八年级数学下册利用勾股定理作图或计算练习题

合集下载

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为()A.10B.C.15D.10或2、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB的长为()A.2B C D.5 23、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm5、下列各组数中,是勾股数的是( )A .0.3,0.4,0.5B .52,6,132 C 2 D .9,12,156、如图,数轴上点A 所表示的数是( )A B C D 17、如图,在Rt △ABC 中,AB =6,BC =8,AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,则DE 的长为( )A .4B .5C .6D .78、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要( )A .8 cmB .10 cmC .12 cmD .15 cm9、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .2、3、4 BC .5、12、13D .30、50、6010、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么_____.2、△ABC 的三条边长a 、b 、c 满足8c =60b -=,则△ABC ____直角三角形(填“是”或“不是”)3、已知:点A 的坐标为()3,4,点B 坐标为()1,1-,那么点A 和点B 两点间的距离是______.4、如图,已知△ABO 为等腰三角形,且OA =AB =5,B (﹣6,0),则点A 的坐标为_____.5、如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,当DF 的长度最小时,CE 的长度为______.三、解答题(5小题,每小题10分,共计50分)1、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.2、如图,正方形网格中,每个小正方形的边长为1,求网格上的三角形ABC 的面积和周长.3、如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =5,点D 是边AB 上的一个动点,连接CD ,过C 点在上方作CE ⊥CD ,且CE =CD ,点P 是DE 的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.4、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做“格点”,以格点为顶点分别按下列要求画三角形:(1)在图①中画出一个钝角三角形,使它的面积为4,并求出该三角形的三边长;(2)在图②中画出一个面积为10的正方形.5、如图,在4×4的正方形网格中,每个小正方形的边长均为1.(1(2)此三角形的面积是.---------参考答案-----------一、单选题1、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解: ∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A .【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.2、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=,∴AE =DE =121233AC AC ⨯==CD ,∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab 的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.5、D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A 、不是勾股数,因为0.3,0.4,0.5不是正整数,故此选项不符合题意;B 、不是勾股数,因为52,132不是正整数,故此选项不符合题意;CD 、是勾股数,因为222912=15+,故此选项符合题意;故选D .【点睛】本题考查勾股数的概念,勾股数是指:①三个数均为正整数;②其中两个较小的数的平方和等于最大的数的平方.6、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.7、B【分析】在Rt ABC∆中利用勾股定理求出AC长,利用折叠性质:得到ADE ADC∆∆≌,求出对应相等的边,设DE=x,在Rt BDE∆中利用勾股定理,列出关于x的方程,求解方程即可得到答案.【详解】解:∵AB=6,BC=8,∠ABC=90°,∴AC2222BC,6810∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,≌,∴∆∆ADE ADC∴A、B、E共线,AC=AE=10,DC=DE,∴BE=AE﹣AB=10﹣6=4,在Rt△BDE中,设DE=x,则BD=8﹣x,∵BD2+BE2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.8、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''∆中,由勾股定理可知:'10Rt AAB===,AB cm故所用细线最短需要10cm.故选:B.【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.9、C【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【详解】解:A、22+32≠42,不能构成直角三角形,故此选项不符合题意;B、2+22,不能构成直角三角形,故此选项不符合题意;C、52+122=132,能构成直角三角形,故此选项符合题意;D、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.二、填空题1、222+=a b c【分析】利用勾股定理:两条直角边长的平方和等于斜边长的平方和,即可得到答案.【详解】解:在直角三角形中,由勾股定理可知:222+=a b c .故答案为:222+=a b c .【点睛】本题主要是考查了直角三角形的勾股定理,熟练掌握勾股定理的内容,注意区分好直角边和斜边,这是解决该类问题的关键.2、不是【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可.【详解】60b -=,∴40a -=,60b -=,∴4,6a b ==,则22246528+=≠,∴222a b c +≠,∴△ABC 不是直角三角形,故答案为:不是.【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.3、5【分析】根据两点间距离公式求解即可.【详解】∵点A 的坐标为()3,4,点B 坐标为(1,1)-,∴点A 和点B 5=.故答案为:5.【点睛】本题考查两点间距离,若11(,)A x y ,22(,)B x y ,则两点间的距离是AB 距离公式是解题的关键.4、(﹣3,4)【分析】过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,根据AB =AO ,AC ⊥BO ,得OC =132OB =,在Rt △AOC 中,由勾股定理得:AC =4,即可求出点A 的坐标.【详解】解:如图,过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,∵B(﹣6,0),∴OB=6,∵AB=AO,AC⊥BO,∴OC=132OB=,在Rt△AOC中,由勾股定理得:AC4=,∴A(﹣3,4).故答案为:(﹣3,4)【点睛】本题主要考查了坐标与图形,等腰三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.5、【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD CG=以及FCD ECG,由旋转的性质可得出EC FC=,由此即可利用全等三角形的判定定理SAS证出ΔΔFCD ECG≅,进而即可得出DF GE=,再根据点G为AC的中点,求出AD和DE的长,由勾股定理可得出答案.【详解】取线段AC的中点G,连接EG,如图所示.ABC ∆为等边三角形,且AD 为ABC ∆的对称轴,162CD CG AB ∴===,60ACD ∠=︒, 60ECF =︒∠,FCD ECG .在ΔFCD 和ECG ∆中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ΔΔ()FCD ECG SAS ∴≅,DF GE ∴=.当//EG BC 时,EG 最小,此时E 为AD 的中点,12AB BC ==,6DC =,AD ∴==12DE AD ∴==CE ∴==故答案为【点睛】本题考查了勾股定理,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.三、解答题1、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ;定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.2、面积是7【分析】利用面积和差和勾股定理求解即可.【详解】解:△ABC 的面积=111441432247222⨯-⨯⨯-⨯⨯-⨯⨯=;由勾股定理得:ABBC =AC ==所以△ABC【点睛】本题考查了勾股定理,解题关键是熟练运用勾股定理求线段长.3、(1)AP =12DE ,理由见解析;(2)BD =56或4514【分析】(1)连接AE ,首先根据∠ACB =∠ECD =90°,得到∠ECA =∠DCB ,然后证明△BCD ≌△ACE (SAS ),根据全等三角形对应角相等得到∠EAC =∠B =45°,进一步得出∠EAD =90°,最后根据直角三角形斜边上的中线等于斜边的一半即可得出AP =12DE ;(2)分两种情况讨论:当Q 在线段AB 上时和当Q 在线段BA 延长线上时,连接AE ,EQ ,根据题意得出CQ 垂直平分DE ,进而根据垂直平分线的性质得到EQ =DQ ,设BD =AE =x ,在Rt △AEQ 中根据勾股定理列方程求解即可;【详解】解:(1)AP =12DE ,理由:连接AE ,如图,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBA =45°.∵∠ACB =∠ECD =90°,∴∠ECA =∠DCB .在△BCD 和△ACE 中,CE CD ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE (SAS ).∴∠EAC =∠B =45°.∴∠EAD=∠EAC+∠BAC=90°.又∵P为DE中点,∴AP=12DE.(2)情况(一),当Q在线段AB上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,EQ=DQ=AB﹣AQ﹣BD=3﹣x,由(1)知:∠EAB=90°,∴EA2+AQ2=EQ2.∴x2+22=(3﹣x)2,解得x=56,即BD=56;情况(二),当Q在线段BA延长线上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,同理可得方程:x2+22=(7﹣x)2,解得x=45 14.综上:BD=56或4514.【点睛】此题考查了全等三角形的性质和判定,勾股定理的运用,垂直平分线的性质,直角三角形斜边中线的性质等知识,解题的关键是根据题意正确作出辅助线.4、 (1)三角形如图①所示,三边长分别为2、(2)正方形如图②所示.【分析】(1)画一个底边长是2,高为4的钝角三角形即可,然后利用勾股定理可以求出各边长.(2【详解】(1)如图①所示:很明显,12442EMFS=⨯⨯=,且FM=2,又由题意可得:EM=,EF=(2)如图②所示,由题意可得:AB=BC=CD=DA【点睛】本题考查的是勾股定理的综合应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、(1)画图见解析;(2)5.5【分析】(1)利用勾股定理在网格中确定2222223110,2313,1417,AB AC BC再顺次连接,,A B C即可;(2)利用长方形的面积减去周围三个三角形的面积即可. 【详解】解:(1)如图,ABC即为所求作的三角形,其中:2222223110,2313,1417, AB AC BC(2)11134132314 5.5,222ABCS故答案为:5.5【点睛】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.。

