB)=1/2(AC×DB)即3=1/2(2√5×DB),BD=3√5/5,在RTCBD中sinC=BD/BC=(3√5/5)/√5=3/5。

四、求不在同一直角三角形中两个角的正弦值相同的条件求sin(+)因为∠和∠不在同一个三角形中,所以要通过作图让它们在一起,而且必须是在直角三角形中,这样才能求sin(+)。

中考数学专题复习 专题51 勾股定理的多种证明方法(教师版含解析)

中考数学专题复习 专题51  勾股定理的多种证明方法(教师版含解析)

中考专题51 勾股定理的多种证明方法勾股定理具体内容是:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

历史上证明勾股定理有很多方法,每种方法都含有科学思维、科学探究的过程,每一种证明方法都利用数学观念,数学知识。

每一种方法都体现一名数学家为科学付出的情怀。

在证明勾股定理的长河中,参与的人有的是学者,有的是著名的科学家,还有的是政治家,比如总统。

通过学习勾股定理的证明,可以品味各种拼图,方法各异,妙趣横生,证明思路别具匠心,极富创新。

它们充分运用了几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,深刻体现了形数统一、代数和几何紧密结合、互不可分的独特魅力。

勾股定理是对社会有重大影响的10大科学发现之一。

早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。

迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。

数学故事:在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德(Garfield).他发现附近的一个小石凳上,有两个小孩正在谈论着什么.由于好奇心的驱使,伽菲尔德向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。

