定积分的应用

合集下载

例谈定积分的应用

例谈定积分的应用

例谈定积分的应用
定积分是利用积分技术来搭建企业系统的一种服务方式,通过定积分,企业可以解决营销,客户追踪,价格管理,订单跟踪等问题,让企业
既有资源利用效率,又能惠及消费者。

一、定积分的应用
1、促销活动:利用定积分可以创建各种丰富多彩的促销活动,满减、
团购、买赠、金币锁定等,激励消费者购买和积累积分。

2、客户管理:定积分能够建立细致复杂的客户档案,包括客户经理内容,购买次数,消费金额,积分余额等,更好地进行客户管理。

3、价格管理:通过定积分,可以根据不同客户的特征,设置特定的价格,比如会员价,大客户价等,更好地提高定价精确度和竞争力。

4、订单追踪:定积分的订单追踪系统可以记录客户的订单信息,有利
于企业更好地追溯客户信息以及及时为客户提供优质服务。

二、定积分的优势
1、可靠性:定积分系统可以提供可靠性能,降低前端和后端系统出现
的异常和故障,防止客户和企业受到损害。

2、安全性:定积分的安全性也得到有效保障,内部数据交换完全采用
加密技术,保证信息不受外部干涉。

3、兼容性:定积分具有可行性和兼容性,它可以按照各种不同环境定
制与企业系统相协调的服务,能够提供企业最适合的解决方案。

4、易用性:定积分使用界面简洁明了,业务流程简单可靠,容易上手,操作简单易懂,为客户提供更贴心的服务。

三、总结
定积分的引入为企业的经营活动带来了更多的便利,有效提高了企业
的经营效率,也让消费者能够从消费上受到更多的好处。

由此可见,
定积分不仅是企业的一种低成本的服务方式,也是一个更加有效的、
更加充分的消费积分服务体系,为企业和消费者都更好地搭建企业系统。

定积分的应用

定积分的应用

定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。

本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。

1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。

通过使用定积分,可以轻松解决这个问题。

以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。

这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。

2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。

例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。

同样地,在力学中,定积分可以用于计算物体所受的力的功。

这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。

3. 经济学中的应用经济学也是定积分的应用领域之一。

在经济学中,我们经常需要计算一段时间内的总收益或总成本。

通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。

这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。

4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。

在概率密度函数中,曲线下的面积表示了该事件发生的概率。

通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。

这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。

综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。

无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。

通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。

定积分求平面图形面积在实际生活中的应用

定积分求平面图形面积在实际生活中的应用

定积分求平面图形面积在实际生活中的应用把复杂的积分问题求解出来就可以计算出平面图形的面积,在实际生活中也可以看到它的很多应用。

其中有一类是涉及设计的,比如建筑设计中的空间分配、土地开发等;另一类是分析的,比如海洋表面的波浪分析等。

1、建筑设计建筑设计中,定积分可以用来求解空间分配问题。

比如,在房屋设计中,它可以用来确定楼层、楼梯、墙壁、门窗等占用了多少面积。

此外,它还可以用来求解不规则房间布局时,室外墙体和室内墙体的面积分配。

同样,在土地开发中也可以看到定积分的应用,如计算出道路两端的封闭区域面积,以及计算建筑的总面积。

定积分也可以帮助规划者精确计算出规划区域的面积,从而更好地管理规划区域的开发。

2、海洋表面的波浪分析定积分也可以用来求解海洋表面的波浪。

水波的主要性质是在洋流中运动,它的变化符合泊松方程,这是一个带积分的方程,可以用定积分来求解。

这种波浪分析可以更好地解释海洋表面的复杂性,进而指导航管理者和建筑者采取更安全有效的导航措施。

此外,在海岸线上,可以使用定积分来计算海岸线内各子区域的面积,以及海岸线及其各个部分的面积,为海洋管理者提供有形的参考数据。

3、农业此外,定积分在农业中也有非常广泛的应用。

比如,在种植作物时,可以使用定积分来计算出作物地的面积,以及需要灌溉地区的面积;在研究农田开发时,可以利用定积分来计算出耕作面积。

通过计算出具体的面积数据,可以更好地规划农田的分布和种植规模,从而节约农业资源,提高农作物的产量。

总结定积分是一种有用的数学技术,可以把复杂的数学问题转化成计算机可计算的简单形式,在计算平面图形面积上表现出很强的优势。

它在实际生活中有很多应用,比如建筑设计、土地开发、海洋洋面波浪分析,以及农业规划等。

高等数学第六章《定积分的应用》

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

定积分在数学中的作用

定积分在数学中的作用

定积分在数学中的作用概述在数学中,定积分是微积分的一个重要概念,具有广泛的应用。

定积分可以用于计算曲线下面的面积、求解曲线的弧长、计算物体的质量、计算函数的平均值等。

本文将探讨定积分在数学中的作用及其应用领域。

定义定积分是将函数关于某一区间内的曲线下面的面积定义为一个数值的操作。

设函数f(x)在区间[a, b]上连续,则定积分的定义如下:∫[a, b] f(x)dx = lim(n→∞) Σ(f(xi)Δx)其中,xi是[a, b]上的任意一点,Δx是区间[a, b]划分成的n 个小区间的宽度。