2022-2023学年人教版八年级数学下册《17-1勾股定理》解答题专题训练(附答案)

2022-2023学年人教版八年级数学下册《17-1勾股定理》解答题专题训练(附答案)

2022-2023学年人教版八年级数学下册《17.1勾股定理》解答题专题训练(附答案)1.如图是边长为1的正方形网格,下面是勾股定理的探索与验证过程,请补充完整:∵S1=,S2=,S3=,∴S1+S2=S3.即2+2=2.2.在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请你用该图验证勾股定理.3.2000多年来,人们对直角三角形三边之间的关系的探究颇感兴趣,古往今来,下至平民百姓,上至帝王总统都愿意探究它,研究它的证明,新的证法不断出现.下面给出几种探究方法(由若干个全等的直角三角形拼成如图图形),试用面积法选择其中一种推导直角三角形的三边a、b、c之间的数量关系(1)三边a、b、c之间的数量关系为;(2)理由:.4.计算:(1)在Rt△ABC中,∠C=90°,a=8,b=15,求c(2)在Rt△ABC中,∠C=90°,a=3,b=4,求c(3)一个直角三角形的两边长分别为3cm和5cm,求这个三角形的第三边长.5.如图,阴影部分是一个长方形,求它的面积.6.如图,在△ABC中,∠ACB=90°,AC=20,BC=15,CD⊥AB于点D.求:(1)CD的长;(2)BD的长.7.如图,求等腰三角形ABC的面积.8.如图.你能计算出各直角三角形中未知边x的长度吗?9.细心观察如图,认真分析各式,然后解答下列问题:()2+1=2,S1=()2+1=3,S2=()2+1=4,S3=.(1)用含n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S1+S2+S3+…+S n的值.10.如图,4×4方格中每个小正方形的边长都为1.(1)图①中正方形ABCD的边长为;(2)在图②的4×4方格中画一个面积为8的正方形;(3)把图②中的数轴补充完整,然后用圆规在数轴上表示实数和﹣.11.如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2﹣BN2=AC2.12.写出图中3个三角形的面积S1、S2、S3之间的关系,并给出证明.13.(1)如图1,∠ACB=90°,图中有阴影的三个半圆的面积S1,S2,S3有什么关系?(2)如图2,∠ACB=90°,△ABC的面积为20,在AB的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为.14.设直角三角形的两条直角边长及斜边上的高分别为a,b及h,求证:.15.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.16.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E.若AC=8,BC=4,求AE的长.17.如图,在△ABC中,AB=8cm,AC=6cm,∠A=90°,点D在AB上,且BD=CD.(1)求BC和BD的长.(2)求△BDC的面积.18.在△ABC中,AB=10,AC=17,BC=21,求高AD(画图作答).19.已知:如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)当△ABP为直角三角形时,求t的值;(2)当△ABP为等腰三角形时,求t的值.20.定义:如图,点M,N把线段AB分割成AM,MN,NB,若以AM,MN,NB为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知M,N把线段AB分割成AM,MN,NB,若AM=2.5,MN=6.5,BN=6,则点M,N是线段AB的勾股分割点吗?请说明理由.(2)已知点M,N是线段AB的勾股分割点,且AM为直角边,若AB=14,AM=4,求BN的长.参考答案1.解:∵S1=4,S2=9,S3=13,∴S1+S2=S3.即AC2+BC2=AB2.故答案为:4,9,13,AC,BC,AB.2.解:梯形的面积=(a+b)(a+b)=ab+ab+c2,∴a2+2ab+b2=ab+ab+c2,∴a2+b2=c2.3.解:(1)由勾股定理得:a2+b2=c2.故答案为:a2+b2=c2.(2)选择图1.∵大正方形的面积=4个直角三角形的面积+小正方形的面积,∴(a+b)2=4×ab+c2,即a2+2ab+b2=2ab+c2,∴a2+b2=c2.故答案为:(a+b)2=4×ab+c2.4.解:(1)利用勾股定理,得c===17,即c=17;(2)利用勾股定理,得c===5,即c=5;(3)5cm是直角边时,第三边==cm,5cm是斜边时,第三边==4cm,所以,第三边长为cm或4cm.5.解:由勾股定理得(cm),∴长方形的面积为5×1=5(cm2).6.解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AC=20,由勾股定理可得,AB===25,∴AB的长是25;∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,∵AC=20,BC=15,AB=25,∴20×15=25CD,∴CD=12,∴CD的长是12.(2)∵CD⊥AB于点D,∴∠CDB=90°,在Rt△BCD中,∠CDB=90°,BC=15,CD=12,由勾股定理可得,BD===9,∴BD的长为9.7.解:过点C作CD⊥AB于点D,∵AC=BC,DC⊥AB,∴AD=BD=AB=3cm,∵BC=5cm,∴DC==4(cm),∴等腰三角形ABC的面积为:×4×6=12(cm2).8.解:如图1中,∵∠A=∠B=45°,∴∠C=90°,AC=BC=1,∴AB===.∴x=,如图2中,∵∠C=90°,AC=3,∠B=30°∴AB=2AC=6,∴x=BC===3.9.解:(1)结合已知数据,可得:OA n2=n;S n=;(2)∵OA n2=n,∴OA10=.(3)S1+S2+S3+…+S n=++++…+.10.解:(1)图①中正方形ABCD的边长为=;故答案为:;(2)如图所示:(3)如图所示:11.证明:∵MN⊥AB于N,∴BN2=BM2﹣MN2,AN2=AM2﹣MN2∴BN2﹣AN2=BM2﹣AM2,又∵∠C=90°,∴AM2=AC2+CM2∴BN2﹣AN2=BM2﹣AC2﹣CM2,又∵BM=CM,∴BN2﹣AN2=﹣AC2,即AN2﹣BN2=AC2.12.解:如图①:设三个半圆的直径分别为:d1、d2、d3,S1=×π×()2=π,S2=×π×()2=π,S3=×π×()2=π.由勾股定理可得:d12=d22+d32,∴S3+S2=(d32+d22)=π=S1,所以,S1、S2、S3的关系是:S3+S2=S1.如图②:设AC=b,BC=a,AB=c,则S2=a2,S3=b2,S1=c2,又∵a2+b2=c2,∴S1、S2、S3的关系是:S3+S2=S1.如图③:设AC=b,BC=a,AB=c,则S2=×a×a=a2,S3=×b×b=b2,S1=×c×c=c2,又∵a2+b2=c2,∴S1、S2、S3的关系是:S3+S2=S1.13.解:(1)S1=π()2=,同理S2=,S3=,∵BC2+AC2=AB2,∴S1+S2=S3;(2)S阴影=S1+S2+S△ABC﹣S3=S△ABC,则S阴影=S△ABC=20.故答案为:20.14.证明:设斜边为c,根据勾股定理即可得出c=,∵ab=ch,∴ab=h,即a2b2=a2h2+b2h2,∴=+,即.15.解:(1)在Rt△ABC中由面积的两种算法可得:解得:CD=(2)在Rt△ABD中AD2=42﹣x2=16﹣x2在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2所以16﹣x2=﹣11+12x﹣x2…(9分)解得=(10分)16.解:连接BE,∵DE垂直平分AB,∴AE=BE,设AE=BE=x,则CE=8﹣x,在Rt△BCE中,BC2+CE2=BE2,∴42+(8﹣x)2=x2,解得x=5,∴AE=5.17.解:(1)∵AB=8cm,AC=6cm,∠A=90°,∴BC===10(cm),设BD=CD=xcm,则AD=(8﹣x)cm,∵∠A=90°,∴AD2+AC2=CD2,∴(8﹣x)2+62=x2,解得x=,即BD=cm,由上可得,BC=10cm,BD=cm;(2)由(1)知BD=cm,AC=6cm,∠A=90°,∴S△BDC===(cm2),即△BDC的面积是cm2.18.解:设DC=x,则BD=21﹣x,∵在△ABC中,AB=10,AC=17,BC=21,AD⊥BC,∵AD2=AB2﹣BD2=CA2﹣CD2,∴102﹣(21﹣x)2=172﹣x2,∴x=15,∴AD2=172﹣152=64,∴AD=8.19.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=102﹣62=64,∴BC=8(cm),由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=8cm,即t=4;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣8)cm,AC=6cm,在Rt△ACP中,AP2=62+(2t﹣8)2,在Rt△BAP中,AB2+AP2=BP2,即:102+[62+(2t﹣8)2]=(2t)2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(2)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=16cm,t=8;③当BP=AP时,AP=BP=2tcm,CP=|2t﹣8|cm,AC=6cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=62+(2t﹣8)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.20.解:(1)点M、N是线段AB的勾股分割点.理由如下:∵AM2+BN2=2.52+62=42.25,MN2=6.52=42.25,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形,∴点M、N是线段AB的勾股分割点;(2)设BN=x,则MN=14﹣AM﹣BN=10﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(10﹣x)2=x2+16,解得x=4.2;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=16+(10﹣x)2,解得x=5.8.综上所述,BN=4.2或5.8.。