中考数学专题复习勾股定理之蚂蚁爬行最短距离

中考数学专题复习勾股定理之蚂蚁爬行最短距离

中考数学专题复习勾股定理(蚂蚁爬行最短距离)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,则最短的爬行距离是()A.10B.14C.106D.1302.如图,有一个圆柱,底面圆的直径AB=16π,高BC=12cm,P为BC的中点,一只蚂蚁从A点出发沿着圆柱的表面爬到P点的最短距离为()A.9cm B.10cm C.11cm D.12cm3.如图,圆柱的高为4cm,底面半径为3πcm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径、问:蚂蚁食到食物爬行的最短距离是()cm.A.5B.5πC.3+4πD.3+8π果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.521B.25C.105+5D.355.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离是()A.15cm B.16cm C.17cm D.18cm6.如图所示,圆柱的高AB=3,底面直径BC=6,现在有一只蚂蚁想要从A处沿圆柱侧面爬到对角C处捕食,则它爬行的最短距离是()A.321+πB.621+πC.9D.627.如图是一个三级台阶,它的每一级的长,宽,高分别是20dm,3dm,2dm,A和B是这个台阶相对的端点,点A处有一只蚂蚁,想到B处去吃食物,则这只蚂蚁爬行的最短距离为()A.25dm B.26dm C.24dm D.27dm要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.241B.265C.65D.829.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A处的最短距离是()A.73厘米B.10厘米C.82厘米D.8厘米10.如图,在长方体透明容器(无盖)内的点B处有一滴糖浆,容器外A点处的蚂蚁想沿容器壁爬到容器内吃糖浆,已知容器长为6cm,宽为4cm,高为3cm,点A距底部2cm,请问蚂蚁需爬行的最短距离是(容器壁厚度不计)A.229cm B.10cm C.62cm D.45cm 11.如图,长方体的长为20cm,宽为15cm,高为10cm,点B离点C为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()12.如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则移动的最短距离为()A.10B.12C.14D.2013.如图,有一圆柱,其高为8cm,它的底面周长为16cm,在圆柱外侧距下底1cm的A处有一只蚂蚁,它想得到距上底1cm的B处的食物,则蚂蚁经过的最短距离为()A.10cm B.12cm C.15cm D.8cm14.如图,长方体的高为9m,底面是边长为6m的正方形,一只蚂蚁从如图的顶点A 开始,爬向顶点B.那么它爬行的最短路程为()A.10m B.12m C.15m D.20m评卷人得分二、填空题15.长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是_________.16.如图,在圆柱的截面ABCD中,AB=16π,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离为_____.17.如图,这是一个供滑板爱好者使用的U型池的示意图,该U型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为32πm的半圆,其边缘AB=CD=15m,点E在CD上,CE=3m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为_____m.(边缘部分的厚度忽略不计)18.如图,一只蚂蚁沿长方体的表面从顶点A爬到另一顶点M,已知AB=AD=2,BF =3.这只蚂蚁爬行的最短距离_____.19.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________.20.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_______cm.评卷人得分三、解答题21.如图,有一个高为10dm,底面周长为48dm的圆柱形水桶,水桶的底端A处有一只蚂蚁,它准备沿水桶的侧面爬行到对角B处去吃一滴蜂蜜,求蚂蚁爬行的最短路线长.22.如图,是用棱长为1cm的两个正方体拼成的新几何体,求一只蚂蚁从顶点A出发沿着新几何体的表面爬行到顶点B的最短路程是多少cm?23.如图,一只螳螂在树干的点A处,发现它的正上方点B处有一只小虫子,螳螂想捕到这只虫子,但又怕被发现,于是就绕到虫子后面吃掉它,已知树干的半径为10cm,A,B两点的距离为45cm,求螳螂爬行的最短距离(π取3).24.如图,一个长方体形盒子的长、宽、高分别为4cm,4cm,6cm(1)一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点B,请你帮蚂蚁设计一条最短的路线,蚂蚁要爬行的最短路线是多少?(2)若将一根木棒放进盒子里并能盖上盖子,则能放入该盒子里的木棒的最大长度是多少cm ? (结果可保留根号)参考答案:1.A【解析】【分析】把长方体展开,根据两点之间线段最短得出最短路线AG,根据勾股定理,即可求出AG长度;【详解】把长方体展开有两种情况:当蜘蛛从A出发到EF上再到G时,如下图所示=,BC cm5∴==,FG BC cm5∴=+=,BG cm5611()在Rt ABG中,22=+=;AG cm311130()当蜘蛛从A出发到BF上再到G时,如下图所示3AB cm=,5BC cm=,358()AG cm∴=+=,6BF cm=,6CG BF cm∴==,在Rt ABG中,228610()AG cm=+=,13010>.故选:A.【点睛】本题考查勾股定理的应用,掌握两点之间线段最短是解题的关键.2.B【解析】【分析】把圆柱的侧面展开,连接AP,利用勾股定理即可得出AP的长,即蚂蚁从A点爬到P点的最短距离.【详解】解:如图:展开后线段AB的长度是圆柱中半圆AB的周长,圆柱底面直径16cmπ、高12BC cm=,P为BC的中点,∴6BP cm=,1168,2AB cmππ∴=⨯⨯=在Rt ABP中,22228610()AP AB PB cm=+=+=,∴蚂蚁从A点爬到P点的最短距离为10cm,故选:B.【点睛】本题考查的是平面展开-最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.3.A【解析】【分析】如图,先把圆柱体沿着直线AC剪开,得到矩形如图示:可得线段AB的长度为所求的最短距离,再利用勾股定理可得答案.【详解】解:把圆柱体沿着直线AC剪开,得到矩形如下:则线段AB的长度为所求的最短距离.由题意得圆柱的高为:4,cm底面半径为3cmπ,1134,=2=3,22AC BC Cππ∴==⨯⨯底面圆2222345,AB AC BC∴=+=+=所以蚂蚁至少要爬行5cm路程才能吃到食物.