作用计算曲线下的面积定积分最基本的作用是计算曲线下的面积。

对于一个非负连续函数f(x),其在区间[a, b]上的定积分表示曲线f(x)与x轴之间的面积。

定积分将曲线下的无限多个小面积累加起来,得到整个曲线下的总面积。

求解曲线的弧长除了计算面积,定积分还可用于求解曲线的弧长。

设函数f(x)在区间[a, b]上连续且可导,则曲线y=f(x)在区间[a, b]上的弧长可以表示为定积分的形式:L = ∫[a, b] √(1 + f'(x)²)dx其中f’(x)是f(x)的导数。

计算物体的质量在物理学中,定积分可以用于计算物体的质量。

设物体的密度在空间中的分布为ρ(x, y, z),则物体的质量可以表示为定积分的形式:m = ∭ρ(x, y, z)dV其中dV为空间元素的体积。

计算函数的平均值定积分还可以用于计算函数在一个区间上的平均值。

设函数f(x)在区间[a, b]上连续,则函数f(x)在区间[a, b]上的平均值可以表示为定积分的形式:f_avg = (1 / (b - a)) ∫[a, b] f(x)dx应用领域定积分在数学中的应用非常广泛。

除了上述提到的计算面积、求解弧长、计算质量、计算平均值等基本应用外,定积分还可以应用于以下领域:•物理学:例如计算物体的体积、计算物体的质心、计算物体的转动惯量等;•统计学:例如计算概率密度函数、计算累积分布函数、计算期望值等;•经济学:例如计算消费总量、计算生产总量、计算总收益等;•工程学:例如计算水流的流量、计算材料的强度、计算电路的功率等。

高等数学(第三版)课件:定积分的应用

高等数学(第三版)课件:定积分的应用

线 y f ( x,) 直线 x a, x b (a b) 与
• x 轴围成的面积是在x 轴上方和下方曲边梯形
面积的差.
• • 同样可由微元法分析
•⒉ 一般地,根据微元法由曲线 y f ( x), y g( x),
• ( f ( x) g( x)) 及直线x a, x b 所围的图形
• 面积.(右图所示)
• 解: 取 为积分变量,

面积微元为
d
A
1 2
(a )2
d
• 于是
A 2 1 (a )2d a 2 2
02
23
2 4 a 2 3
03
• 例5 计算双纽线 r 2 a2 cos2 (a 0)

所围成的平面图形的面积(下图所示)
• 解 因 r 2 0,故 的变化范围是 [ 3 , 5 ,]
• ⑴分割区间[a,b],将所求量(曲边梯形面积 A )
分为部分量(小曲边梯形面积 Ai)之和;
• ⑵确定各部分量的近似值(小矩形面积);
Ai f (i )xi
• ⑶求和得所求量的近似值(各小矩形面积之和);
n
A f (i )xi
i 1
• ⑷对和式取极限得所求量的精确值(曲边梯形面积).
n
A lim 0
• 它表示高为f ( x) 、底为 dx 的一个矩形面积.
• ⑵由定积分几何意义可知,当 f (x) 0 时,由曲
线 y f (x),直线 x a, x b (a b) 与 x 轴所围成
的曲边梯形的面积A为
A
b
f (x)dx
.
a
• ⑶当 f ( x)在区间 [a, b]上的值有正有负时,则曲

定积分应用方法总结(经典题型归纳)

定积分应用方法总结(经典题型归纳)

定积分复习重点定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质1212(1)()()().(2)[()()]()().(3)()()()().bbaab bb aaab c baackf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+⎰⎰⎰⎰⎰⎰⎰⎰为常数其中a<c<b2.微积分基本定理如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。

3.求定积分的方法(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.例如:230(1-2sin)2d πθθ⎰注:322()3x x '=,(-cos )sin x x '=②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)1.计算积分⎰---322|32|dx x x解1. 由于在积分区间]3,2[-上,被积函数可表示为⎩⎨⎧≤<-----≤≤---=--.31,)32(,12,32|32|222x x x x x x x x 所以⎰---322|32|dx x x 13)32()32(312122=-----=⎰⎰---dx x x dx x x .(2)利用定积分的几何意义求定积分如定积分12014x dx π-=⎰,其几何意义就是单位圆面积的14。