2019-2020学年八年级数学下学期《17.1勾股定理》测试卷及答案解析

2019-2020学年八年级数学下学期《17.1勾股定理》测试卷及答案解析

2019-2020学年八年级数学下学期《17.1勾股定理》测试卷一.选择题(共6小题)1.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.3.如图,在直角△ABC中,∠C=90°,AC=3,AB=4,则点C到斜边AB的距离是()A.B.C.5D.【分析】根据勾股定理求出BC,根据三角形的面积公式计算.【解答】解:∵∠C=90°,AC=3,AB=4,∴CB==,△ABC的面积=×AC×BC=×AB×CD,即×3×=×4×CD,解得,CD=,故选:D.【点评】本题考查的是勾股定理,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.4.在△ABC中,若∠ABC=90°,则下列正确的是()A.BC=AB+AC B.BC2=AB2+AC2C.AB2=AC2+BC2D.AC2=AB2+BC2【分析】根据勾股定理即可得到结论.【解答】解:∵在△ABC中,∠ABC=90°,∴AC2=AB2+BC2.故选:D.【点评】本题考查了勾股定理,熟记勾股定理是解题的关键.5.在Rt△ABC中,斜边AB=2,则AB2+AC2+BC2等于()A.2B.4C.8D.16【分析】根据勾股定理求出AC2+BC2的值,再整体计算.【解答】解:根据勾股定理,得:AC2+BC2=AB2=4,故AB2+AC2+BC2=4+4=8,故选:C.【点评】熟练运用勾股定理:直角三角形两条直角边的平方和等于斜边的平方.6.如图,AD⊥CD,CD=4,AD=3,∠ACB=90°,AB=13,则BC的长是()A.8B.10C.12D.16【分析】直接利用勾股定理得出AC的长,进而求出BC的长.【解答】解:∵AD⊥CD,CD=4,AD=3,∴AC==5,∵∠ACB=90°,AB=13,∴BC==12.故选:C.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.二.填空题(共4小题)7.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=13;(2)若c=41,a=40,则b=9;(3)若∠A=30°,a=1,则c=2,b=;(4)若∠A=45°,a=1,则b=1,c=.【分析】(1)(2)直接运用勾股定理即可得出答案;(3)根据30°角对的直角边等于斜边一半可得出c,利用勾股定理可得出b;(4)此时直角三角形是等腰直角三角形a=b=1,利用勾股定理可得出c的值.【解答】解:(1)c==13;(2)b==9;(3)∵∠A=30°,a=1,∴c=2a=2,∴b==;(4)∵∠A=45°,a=1,∴a=b=1,∴c==.故答案为:13;9;2、;1、.【点评】本题考查了勾股定理的知识含30°角的直角三角形的性质,解答本题的关键是熟练掌握勾股定理的表达式.8.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为10.【分析】在直角△ABF中,利用勾股定理进行解答即可.【解答】解:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===10.故答案是:10.【点评】此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.9.已知直角三角形的两边的长分别是3和4,则第三边长为5或.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.10.已知等腰三角形的底角是30°,腰长为2,则它的周长是6.【分析】作AD⊥BC于D,根据直角三角形的性质求出AD,根据勾股定理求出BD,根据三角形的周长公式计算即可.【解答】解:作AD⊥BC于D,∵AB=AC,∴BD=DC,在Rt△ABD中,∠B=30°,∴AD=AB=,由勾股定理得,BD==3,∴BC=2BD=6,∴△ABC的周长为:6+2+2=6+4,故答案为:6+4.【点评】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三.解答题(共5小题)11.已知Rt△ABC中,AB=c,BC=a,AC=b.(1)∠C=90°,若a=5,b=12,求c.(2)若a=3,b=5,求c.【分析】(1)根据勾股定理求出即可;(2)分为两种情况,再根据勾股定理求出即可.【解答】解:(1)由勾股定理得:c===13;(2)当边c为直角边,边b为斜边时,c===4;当边c为斜边,c===;即c=4或.【点评】本题考查了勾股定理的应用,能灵活运用定理进行计算是解此题的关键,用了分类讨论思想.12.(1)已知Rt△ABC中,∠C=90°,若a=12,b=5,则c=13;(2)已知Rt△ABC中,∠C=90°,若c=10cm,b=6cm,则a=8cm;(3)已知Rt△ABC中,∠C=90°,若a:b=3:4,c=20,则a2=144,b2=256.【分析】(1)(2)直接利用勾股定理计算即可;(3)设a=3k,b=4k,则c=5k,构建方程求出k,可得a,b的值即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠C=90°,a=12,b=5,∴c==13;故答案为13.(2)在Rt△ABC中,∵∠C=90°,c=10cm,b=6cm,∴a==8(cm);故答案为8cm.(3)在Rt△ABC中,∵∠C=90°,a:b=3:4,c=20,设a=3k,b=4k,则c=5k,∴5k=20,∴k=4,∴a=12,b=16,∴a2=144,b2=256,故答案为144,256.【点评】本题考查勾股定理的应用,解题的关键是熟练掌握基本知识,利用方程是思想解决问题,属于中考常考题型.13.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.【分析】(1)根据勾股定理计算;(2)根据三角形的面积公式计算即可;(3)根据三角形的面积公式计算.【解答】解:(1)由勾股定理得,AB==25;(2)△ABC的面积=×BC×AC=150;(3)由三角形的面积公式可得,×AB×CD=150则CD==12.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.如图,AB⊥MN于A,CD⊥MN于D.点P是MN上一个动点.(1)如图①.BP平分∠ABC,CP平分∠BCD交BP于点P.若AB=4,CD=6.试求AD的长;(2)如图②,∠BPC=∠BP A,BC⊥BP,若AB=4,求CD的长.【分析】(1)过点P作PE⊥BC于E,过点B作BF⊥CD于F,利用角平分线性质定理可得AP=PE,再由全等三角形的判定方法可知Rt△ABP≌Rt△EBP,同理可证Rt△CEP ≌Rt△CDP,进而可得AB=BE,CE=CD,即BC=10,易证四边形ABFD是矩形,所以BF=AD,利用勾股定理求出BF的长即可;(2)如图2,延长CB和P A,记交点为点Q.根据等腰△QPC“三合一”的性质证得QB=BC;由相似三角形(△QAB∽△QDC)的对应边成比例得到,则CD=2AB,问题得解;【解答】解:(1)过点P作PE⊥BC于E,过点B作BF⊥CD于F,∵AB⊥MN于A,CD⊥MN于D,BP平分∠ABC,∴AP=PE,在Rt△ABP和Rt△EBP中,,∴Rt△ABP≌Rt△EBP,∴AB=BE=4,同理可得CE=CD=6,∴BC=BE+CE=10,易证四边形ABFD是矩形,∴BF=AD,CF=6﹣4=2,∴AD==4;(2)延长CB和P A,记交点为点Q.∵∠BPC=∠BP A,BC⊥BP,∴QB=BC(等腰三角形“三合一”的性质).∵BA⊥MN,CD⊥MN,∴AB∥CD,∴△QAB∽△QDC,∴,∴CD=2AB=2×4=8.【点评】本题考查了勾股定理的运用、矩形的判定和性质、等腰三角形的判定和性质以及全等三角形的判定和性质、相似三角形的判定和性质,题目的综合性较强,难度较大,解题的关键是正确添加辅助线构造直角三角形.15.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ 即可;(2)由题意得出BQ=BP,即2t=8﹣t,解方程即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时(图2),则BC+CQ=12,易求得t;③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ===2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t=;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE ===4.8(cm)∴CE ==3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.第11 页共11 页。