故选:A【点睛】本题考查平面展开最短路径问题,弄懂圆柱展开图是长方形,根据两点之间线段最短是解题的关键.4.B【解析】【分析】将长方体侧表面剪开与前面、上面、后面侧面分别形成一个长方形,分别利用勾股定理计算出AB的距离即可解答.【详解】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10,高为20,点B离点C的距离为5,∵BD=CD+BC=10+5=15,AD=20在直角三角形ABD中,根据勾股定理得:2222=15+20=25AB BD AD+=只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:此时BD=CD+BC=20+5=25,所以22==529AB BD AD+同理与后面侧面所在构成一个长方形,如图3,可求22==537AB AC BC+∵25529537<<【点睛】本题考查的是两点之间线段最短和勾股定理,本题关键是将长方体侧面展开,利用两点之间线段最短解答.5.A【解析】【分析】在侧面展开图中,过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∵AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm−4cm+4cm=12cm,在Rt∵A′QC中,由勾股定理得:A′C=22129=15cm,故选:A.【点睛】本题考查了平面展开−最短路径问题,同时也考查了学生的空间想象能力.将图形侧面展开,利用轴对称的性质和勾股定理进行计算是解题的关键.6.A【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt∵ADC中,∵ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3π,所以AC=22222+3(3)=31+ ADCDππ=+,故选:A.【点睛】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.7.A【解析】【分析】先将图形平面展开,再由勾股定理根据两点之间线段最短进行解答.【详解】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x dm,由勾股定理得:x2=202+[(2+3)×3]2=252,故选:A.【点睛】本题的是平面展开-最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题8.A【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【详解】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图∵长方体的宽为10,高为6,点B离点C的距离是2,∵BD=CD+BC=10+2=12,AD=6,在直角三角形ABD中,根据勾股定理得:∵AB=2212665+=;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为6,点B离点C的距离是2,∵BD=CD+BC=6+2=85,AD=10,在直角三角形ABD中,根据勾股定理得:∵AB=22810241+=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为6,点B离点C的距离是2,∵AC=CD+AD=6+10=16,在直角三角形ABC中,根据勾股定理得:∵AB=222+16=265;∵24165265<<,∵蚂蚁爬行的最短距离是241,故选:A.【点睛】本题主要考查两点之间线段最短,关键是将长方体侧面展开,然后利用两点之间线段最短解答.9.B【解析】【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A所在母线展开,如图所示,作点A的对称点B,连接PB,则PB为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.10.B【解析】【分析】沿着上面的棱将A点翻折至'A处,分三种情况讨论,利用化曲为直的思想和勾股定理求解即可.【详解】解:沿着上面的棱将A点翻折至'A处,则新长方体的长、宽、高依次为6cm,4cm,4cm,若蚂蚁的行走路线为后壁和下壁,则最短路径为:226810cm+=,若蚂蚁的行走路线为左壁和下壁,则最短路径为:22104229cm+=,若蚂蚁的行走路线为左壁和前壁,则最短路径为:22+=,104229cm∵10229<,∵最短路径为:10cm.故选:B.【点睛】本题考查勾股定理的应用,求算术平方根.能分类讨论是解题关键.11.B【解析】【分析】分三种情况讨论:把上面展开到左侧面上,连结AB,如图1;把上面展开到正面上,连结AB,如图2;把侧面展开到正面上,连结AB,如图3,然后利用勾股定理分别计算各情况下的AB,再进行大小比较.【详解】把上面展开到左侧面上,连结AB,如图1,++==(cm)(1020)5925537把上面展开到正面上,连结AB,如图2,AB=2220(105)62525++==(cm);把侧面展开到正面上,连结AB,如图3,AB=2210(205)725529++==(cm).∵925>725>25所以一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离为25cm.故选:B.【点睛】本题考查了平面展开−最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.12.A【解析】【分析】由于圆柱的高为12cm,S为BC的中点,故BS=6cm,先把圆柱的侧面展开,连接AS,利用勾股定理即可得出AS的长.【详解】解:沿着S所在的母线展开,如图,连接AS,则AB=12×16=8,BS=12BC=6,在Rt∵ABS中,根据勾股定理AB2+BS2=AS2,即82+62=AS2,解得AS=10.∵A,S两点之间线段AS最短,∵点A到点S移动的最短距离为AS=10cm.故选:A.【点睛】本题考查的是平面展开−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.13.A【解析】【分析】首先画出圆柱的侧面展开图,进而得到AC=8cm,BC=8-1-1=6cm,再利用勾股定理计算出AB长即可.【详解】解:如图,将圆柱的侧面展开,蚂蚁经过的最短距离为线段AB的长.由勾股定理,AB2=AC2+BC2=82+(8-1-1)2=100,∵AB=10cm.故选A.【点睛】此题主要考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.14.C【解析】【详解】试题解析:如图,(1)AB=22615=261+;(2)AB=22129=225=15+,由于15<261,则蚂蚁爬行的最短路程为15米.故选C.