(课本P60 B 组第一题) (3)利用被积函数的奇偶性a. 若()f x 为奇函数,则()0aa f x dx -=⎰;b. 若()f x 为偶函数,则0()()a aa f x dx f x dx-=⎰⎰2;其中0a >。

定积分的应用

定积分的应用

定积分的应用在我们的生活中,有很多场景都需要用到定积分。

而在数学上,定积分也起到了重要的作用。

定积分可以计算曲线下的面积,如求函数 $f(x)$ 在区间 $[a,b]$ 上的面积。

接下来,我们将介绍一些常见的定积分的应用。

一、曲线下的面积假设我们有一个区间 $[a,b]$,以及一个函数 $f(x)$。

我们可以使用定积分来计算这个函数在该区间上的曲线下的面积。

这个面积可以用下面的式子来计算:$$ S=\int_{a}^{b}f(x)dx $$ 其中,$\int$ 表示定积分。

如果我们以 $f(x)\geq 0$ 的形式进行了定义,那么定积分就可以计算出曲线下的正面积。

例如,如果我们要计算函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积,我们可以通过下面的定积分来计算:$$ S=\int_{0}^{1}x^2dx $$利用积分的定义,可以将该式子化简为:$$ S=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}f(x_i)\Deltax=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}x_i^2\Delta x $$ 其中,$\Delta x=\frac{1}{n}$ 且 $x_i=i\Delta x$。

如果我们取 $n=100$,你会发现:$$ S=0.010050167\cdots $$ 这时,我们就可以知道函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积为约为 $0.010050167$。

二、体积类似于计算曲线下的面积,定积分也可以用于计算体积。

我们可以使用定积分来计算旋转曲面的体积,例如旋转曲面、扫描曲面等。

例如,假设我们需要计算曲线 $y=x^2$ 从 $x=0$ 到 $x=1$ 周围在 $y$ 轴旋转一周所形成的立体的体积,我们可以使用下面的公式计算出体积:$$ V=\int_{0}^{1}\pi y^2dx $$替换掉 $y=x^2$ 的值,我们得到:$$ V=\int_{0}^{1}\pi x^4dx $$ 计算该定积分的结果为:$$ V=\frac{\pi}{5} $$ 所以,曲线$y=x^2$ 从 $x=0$ 到 $x=1$ 周围所形成的立体的体积为$\frac{\pi}{5}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的应用一10、求平面图形的面积(1)在直角坐标系下计算面积若平面图形是由连续曲线)(xfy=)(xgy=与直线ax=,)(bab<=围成,则图形的面积为dxxgxfAba)()(-=⎰特别地①当),{,)(,)(baxxgxf∈≡>。

图?dxxfAba)(⎰=②当),{,)()(baxxgxf∈≥图?dxxgxfAba⎰-=)()((③当),{,)(baxxg∈≡图?dxxfAba)(⎰=④设曲线)()()(:βα≤≤⎩⎨⎧==Γttyytxx,其中],[)(βαctx∈',)(≥x,)(tx严格单调,且α=)(ax,bx=)(β,则曲线byax==Γ,,及x轴所围成的曲边梯形的面积为dxtxtyA⎰'=βα)()(同理若平面图形由连续曲线)(,)(),(babyayygxyfx<====与围成,则图形的面积为dyygyfAba)()(-=⎰注:此公式可直接由上述公式得出(将y x 与对调)⑤在极坐标下计算面积如图,)(),(21θθβθαθr r r r D ====及,由围成))()(,(21θθβαr r <<则面积θθθβαd r r A ))()((212122-=⎰ 图?特别地:当0)(1≡θr 时,θθβαd r A )(2122⎰=图?11、求平面曲线的弧长设曲线 βα≤≤⎩⎨⎧==t t y y t x x L ,)()(:则弧长dtt y t x S ⎰'+'=βα)()(22特别地:(1)b x a x y y L ≤≤=,)(:,则dxy S ba⎰'+=21(2)b y a y x x L ≤≤=,)(:,则dyy x S ba⎰'+=)(1212、求空间物体的体积(1)已知平行截面面积的立体体积⎰=badxx A V )((2) 旋转体体积dxx f V bax )(2⎰=πdxx xfV bay )(22⎰=π(柱壳法公式) 图?dxx f x f V bax ))()((2122-=⎰πdxx f x f x V bay ))()((212-=⎰π(柱壳法公式) 图?(3) 求旋转体的侧面积由边梯形b x a D ≤≤:,)(0x f y ≤≤ 绕x 轴旋转一周所生成旋转体的侧面积dxx f x f A ba⎰'+=)(1)(22π 图?(4) 求变力沿直线作功物体在变力)(x f 的作用下,由a x =点沿直线运动到b x =点,则所作的功为⎰=badxx f w )(注:要求功,只需将变力)(x f 求出,然后代入积分式即可。