新人教版数学八年级勾股定理练习题及答案(共6套)

新人教版数学八年级勾股定理练习题及答案(共6套)

精品文档新人教版数学八年级第十七章<勾股定理>勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是( A )A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为__13_____.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?解:∵5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。

求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向“路”4m3m第2题图第5题图第9题图第8题图5m13m第11题东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R ο90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

八年级下册数学同步练习题库:勾股定理(简答题:较易)

八年级下册数学同步练习题库:勾股定理(简答题:较易)

勾股定理(简答题:较易)1、如图,一张直角三角形的纸片ABC,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且AC与AE重合,求CD的长.2、有一块直角三角形纸片,两直角边分别为:AC=6c m,BC=8c m,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长。

3、如图,在△ABC中,∠ACB=,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.(1)求的值;(2)当时,求的长.4、美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.5、操场上有一根竖直立在地面上的旗杆,绳子自然下垂到地面还剩余2米,当把绳子拉开8米后,绳子刚好斜着拉直下端接触地面(如图①)(1)请根据你的阅读理解,将题目的条件补充完整:如图②,Rt△ABC中∠C=90°,BC=8米,____________________________.求AC的长.(2)根据(1)中的条件,求出旗杆的高度.6、如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数。

(2)若AC=2,求AD的长。

7、有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米。

由于居住在A处的居民去健身践踏了绿地,小明想在A处树立一个标牌“少走■米,踏之何忍”。

请你计算后帮小明在标牌的■处填上适当的数。

8、如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为多少厘米?9、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.思路:(1)作AD⊥BC于D,设BD = x,用含x的代数式表示CD;(2)根据勾股定理,利用AD作为“桥梁”,建立方程模型,求出x;(3)利用勾股定理求出AD的长,再计算三角形面积.10、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.思路:(1)作AD⊥BC于D,设BD = x,用含x的代数式表示CD.(2)根据勾股定理,利用AD作为“桥梁”,建立方程模型,求出x(3)利用勾股定理求出AD的长,再计算三角形面积10、如图,ΔABC中,AB=AC=10,AD⊥BC于D,AD=812、如图,一扇窗户用支架B-C-D固定,当窗户打开时,B、C、D三点在同一直线上,且∠BAD=900,当窗户关上时A、D、B、C依次落在同一直线上,现测得AB=16cm,AD=12cm.求BC的长;经测算,当∠BAD=1200时窗户透光效果最好,为达到最佳效果,AD应调整为多少厘米?13、我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.14、在如图所示的4×4方格中,每个小方格的边长都为1.(1)在图中画出一个三条边长分别为,,的三角形,使它的顶点都在格点上;(2)求(1)中所作三角形最大边上的高.15、如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.16、如图,在△ABC中,∠BAC=90°,AB=AC,D是BC上的点.求证:BD2+CD2=2AD2.17、如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.18、如图,有一块直角三角形纸片,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.19、(本小题满分6分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,求小鸟至少飞行的距离.20、在如图平面直角坐标系中,△ABC三个顶点A、B、C的坐标分别为A(2,﹣1),B(1,﹣3),C (4,﹣4),请解答下列问题:(1)把△ABC向左平移4个单位,再向上平移3个单位,恰好得到△A1B1C1试写出△A1B1C1三个顶点的坐标;(2)在直角坐标系中画出△A1B1C1.(3)求出线段AA1的长度.21、(2015秋•太原期中)根据道路交通管理条例的规定,在某段笔直的公路l上行驶的车辆,限速60千米/时.已知测速点M到测速区间的端点A,B的距离分别为50米、34米,M距公路l的距离(即MN的长)为30米.现测得一辆汽车从A到B所用的时间为5秒,通过计算判断此车是否超速.22、如图,在△ABC中,∠ACB=,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.(1)求的值;(2)当时,求的长.23、用直尺和圆规在如图所示的数轴上作出的点.24、一艘轮船由于风向原因先向正东方向航行了160km,然后向正北方向航行120km,这时它离出发点有多远?25、如图,△ABC中,∠C=90°.(1)在BC边上作一点P,使得点P到点C的距离与点P到边AB的距离相等(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=4,BC=3,求CP的长.26、(本题6分)如图1是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,如图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图;(2)用这个图形证明勾股定理;(3)假设图1中的直角三角形有若干个,你能只运用图1中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明).27、(12分)请阅读下列材料:问题:如图(1),圆柱的底面半径为4cm,圆柱高AB为2cm,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图(1)所示.路线2:侧面展开图中的线段AC,如图(2)所示.设路线1的长度为l1,则l1=AB+BC=2+8=10;设路线2的长度为l2,则l2===;∵=102﹣(4+16π2)=96﹣16π2=16(6﹣π2)<0∴即l1<l2所以选择路线1较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)①此时,路线1:l1= .路线2:l2= .②所以选择哪条路线较短?试说明理由.(2)请你帮小明继续研究:当圆柱的底面半径为2cm,高为hcm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.28、(5分)如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.29、小强家有一块三角形菜地,量得两边长分别为40m,50m,第三边上的高为30m,请你帮小强计算这块菜地的面积(结果保留根号).30、学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.31、一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米?32、(本题8分)如图,已知等边三角形OAB的边长为2,求三个顶点的坐标33、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米34、(10分)某直角三角形的周长为24,且一条直角边长为6,求另一条直角边的长.35、求如图所示的RtΔABC的面积。