点睛:展开时要根据实际情况将图形按不同形式展开,再计算.15.25cm【解析】【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:只要将长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10,高为20,点B与点C的距离是5,∵BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:AB=22221520BD AD+=+=25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10,高为20,点B离点C的距离是5,∵BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:AB=22222510529BD AD+=+=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10,高为20,点B离点C的距离是5,∵AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:AB=2222305537AC BC+=+=;∵25529537<<∵蚂蚁爬行的最短距离是25cm,故答案为:25cm.【点睛】此题考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可,正确掌握勾股定理及长方体的不同展开方式是解题的关键.16.10【解析】【分析】先把圆柱的侧面展开,连接AS,利用勾股定理即可得出AS的长.【详解】如图所示,将其展开,∵在圆柱的截面ABCD中:16ABπ=,12BC=,∵11682ABππ=⨯⨯=,162BS BC==,将其展开可得如下的矩形,在Rt ABS∆中,∵228610AS=+=.故答案为:10.【点睛】题目主要考查弧长公式、勾股定理及其在圆柱展开展开中的应用,能想到将圆柱展开应用勾股定理是解题关键.17.20【解析】【分析】要求滑行的最短距离,需将该U型池的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:如图是其侧面展开图:AD=1322ππ=16(m),AB=CD=15m.DE=CD-CE=15-3=12(m),在Rt∵ADE中,AE=2222161220AD DE+=+=(m).故他滑行的最短距离约为20m .故答案为:20.【点睛】本题考查了平面展开-最短路径问题,本题就是把U 型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.18.5【解析】【分析】把这个长方体表面分别沿CB 、ND 、DC 展开,将点A 和点M 放在同一平面内,在同一平面内A 、M 两点间线段最短,根据勾股定理计算,找出最短距离即可.【详解】解:如图1,将长方体沿CB 展开,当蚂蚁经图中长方体右侧表面爬到M 点,则2222()(23)229AM AB BF MF =++=++=,如图2,将长方体沿ND 展开,当蚂蚁经图中长方体左侧面爬到M 点,则2222()(22)35AM AD DC MC =++=++=, 如图3,将长方体沿DC 展开,当蚂蚁经图中长方体上侧面爬到M 点,则2222()(23)229AM BC CM AB =++=++=,比较以上三种情况,一只蚂蚁从顶点A 爬到顶点M ,那么这只蚂蚁爬行的最短距离是5. 故答案为:5.【点睛】本题考查最短路径问题,用勾股定理构造图形解决问题,学会分析从不同方向展开长方体表面,灵活运用勾股定理进行计算是解题关键.19.25【解析】【分析】将圆锥的侧面展开,是一个扇形,AC 就是小虫爬行的最短路程,利用弧长与圆心角的公式,求展开图的圆心角l 180n R π=,R=4,l=2πr=2π,可求出n 的大小,由于n=90º,利用勾股定理可求AC 的长即可.【详解】把圆锥的侧面展开,弧长是2πr=2π,母线AS=4,侧面展开的圆心角4l 2180180n R n πππ===,n=90º即∵ASC=90º, C 为AD 的中点SD=2,线段AC 是小虫爬行的最短距离,在Rt∵SAC 中,由勾股定理的AC=2222AS +CS =4+2=25,故答案为:25.【点睛】本题考查圆锥侧面的最短路径问题,掌握弧长公式,会利用弧长与圆锥底面圆的关系确定侧面展开图的圆心角,会用勾股定理求出最短路径是解题关键.20.15【解析】【分析】过C作CQ EF⊥于Q,作A关于EH的对称点A',连接A C'交EH于P,连接AP,则AP PC+就是蚂蚁到达蜂蜜的最短距离,求出A Q',CQ,根据勾股定理求出A C'即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ EF⊥于Q,作A关于EH的对称点A',连接A C'交EH于P,连接AP,则AP PC+就是蚂蚁到达蜂蜜的最短距离,AE A E=',A P AP'=,AP PC A P PC AC∴+='+=',11892CQ cm cm=⨯=,124412A Q cm cm cm cm'=-+=,在Rt∵A QC'中,由勾股定理得:2212915A C cm'=+=,故答案为:15.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解题的关键是找出最短路线.21.蚂蚊爬行的最短路线长为26dm.【解析】【分析】先把水桶的侧面展开图如图所示.确定AD为半周长,然后利用勾股定理求解即可.【详解】解:水桶的侧面展开图如图所示.由题意,易得10dmBD=,24dmAD=,由勾股定理得,2222241026dmAB AD BD=+=+=,即蚂蚊爬行的最短路线长为26dm.【点睛】本题考查最短路径问题,掌握圆柱侧面展开图,确定点B是半周长的山边缘,用勾股定理求解是解题关键.22.22cm【解析】【分析】根据两点之间线段最短,将组合体图形转化为平面图形,进而勾股定理求解即可【详解】解:如图,将组合体的上底面展开,点B到了点B'的位置,蚂蚁沿A D B→→所在的直线运动到B'路程最短,∴22222222AB AC B C'=+=+=.若按以下方式展开,则21310AB'=+=1022>即蚂蚁从顶点A出发到顶点B的最短路程是22cm.【点睛】本题考查了勾股定理的应用,将立体图形转化为平面图形是解题的关键.23.75cm【解析】【分析】将圆柱形树干的侧面如图所示展开,根据两点之间线段最短,可得AB即为螳螂爬行的最短距离,利用勾股定理即可求出AB.【详解】解:将圆柱形树干的侧面如图所示展开,根据两点之间线段最短,可得AB即为螳螂爬行的最短距离AF=2π×10≈60cm,BF=45cm∵2222604575AB AF BF=+=+=cm答:螳螂爬行的最短距离为75cm.【点睛】此题考查的是勾股定理的应用,掌握利用勾股定理解直角三角形和两点之间线段最短是解24.(1)10cm;(2)78cm.【解析】【分析】(1)将长方形的盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案;(2)利用勾股定理直接求出木棒的最大长度即可.【详解】(1)如图1所示:AB=228+6=10(cm),如图2所示:AB=224+10=229(cm).故蚂蚁爬行的最短路线为A-P-B(P为CD的中点),最短路程是10cm.(2)由题意得:给长方体盒子加上盖子能放入木棒的最大长度是:2224+4+6=78(cm).此题考查了两点之间线段最短,解答时要进行分类讨论,利用勾股定理是解题的关键.。