(5) 求水的侧压力设平板铅直放置在水中(如图),水的密度为9,则平板一侧所受的压力为:⎰=badxx xf g p )(9 图?(6) 求细棒对质点的引力基础知识:质量分别为21m m 与的两质点之间的引力为221rm m GF =,其中r 为两质点之间的距离,G 为引力系数。

常见题型和解题思路定积分在几何和物理上都有应用,在几何上主要用于求平面形的面积,平面曲线弧长,和空间几何体的体积;在物上用于求变力沿直线作功, 水的侧压力和细棒对质点的引力,用的方法是公式法(6-10,6-11,6-12,6-13,6-14,6-15)和微元法公式中的公式是由微元法推导出来的, 用起来很方便,但有时会到有些题不能代公式,这时就只能用微元法 来求解,因此,两种方法都要掌握。

微元法以及其解题步骤 微元法 若所求量u 满足条件:。

1其值与变量x 和其变化区间],[b a 以及定义在该区间上的某一函数)(x f 有关;。

2其值在],[b a 上具有加性,则u 的值可用定积分来表示。

在],[b a 的任一子区间dx x x +,[上建立所求量的微分du 与 一函数)(x f 及自变量的微分dx 之间的关系为dx x f du )(=, 中du 表示u 的微元,dx x f )(是所求量的局部表达式,则 ⎰⎰==babadxx f dx )(,我们称这种通过微元导致问题解题的方法称为微元法。

微元法的解题步骤: ● 把不容易计算的所求量0u 按某种适当的方式,微分成一小块一小块的容易计算的微量。

● 建立坐标系,并创建一个区间函数],[21x x u u =(即对任一区间],[],[21b a c x x ,存在惟一的一个实数],[21x x u u =与之对应),P5最后少一行 计算标准微分区间],[dx x x +上的微u 值],[dx x x u du +=。

体要求是:找一个)(x f ,使得用dx x f )(代替],[dx x x u +的相对误差为0,即当0)()(],0→-+→dxx f dxx f dx x x dx 时,。

3⎰⎰⎰+==bababadxx f dx x x u du b a u u )(],[],[210。

等号1成立的原因是u 具有可加性;等号2成立是因为求和不增加相对误差。

注意:利用微元法解题时,关于是。

1(微分方法)和。

3(要用一个几何 和物理的基础知识,在下面不同的题型中都会强调这两点。

-8 常见题型(1)求平面图形D 的面积。

公式法:见6-10 微元法:在直角坐标系下:将D 分成一个一个的窄条后,用矩形代替,基础知识是“矩形面积=长×宽”。

在极坐标系下:将D分成一个一个的小扇形,然后用圆扇形代替,基础知识是“圆扇形面积圆心角半径⨯⨯=2)(5.0”。

(2)求平面曲线的弧长。

公式法:见6-11中公式,(见例6-13)微元法:将曲线分成一个一个的小段,然后用直线段代替,基础知识是:“勾股定理”。

求空间物体λ的体积V公式法:见6-12中公式(见例6-14)。

微元法:①切片法:用平行的平面将λ切成一个一个的薄片,然后用柱体代替,基础知识“柱体体积=底面积×高”。

②薄柱壳法:只限于旋转体(见例6-14解法2)。

求旋转体的侧面积。

公式法:见6-13中公式。

微元法:用垂直于旋转轴的平面将旋转曲面切成一个一个的窄条,然后用圆柱面来代替,基础知识“圆柱侧面积=2π×底面半径×圆柱体高”。

(3)求功。

公式法:见6-14中公式。

微元法:①将位移微分。

因为位移很小,所以变力可用常力代替。

:微功=宏力×微位移,即Fdsdw=。

例如变力沿直线做功问题。

②将力微分。

将物体按位移的不同,分成不同的小块,:微功=微力×宏位移,即Sdsdw=。

例如从容器吸水做功的问题就是用此法。

(见例6-15)(4)求水的侧压力。

求法:见6-15中公式受压面积按深度分成一个一个的窄条,因为窄条,所以用不变压强代替变动的压强。

基础知识“压力=压强×受压面积,体压强=液体比重×深度,比重=密度×重力加速度”。

(5)求细棒对质点的引力。

微元法:将细棒分成一个一个的小段,将小段看作质点,基础知识“万有引力公式221rmmGF=,G为引力系数,21,mm为质点的质量,r为两质点的距离”。

相关文档
最新文档