17.1.1 勾股定理 人教版数学八年级下册分层作业(含答案)

17.1.1 勾股定理 人教版数学八年级下册分层作业(含答案)

人教版初中数学八年级下册17.1.1 勾股定理同步练习夯实基础篇一、单选题:1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2【答案】C【分析】利用勾股定理即可得到结果.【详解】解:在△ABC中,∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:.故选:C.【点睛】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.2.在△ABC中,∠C=90°,AB=3,则AB2+BC2+AC2的值为()A.6B.9C.12D.18【答案】D【分析】根据,利用勾股定理可得,据此求解即可.【详解】解:如图示,∴在中,∴,故选:D.【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,,满足是解题的关键.3.如图,是由两个直角三角形和三个正方形组成的图形,大直角三角形的斜边和直角边长分别是13,12.则图中阴影部分的面积是()A.16B.25C.144D.1【答案】B【分析】根据勾股定理可进行求解【详解】解:如图所示:根据勾股定理得出:,,阴影部分面积是,故选:B.【点睛】此题考查勾股定理,解决此题的关键是清楚阴影部分的两个正方形的面积和等于的平方.4.直角三角形两边长为3,4,则第三边长为()A.5B.C.5或D.不能确定【答案】C【分析】分两种情况,3,4为直角边时和4为斜边时,利用勾股定理求解即可.【详解】解:当3,4为直角边时,第三边的长为,当4为斜边时,第三边的长为,则第三边的长为或,故选:C【点睛】此题考查了勾股定理,解题的关键是掌握勾股定理,直角三角形的两个直角边的平方和等于斜边的平方,注意分类讨论.5.如图,在中,,,垂足为D .若,,则的长为( )A .2.4B .2.5C .4.8D .5【答案】A【分析】先由勾股定理求出的长,再运用等面积法求得的长即可.【详解】解:∵在中,,,,∴,∴,即.故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键.6.等腰三角形的腰长为5,底边上的中线长为4,它的面积为( )A .24B .20C .15D .12【答案】D【分析】根据等腰三角形的性质可知上的中线,同时也是边上的高线,根据勾股定理求出的长即可求得.【详解】解:如图所示,∵等腰三角形中,,是上的中线,,同时也是上的高线,,,,故选:D.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出底边上的中线是上的高线.7.在中,,,,则的长为( )A.3B.3或C.3或D.【答案】A【分析】在中,已知与的长,利用勾股定理求出的长即可;【详解】解:在中,,,,由勾股定理得:,∴的长为3;故选:A【点睛】本题考查了勾股定理,能灵活运用定理进行计算是解题的关键.二、填空题:8.在中,,,,则____.【答案】4【分析】直接根据勾股定理求解即可.【详解】解:∵在中,,,,.故答案为:4.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方和等于斜边长的平方是解答此题的关键.9.一直角三角形的两直角边长满足,则该直角三角形的斜边长为________.【答案】【分析】根据算术平方根的非负性,绝对值的非负性,得出的值,根据勾股定理即可求解.【详解】解:∵,∴,解得:,∴该直角三角形的斜边长为,故答案为:.【点睛】本题考查了算术平方根的非负性,绝对值的非负性,勾股定理,得出的值是解题的关键.10.在中,,.则的面积为______.【答案】60【分析】画出图形,过点作于,利用等腰三角形的三线合一性质得到,再利用勾股定理求得即可求解.【详解】解:如图,过点作于,则,∵,,∴,∴在中,,∴,故答案为:60.【点睛】本题考查等腰三角形的性质、勾股定理、三角形的面积公式,熟练掌握等腰三角形的三线合一性质解答的关键.11.如图,在中,.以、为边的正方形的面积分别为、.若,,则的长为______.【答案】3【分析】根据正方形的面积求得,,再根据勾股定理求解即可.【详解】解:∵以、为边的正方形的面积分别为、,,,∴,,在中,,由勾股定理得:,故答案为:3.【点睛】本题考查勾股定理、正方形的面积,熟练掌握勾股定理是解答的关键.12.若直角三角形的两边长为a、b,且满足,则该直角三角形的斜边长的平方为_____.【答案】25或16##16或25【分析】先根据非负数的性质求出两直角边长、,已知两直角边求斜边可以根据勾股定理求解.【详解】解:,,解得:,,,,解得,,①当a,b为直角边,该直角三角形的斜边长的平方为,②4也可能为斜边,该直角三角形的斜边长的平方为16,故答案为:25或16.【点睛】本题考查了非负数的性质,根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.13.如图,为中斜边上的一点,且,过作的垂线,交于,若,,则的长为________.【答案】【分析】连接,根据已知条件,先证明,再根据全等三角形的性质,求得的长度,进而勾股定理即可求解.【详解】解:如图,连接.∵为中斜边上的一点,且,过作的垂线,交于,∴,∴在和中,,∴,∴,又∵,∴.在中,,∴故答案为:.【点睛】本题主要考查了直角三角形全等的判定()以及全等三角形的性质,勾股定理,连接是解决本题的关键.14.如图,Rt中,,现将沿进行翻折,使点A刚好落在上,则_____.【答案】##2.5【分析】设,将沿进行翻折,使点A刚好落在上,则.则直角中根据勾股定理,即可得到一个关于的方程,即可求得.【详解】解:设,则在Rt中,.则.在Rt中:.即:.解得:【点睛】此题考查了勾股定理的运用,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.三、解答题:15.如图,在△ABC中,AD⊥BC于点D,AB=3,BD=2,DC=1,求AC的长.解:在Rt△ABD中,AB=3,BD=2,由勾股定理得AD2=AB2-BD2=32-22=5.在Rt△ACD中,CD=1,由勾股定理得16.如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=8.求AC的长.解∵CD⊥AB,∴∠ADC=∠BDC=90°.在Rt△BCD中,设AC=AB=x,则AD=x-6.在Rt△ACD中,AC2=AD2+CD2,即x2=(x-6)2+82,解得x=,即AC的长为.17.、、是的三边,且有.若是直角三角形,求的值.【答案】或【分析】先根据完全平方公式把原式变形为,可得,,再分两种情况讨论,即可求解.【详解】解:∵∴∴∴∴,,解得:,,当,为直角边时,;当为斜边时,;综上所述,的值为或.【点睛】本题主要考查了完全平方公式的应用,勾股定理,熟练掌握完全平方公式的应用,勾股定理,利用分类讨论思想解答是解题的关键.18.已知:如图,在中,,点是中点,于点,求证:.【答案】见解析【分析】在、、中,运用三次勾股定理,然后利用等量代换即可证明结论.【详解】证明:在中,,在中,,∴,又∵是中点,∴,∴,即:.【点睛】题目主要考查勾股定理的重复运用,熟练掌握勾股定理且准确应用等量代换是解题关键.能力提升篇一、单选题:1.如图,在△ABC中,AB=AC=6,∠BAC=120°,过点A作AD⊥BA交BC于点D,过点D作DE⊥BC 交AC于点E,则AE的长为( )A.1B.2C.3D.4【答案】B【分析】根据等腰三角形的性质可得,根据含角的直角三角形的性质可得的长,再求出的长,即可确定的长.【详解】解:,,,,,设,则,根据勾股定理,可得,解得或(舍去),,,,,,,设,则,根据勾股定理,得,或(舍去),,,故选:B.【点睛】本题考查了等腰三角形的性质,勾股定理、直角三角形的性质,熟练掌握这些性质是解题的关键.2.如图,在四边形中,,,点是边上一点,,,.下列结论:①;②;③四边形的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是()A.2个B.3个C.4个D.5个【答案】D【分析】利用可证,故①正确;由全等三角形的性质可得出,,求出,即可得到②正确;根据梯形的面积公式可得③正确;根据列式,可得④正确;整理后可得,即⑤正确.【详解】解:∵,,∴,∴,在和中,,∴,故①正确;∴,,∵,∴,∵,∴,故②正确;∵,,∴梯形的面积是,故③正确;∵,∴,故④正确;整理得:,∴该图可以验证勾股定理,故⑤正确;正确的结论个数是5个,故选:D.【点睛】本题考查了全等三角形的判定及性质的运用,梯形的面积计算,三角形的面积计算,勾股定理等知识,解答时证明三角形全等是关键.3.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是( )A.①②B.②④C.①②③D.①③【答案】C【分析】由题意知,①﹣②可得2xy=45记为③,①+③得到,由此即可判断.【详解】解:由题意知,①﹣②可得2xy=45记为③,①+③得到,∴,∴.∵x>y,由②可得x-y=2由③得2xy+4=49∴结论①②③正确,④错误.故选:C.【点睛】本题考查勾股定理中弦图的有关计算,准确找出图中的线段关系,并利用完全平方公式求出各个式子的关系是解题的关键.二、填空题:4.如图,点在边长为5的正方形内,满足,若,则图中阴影部分的面积为______.【答案】19【分析】根据勾股定理求出,分别求出和正方形的面积,即可求出答案.【详解】解:∵在中,,,,由勾股定理得:,∴正方形的面积是,∵的面积是,∴阴影部分的面积是,故答案为:19.【点睛】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.5.如图,在中,,AB的垂直平分线交AB于点D,交BC的延长线于点E.若,,则EC的长为______.【答案】【分析】连接,根据垂直平分线的性质得出,再由勾股定理确定,设,则,利用勾股定理求解即可.【详解】解:连接,如图所示:∵的垂直平分线交于点D,交的延长线于点E,∴,∵,,,∴,设,则,在中,,即,解得:,∴,故答案为:.【点睛】题目主要考查垂直平分线的性质,勾股定理解三角形等,理解题意,综合运用这些知识点是解题关键.6.如图,已知直角三角形的周长为24,且阴影部分的面积为24,则斜边的长为______.【答案】10【分析】根据阴影部分面积等于以为直径的半圆面积之和加上的面积减去以为直径的半圆面积进行求解即可.【详解】解;∵直角三角形的周长为24,∴,,∴,∵阴影部分的面积为24,∴,∴∴∴,∴,故答案为:10.【点睛】本题主要考查了勾股定理,完全平方公式,熟知相关知识是解题的关键.三、解答题:7.已知:在中,,、、所对的边分别记作a、b、c.如图1,分别以的三条边为边长向外作正方形,其正方形的面积由小到大分别记作、、,则有,(1)如图2,分别以的三条边为直径向外作半圆,其半圆的面积由小到大分、、,请问与有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答与有怎样的数量关系;(3)若中,,,求出图4中阴影部分的面积.【答案】(1),证明见解析(2)(3)24【分析】(1)由扇形的面积公式可知,,,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;(2)根据(1)中的求解即可得出答案;(3)利用(2)中的结论进行求解.(1)解:①,根据勾股定理可知:,;(2)解:由(1)知,同理根据根据勾股定理:,从而可得;(3)解:由(2)知.【点睛】本题考查勾股定理的应用,解题关键是对勾股定理的熟练掌握及灵活运用.。