苏教版中考数学勾股定理知识点总结,真题,精选题

苏教版中考数学勾股定理知识点总结,真题,精选题

知胜教育个性化教学专用教案学生姓名:科目:数学九年级备课时间:年月日讲次:第讲授课教师:周老师授课时间:年月日至上课后,学生签字:年月日教学类型:■强化基础型□引导思路型■错题讲析型□督导训练型□效率提升型□单元测评型□综合测评型□应试指导型□专题总结型□其它:教学目标:中考专题复习之勾股定理。

勾股定理专题复习知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错 误。

初中数学解题模型专题讲解29---勾股定理知识点与常见题型总结

初中数学解题模型专题讲解29---勾股定理知识点与常见题型总结

例 5.如图有两棵树,一棵高 8 cm ,另一棵高 2 cm ,两树相距 8 cm ,一只小鸟从一棵树
的树梢飞到另一棵数的树梢,至少飞了
m
A
E
D
B
C
分析:根据题意建立数学模型,如图 AB = 8 m ,CD = 2 m ,BC = 8 m ,过点 D 作 DE ⊥ AB , 垂足为 E ,则 AE = 6 m , DE = 8 m 在 Rt∆ADE 中,由勾股定理得 AD = AE2 + DE2 = 10 答案:10 m
8/8
一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
常见方法如下:
方法一: 4S∆
初中数学解题模型专题讲解
一.知识归纳
专题 29 勾股定理复习
1.勾股定理
内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为 c ,那么 a2 + b2 = c2
勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代
把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千 多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进
+ S正方形EFGH
=
S正方形ABCD