八年级数学下册第十八章勾股定理18

八年级数学下册第十八章勾股定理18

专训1.巧用勾股定理求最短路径的长名师点金:求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).用计算法求平面中最短问题1.如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草.(第1题)2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A,C之间的距离.(参考数据21≈4.6)(2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40 km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间)(第2题)用平移法求平面中最短问题3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A 和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬( )A.13 cm B.40 cm C.130 cm D.169 cm(第3题)(第4题)4.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF 的长是________.用对称法求平面中最短问题5.如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.(第5题)6.高速公路的同一侧有A、B两城镇,如图,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.求这个最短距离.(第6题)用展开法求立体图形中最短问题类型1圆柱中的最短问题(第7题)7.如图,已知圆柱体底面圆的半径为2π,高为2,AB,CD分别是两底面的直径.若一只小虫从A点出发,沿圆柱侧面爬行到C点,则小虫爬行的最短路线的长度是________(结果保留根号).类型2圆锥中的最短问题8.已知:如图,观察图形回答下面的问题:(1)此图形的名称为________.(2)请你与同伴一起做一个这样的物体,并把它沿AS剪开,铺在桌面上,则它的侧面展开图是一个________.(3)如果点C是SA的中点,在A处有一只蜗牛,在C处恰好有蜗牛想吃的食品,但它又不能直接沿AC爬到C处,只能沿此立体图形的表面爬行,你能在侧面展开图中画出蜗牛爬行的最短路线吗?(4)SA的长为10,侧面展开图的圆心角为90°,请你求出蜗牛爬行的最短路程.(第8题)类型3正方体中的最短问题9.如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快到达目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.(第9题)类型4长方体中的最短问题10.如图,长方体盒子的长、宽、高分别是12 cm,8 cm,30 cm,在AB的中点C处有一滴蜜糖,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.(第10题)专训2.巧用勾股定理解折叠问题名师点金:折叠图形的主要特征是折叠前后的两个图形绕着折线翻折能够完全重合,解答折叠问题就是巧用轴对称及全等的性质解答折叠中的变化规律.利用勾股定理解答折叠问题的一般步骤:(1)运用折叠图形的性质找出相等的线段或角;(2)在图形中找到一个直角三角形,然后设图形中某一线段的长为x,将此直角三角形的三边长用数或含有x的代数式表示出来;(3)利用勾股定理列方程求出x;(4)进行相关计算解决问题.巧用全等法求折叠中线段的长1.(中考·泰安)如图①是一直角三角形纸片,∠A=30°,BC=4 cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为( )(第1题)A.83cm B.2 3 cmC.2 2 cm D.3 cm巧用对称法求折叠中图形的面积2.如图所示,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4,求△BED的面积.(第2题)巧用方程思想求折叠中线段的长3.(中考·东莞)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.(第3题)巧用折叠探究线段之间的数量关系4.如图,将长方形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC 于点F,连接CE.(1)求证:AE=AF=CE=CF;(2)设AE=a,ED=b,DC=c,请写出一个a,b,c三者之间的数量关系式.(第4题)专训3.利用勾股定理解题的6种常见题型名师点金:勾股定理建立起了“数”与“形”的完美结合,应用勾股定理可以解与直角三角形有关的计算问题,证明含有平方关系的几何问题,作长为n(n为正整数)的线段,解决实际应用问题及专训一、专训二中的最短问题、折叠问题等,在解决过程中往往利用勾股定理列方程(组),有时需要通过作辅助线来构造直角三角形,化斜为直来解决问题.利用勾股定理求线段长1.如图所示,在等腰直角三角形ABC 中,∠ABC=90°,点D 为AC 边的中点,过D 点作DE⊥DF,交AB 于E ,交BC 于F ,若AE =4,FC =3,求EF 的长.(第1题)利用勾股定理作长为n 的线段2.已知线段a ,作长为13a 的线段时,只要分别以长为和的线段为直角边作直角三角形,则这个直角三角形的斜边长就为13a.利用勾股定理证明线段相等3.如图,在四边形ABFC 中,∠ABC=90°,CD⊥AD,AD 2=2AB 2-CD 2.求证:AB =BC.(第3题)利用勾股定理解非直角三角形问题4.如图,在△ABC 中,∠C=60°,AB =14,AC =10.求BC 的长.(第4题)利用勾股定理解实际生活中的应用5.在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km /h ⎝ ⎛⎭⎪⎫即503 m /s ,并在离该公路100 m 处设置了一个监测点A.在如图的平面直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在点A 的北偏西60°方向上,点C 在点A 的北偏东45°方向上.另外一条公路在y 轴上,AO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15 s ,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:3≈1.7)(第5题)利用勾股定理探究动点问题6.如图,在Rt△ABC中,∠ACB=90°,AB=5 cm,AC=3 cm,动点P从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,借助图①求t的值;(3)当△ABP为等腰三角形时,借助图②求t的值.(第6题)答案专训11.4(第2题)2.解:(1)如图,过点C作AB的垂线,交AB的延长线于点E.∵∠ABC=120°,∴∠BCE=30°.在Rt△CBE中,∵BC=20 km,∴BE=10 km.由勾股定理可得CE=10 3 km.在Rt△ACE中,∵AC2=AE2+CE2=(AB+BE)2+CE2=8 100+300=8 400,∴AC=20 21≈20×4.6=92(km ).(2)选择乘“武黄城际列车”.理由如下:乘客车需时间t 1=8060=113(h ),乘“武黄城际列车”需时间t 2≈92180+2040=1190(h ).∵113>1190,∴选择乘“武黄城际列车”. 3.C 点拨:将台阶面展开,连接AB ,如图,线段AB 即为壁虎所爬的最短路线.因为BC =30×3+10×3=120(cm ),AC =50 cm ,在Rt △ABC 中,根据勾股定理,得AB 2=AC 2+BC 2=16 900,所以AB =130 cm .所以壁虎至少爬行130 cm .(第3题)(第5题)4.105.解:如图,连接BD 交AC 于O ,连接ED 与AC 交于点P ,连接BP. 易知BD⊥AC,且BO =OD ,∴BP=PD ,则BP +EP =ED ,此时最短. ∵AE=3,AD =1+3=4,由勾股定理得 ED 2=AE 2+AD 2=32+42=25=52, ∴ED=BP +EP =5.6.解:作点B 关于MN 的对称点C ,连接AC 交MN 于点P ,则点P 即为所建的出口.此时A 、B 两城镇到出口P 的距离之和最小,最短距离为AC 的长.作AD⊥BB′于点D ,在Rt △ADC 中,AD =A′B′=8 km ,DC =6 km .∴AC=AD 2+DC 2=10 km ,∴这个最短距离为10 km .(第6题)(第7题)7.2 2 点拨:将圆柱体的侧面沿AD 剪开并铺平得长方形AA′D′D,连接AC ,如图.线段AC 就是小虫爬行的最短路线.根据题意得AB =2π×2π×12=2.在Rt △ABC 中,由勾股定理,得AC 2=AB 2+BC 2=22+22=8,∴AC=8=2 2.8.解:(1)圆锥 (2)扇形(3)把此立体图形的侧面展开,如图所示,AC 为蜗牛爬行的最短路线. (4)在Rt △ASC 中,由勾股定理,得AC 2=102+52=125, ∴AC=125=5 5.故蜗牛爬行的最短路程为5 5.(第8题)(第9题)9.解:(1)蚂蚁能够最快到达目的地的可能路径有如图的AC′1和AC 1. (2)如图,AC′1=42+(4+4)2=4 5.AC 1=(4+4)2+42=4 5.所以蚂蚁爬过的最短路径的长是4 5. 10.解:分为三种情况:(1)如图①,连接EC ,在Rt △EBC 中,EB =12+8=20(cm ),BC =12×30=15(cm ).(第10题)由勾股定理,得EC =202+152=25(cm ). (2)如图②,连接EC.根据勾股定理同理可求CE =673 cm >25 cm . (3)如图③,连接EC.根据勾股定理同理可求CE =122+(30+8+15)2= 2 953(cm )>25 cm .综上可知,小虫爬行的最短路程是25 cm . 专训2 1.A2.解:由题意易知AD∥BC,∴∠2=∠3. ∵△BC′D 与△BCD 关于直线BD 对称, ∴∠1=∠2.∴∠1=∠3.∴EB=ED. 设EB =x ,则ED =x ,AE =AD -ED =8-x. 在Rt △ABE 中,AB 2+AE 2=BE 2, ∴42+(8-x)2=x 2.∴x=5.∴DE=5.∴S △BED =12DE·AB=12×5×4=10.3.(1)证明:在正方形ABCD 中,AD =AB ,∠D=∠B=90°. ∵将△ADE 沿AE 对折至△AFE, ∴AD=AF ,DE =EF ,∠D=∠AFE=90°. ∴AB=AF ,∠B=∠AFG=90°.又∵AG=AG ,∴Rt △ABG≌Rt △AFG(HL ). (2)解:∵△ABG≌△AFG,∴BG=FG. 设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴CE=DE =EF =3,∴EG=3+x. ∴在Rt △CEG 中,32+(6-x)2=(3+x)2,解得x =2. ∴BG=2.4.(1)证明:由题意知,AF =CF ,AE =CE ,∠AFE=∠CFE,又四边形ABCD 是长方形,故AD∥BC,∴∠AEF=∠CFE.∴∠AFE=∠AEF. ∴AE=AF =EC =CF.(2)解:由题意知,AE =EC =a ,ED =b ,DC =c ,由∠D=90°知,ED 2+DC 2=CE 2,即b 2+c 2=a 2.专训3(第1题)1.解:如图,连接BD.∵等腰直角三角形ABC 中,点D 为AC 边的中点,∴BD⊥AC,BD 平分∠ABC(等腰三角形三线合一),∴∠ABD=∠CBD=45°,又易知∠C =45°,∴∠ABD=∠CBD=∠C.∴BD=CD.∵DE⊥DF,BD⊥AC,∴∠FDC+∠BDF=∠EDB+∠BDF.∴∠FDC=∠EDB.在△EDB 与△FDC 中,⎩⎪⎨⎪⎧∠EBD=∠C,BD =CD ,∠EDB=∠FDC,∴△EDB≌△FDC(ASA ), ∴BE=FC =3.∴AB=7,则BC =7.∴BF=4.在Rt △EBF 中,EF 2=BE 2+BF 2=32+42=25,∴EF=5.2.2a ;3a3.证明:∵CD⊥AD,∴∠ADC=90°,即△ADC 是直角三角形.由勾股定理,得AD 2+CD 2=AC 2.又∵AD 2=2AB 2-CD 2,∴AD 2+CD 2=2AB 2.∴A C 2=2AB 2.∵∠ABC=90°,∴△ABC 是直角三角形.由勾股定理,得AB 2+BC 2=AC 2,∴AB 2+BC 2=2AB 2,故BC 2=AB 2,即AB =BC.方法总结:当已知条件中有线段的平方关系时,应选择用勾股定理证明,应用勾股定理证明两条线段相等的一般步骤:①找出图中证明结论所要用到的直角三角形;②根据勾股定理写出三边长的平方关系;③联系已知,等量代换,求之即可.4.解:如图,过点A 作AD⊥BC 于点D.∴∠ADC=90°.又∵∠C=60°,∴∠CAD=90°-∠C=30°,(第4题)∴CD=12AC =5. ∴在Rt △ACD 中,AD =AC 2-CD 2=102-52=5 3.∴在Rt △ABD 中,BD =AB 2-AD 2=11.∴BC=BD +CD =11+5=16.方法总结:利用勾股定理求非直角三角形中线段的长的方法:作三角形一边上的高,将其转化为两个直角三角形,然后利用勾股定理并结合条件,采用推理或列方程的方法解决问题.5.解:(1)在Rt △AOB 中,∵∠BAO=60°,∴∠ABO=30°,∴OA=12AB. ∵OA=100 m ,∴AB=200 m .由勾股定理,得OB =AB 2-OA 2=2002-1002=100 3(m ).在Rt △AOC 中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.∴OC=OA =100 m .∴B(-100 3,0),C(100,0).(2)∵BC=BO +CO =(100 3+100)m ,100 3+10015≈18>503,∴这辆汽车超速了.6.解:(1)在Rt △ABC 中,BC 2=AB 2-AC 2=52-32=16,∴BC=4 cm .(2)由题意知BP =t cm ,①如图①,当∠APB 为直角时,点P 与点C 重合,BP =BC =4 cm ,即t =4;[第6题(2)]②如图②,当∠BAP 为直角时,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=32+(t -4)2,在Rt △BAP 中,AB 2+AP 2=BP 2,即52+[32+(t -4)2]=t 2,解得t =254.故当△ABP 为直角三角形时,t =4或t =254.(3)①如图①,当BP =AB 时,t =5;②如图②,当AB =AP 时,BP =2BC =8 cm ,t =8;[第6题(3)]③如图③,当BP =AP 时,AP =BP =t cm ,CP =|t -4|cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2,所以t 2=32+(t -4)2,解得t =258.综上所述:当△ABP 为等腰三角形时,t =5或t =8或t =258.。