4
×
1 2
ab
+
(b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题12 网格中的勾股定理
【专题综述】
网格题型是近几年的常考题型,也是近期各地中考考试的一个热点。

正方形网格中的每一个角都是直角,所以在正方形网格中的计算都可以归结为求任意两个格点之间的长度问题,一般情况下都是设每一个小正方形的边长为1,然后应用勾股定理来进行计算。

【方法解读】
一、面积问题
例1 如图1所示,在一个有4×4个小正方形组成的正方形网格中,阴影部分的面积与正方形ABCD的面积比是()
A、3:4
B、5:8
C、9:16
D、1:2
【举一反三】
如图,在正方形网格(图中每个小正方形的边长均为1)中,△ABC的三个顶点均在格点上,则△ABC的周长为,面积为.
【来源】山东省青岛市第四中学八年级数学上册:1.1探索勾股定理同步练习
二、长度问题
例2 如图2所示,在△ABC 中,三边a 、b 、c 的大小关系是( )
A 、a <b <c
B 、c <a <b
C 、c <b <a
D 、b <a <c
【举一反三】
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦。

我国西汉《周髀算经》中周公与商高对话中涉及勾股定理,所以这个定理也有人称商高定理,勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年发现的。

我们知道,可以用一个数表示数轴上的一个点,而每个数在数轴上也有一个点与之对应。

现在把这个数轴叫做x 轴,同时,增加一个垂直于x 轴的数轴,叫做y 轴,如下图。

这样,我们可以用一组数对来表示平面上的一个点,同时,平面上的一个点也可以用一组数对来表示,比如下图中A 点的位置可以表示为(2,
3),而数对(2,3)所对应的点即为A 。

若平面上的点M ()11,x y ,N ()22,x y ,我们定义点M 、N 在x 轴方向上的距离为: 12x x -,点M 、N 在y 轴方向上的距离为: 12y y -。

例如,点G (3,4)与点H (1,-1)在x 轴方向上的距离为:|3-1|=2,点M 、N 在y 轴方向上的距离为:|4-(-1)|=5。

(1)若点B 位置为(-1,-1),请在图中画出点B ;图中点C 的位置用数对______来表示。

(2)在(1)条件下,A 、B 两点在x 轴方向上的距离为________,在y 轴方向上的距离为_______,A 、
B 两点间的距离为______;若E 点、F 点的位置分别为(a ,b )、(c ,d ),点E 、F 之间的距离为|EF|,则2
||EF =_______________。

(3)有一个点D ,它与(0,0)点的距离为1,请画出D 点所有可能的位置。

【来源】北京师范大学附属中学2017-2018学年七年级上学期期中考试数学试题
三、三角形形状问题
例3 如图3所示为一个6×6的网格,在△ABC 、△A ’B ’C ’、△A ’’B ’’C ’’三个三角形中,直角三角形有( )
A 、3个
B 、2个
C 、1个
D 以上都不对
【举一反三】
在所给的8×6网格图中,横竖每相邻两点间的长度均为1,以这些点为顶点的三角形称为网格三角形,请找出点M ,使以A ,B ,M 为顶点的网格三角形是直角三角形,这样的点M 有_______个.
【来源】浙江省吴兴区2017-2018学年八年级上学期期终模拟数学试题
【强化训练】
1.如图,在由单位正方形组成的网格图标中有AB,CD,EF,GH 四条线段,其中能构成一个直角三角形三边的线段是( )
A. AB,CD,EF
B. AB,CD,GH
C. AB,EF,GH
D. CD,EF,GH
【来源】陕西省西安市陕师大附中2017-2018学年度第一学期八年级数学第一阶段模拟测试题 中,AB,BC,AC三边的长分别为5,32,17,求这个三角形的面积.
2.在ABC
小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中
画出格点△ABC中,(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需要△ABC高,借用网格就能计算出它的面积.
(1)△ABC的面积为;
(2)如果△MNP三边的长分别为10,25,26,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积为.
【来源】北京市顺义区2017-2018学年度第一学期期末教学质量检测八年级数学试卷
3.如图,在4×4的正方形网格中,每个小正方形的边长均为1.请在所给网格中画一个边长分别为5、22、3的三角形.
【来源】吉林省长春汽车经济技术开发区2017-2018学年八年级上学期期末教学质量跟踪测试数学试题
4.问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你利用上述方法求出△ABC的面积.
(2)在图2中画△DEF,DE、EF、DF三边的长分别为2、8、10
①判断三角形的形状,说明理由.
②求这个三角形的面积.(直接写出答案)
【来源】山东省枣庄市滕州市2017-2018学年八年级(上)期中数学试卷
5.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)画一个三角形,使它的三边长都是有理数.
(2)画一个直角三角形,使它们的三边长都是无理数.
(3)画出与ABC成轴对称且与ABC有公共点的格点三角形(画出一个即可).
【来源】浙江省杭州市西湖区绿城育华2017-2018学年八年级上学期期中考试数学试题
6.如图,正方形网格中的每个小正方形边长都是1,图中虚线叫做格线,每个小格的顶点叫做格点,以格点
为顶点分别按下列要求画三角形(只要求画出图形,不写作法和结
论,作图需用黑笔描画):
(1)使三角形为直角三角形,且不以格线为任意一边(在图1中画一个即可);
(2)使三角形的三边长分别为3,22,5(在图2中画一个即可);
(3)使三角形为钝角三角形且面积为4(在图3中画一个即可).
【来源】浙江省杭州市余杭区英特外国语学校2017-2018学年八年级上学期期中考试数学试题
7.如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1、P2、P3、P4、P5是△DEF边上的5个格点,请按要求完成下列各题:
(1)试证明△ABC为直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由;
(3)直接写出一个与△ABC相似的三角形,使它的三个顶点为P1、P2、P3、P4、P5中的三个格点.
【来源】江苏省南通市八一中学2018届九年级上学期第三次月考数学试题
8.如图,网格中每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.
(1)在图中画以EF为直角边的等腰直角△DEF,点D在小正方形的格点上;
(2)在(1)的条件下,在图中画一个Rt△BAC,点C在小正方形的格点上;使∠BAC=90°,且△BAC的面积为2,连接CD,直接写出线段CD的长.
【来源】黑龙江省哈尔滨市第四十七中学2018届九年级(五四学制)上学期期中考试数学试题
9.阅读下列材料:
小明遇到一个问题:在中,,,三边的长分别为、、,求的面积.
小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为),再在网格中画出格点(即三个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法.
参考小明解决问题的方法,完成下列问题:
()图是一个的正方形网格(每个小正方形的边长为).
①利用构图法在答卷
..的图中画出三边长分别为、、的格点.
②计算①中的面积为__________.(直接写出答案)
()如图,已知,以,为边向外作正方形,,连接.
①判断与面积之间的关系,并说明理由.
②若,,,直接
..写出六边形的面积为__________.
【来源】浙江杭州上城区建兰中学2017-2018学年八年级上学期中考试数学试题
10.在每个小正方形的边长为1的网格中,每个小正方形的顶点称为格点.我们将从一个格点移动到与之相
距5的另一个格点的运动称为一次跳马变换
.....
(1)在图1中画出边长为5的正方形,使它的顶点在网格的格点上.
(2)在图2中有一只电子小马从格点M出发,经过跳马变换到达与其相对的格点N,则最少需要跳马变换的次数是次.
的正方形网格中,一只电子小马从格点S经过若干次跳马变换到达与其相对的格点(3)如图3,在2020
T,则它跳过的最短路程为.
【来源】浙江省温州市瑞安外国语学校2017-2018学年七年级12月月考数学试题。

相关文档
最新文档