初二勾股定理练习题电子版

初二勾股定理练习题电子版

初二勾股定理练习题电子版1. 已知直角三角形的两条直角边长分别为3cm和4cm,请问斜边长多少?解答:根据勾股定理,斜边的平方等于两直角边的平方和。

设斜边长为c,根据公式可得:c² = 3² + 4²c² = 9 + 16c² = 25所以,斜边长c为5cm。

2. 在直角三角形ABC中,已知斜边长为10cm,一条直角边长为6cm,请问另一条直角边长多少?解答:同样根据勾股定理,设另一条直角边长为a,可得:a² + 6² = 10²a² + 36 = 100a² = 100 - 36a² = 64所以,另一条直角边长a为8cm。

3. 已知直角三角形的两条直角边分别为5cm和12cm,请问斜边长多少?解答:根据勾股定理,设斜边长为c,可得:c² = 5² + 12²c² = 25 + 144c² = 169所以,斜边长c为13cm。

4. 在直角三角形XYZ中,已知斜边长为15cm,一条直角边长为9cm,请问另一条直角边长多少?解答:根据勾股定理,设另一条直角边长为b,可得:b² + 9² = 15²b² + 81 = 225b² = 225 - 81b² = 144所以,另一条直角边长b为12cm。

5. 若直角三角形的两条直角边分别为xcm和ycm,斜边长为zcm,根据勾股定理,我们可以得到一个关系式,即x² + y² = z²。

请用这个关系式回答以下问题:(1) 如果x=5cm,y=12cm,求z的值。

解答:根据关系式x² + y² = z²,代入x、y的值可得:5² + 12² = z²25 + 144 = z²169 = z²所以,z的值为13cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章勾股定理
17.1 勾股定理
第3课时利用勾股定理作图或计算
一、选择——基础知识运用
1.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()
A.2个B.3个C.4个D.6个
2.如图,在△ABC中,∠B=40°,EF∥AB,∠1=50°,CE=3,EF比CF大1,则EF的长为()
A.
5 B.
6 C.3 D.4
3.如图所示:数轴上点A所表示的数为a,则a的值是()
A.+1 B.-1 C.-+1 D.--1
4.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()
A.B.C.D.
5.如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段AB=,使点A,B在小正方形的顶点上,设AB与网格线相交所成的锐角为α,则不同角度的α有()
A.1种B.2种C.3种D.4种
二、解答——知识提高运用
6.如图中的螺旋形由一系列含30°的直角三角形组成,其序号依次为①、②、③、④、⑤…,则第7个直角三角形的斜边长为。

7.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,按要求画一个三角形:使这个三角形的顶点都在格点上,该三角形的面积为3,且有一边长为。

8.如图所示.从锐角三角形ABC的顶点B向对边作垂线BE.其中AE=3,AB=5,∠EBC=30°,求BC。

9.如图,在一张长方形ABCD纸张中,一边BC折叠后落在对角线BD上,点E为折痕与边CD的交点,若AB=5,BC=12,求图中阴影部分的面积。

10.在平面直角坐标系内,已知点A(2,2).B(
2,3),点P在y轴上,且三角形APB为直角三角形,求点P的坐标。

11.(1)在右面的方格纸中,以线段AB为一边,画一个正方形;
(2)如果图中小方格的面积为1平方厘米,你知道(1)中画出的正方形的面积是多大吗?解释你的计算方法。

参考答案
一、选择——基础知识运用
1.【答案】D
【解析】
当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;
当AB是直角边,A是直角顶点时,第三个顶点是F点;
当AB是直角边,B是直角顶点时,第三个顶点是G.
因而共有6个满足条件的顶点.
故选D。

2.【答案】A
【解析】∵EF∥AB,
∴∠A=∠1=50°,
∴∠A+∠B=50°+40°=90°,
∴∠C=90°,
设CF=x,则EF=x+1,
根据勾股定理得:CE2+CF2=EF2,
即32+x2=(x+1)2,
解得:x=4,
∴EF=4+1=5,
故选:A。

3.【答案】B
4.【答案】A
【解析】
△ABC的面积=×BC×
AE=2,
由勾股定理得,AC==,
则××BD=2,
解得BD=。

故选:A。

5.【答案】C
【解析】解如图所示:
∵==5=AB,此时AB与网格线相交所成的锐角α=45°;
==5=AB,此时AB与网格线相交所成的锐角α有两个不同的角度;
∴AB与网格线相交所成的锐角α,不同角度的α有3个;
故选:C。

二、解答——知识提高运用
6.【答案】
【解析】
设第二个直角三角形的斜边长是x
∵tan30°= ,
∴x==1×,
同理第3个直角三角形斜边长是=×,
第4个直角三角形的斜边长是:××=,
第7个直角三角形斜边的长是××=
故答案为:。

7.【答案】面积为3,我们不妨取底边为2,高为3的一个三角形;又该三角形有一边
长为,则可以看作是两直角边分别为3,1的直角三角形的斜边,由此我们可以在网格上画出这个图形。

8.【答案】在直角△AEB中,AE=3,AB=5,
则BE==4,
∵∠BEC=90°,∠EBC=30°,
∴BC=2CE(直角三角形中30°角所对直角边为斜边长的一半),
∵BC2=CE2+BE2,
∴3CE2=BE2=48,
∴CE=4,BC=8.
答:BC的长为8。

9.【答案】因为BC折叠后落在对角线BD上,设C的对应点是F,则EF⊥BD,
△DEF是直角三角形,∠DFE=90°
因为BD是长方形ABCD的对角线,
所以BD==13,
DF=13-12=1,
设CE=x,则EF=CE=x,
DE=5-x,
在△DEF中,x2+12=(5-x)2,
解得x=,
所以图中阴影部分的面积S△BDE=×13×=。

10.【答案】画出平面直角坐标系,
AB为直角边,(1)∠ABP为直角,P1A2=P1B2+AB2,则P1的坐标(0,3),(2)∠BAP为直角,P2B2=AB2+P2A2,则P2的坐标(0,2)。

故点P的坐标为(0,2),(0,3)。

11.【答案】(1)过AB分别作ADABBCAB,并且使得AD=BC=AB,连接CD,
则正方形ABCD为题目要求的正方形.(2)图中小方格为1cm,
则AB==,
故正方形ABCD的面积S=AB2=53。

答:正方形面积为53。

相关文档
最新文档