七年级数学上册数轴上的动点问题专题训练

合集下载

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。

人教版七年级上册数学 数轴上的动点问题 期末培优训练 专题训练

人教版七年级上册数学   数轴上的动点问题   期末培优训练   专题训练

(1)求A,B两点间的距离;(2)直接写出点P、点Q表示的数.(3)当P,Q两点相遇时,求t的值.(4)当点P运动到点B时,直接写出点4.如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.5.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点Pt>)秒.从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(0(1)点B表示的数是___________;(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当点P运动多少秒时,点P与点Q相遇?6.如图,已知点A,B,C是数轴上的三个点.(1)请直接写出点A,C所表示的数;(2)在此数轴上有点M,P,Q三个动点同时出发运动,其中,动点M从点A出发,以每秒1个单位长度的速度沿数轴向左运动;动点P,Q分别从点B,C处同时出发,分别以每秒2个单位长度和5个单位长度的速度沿数轴向右运动.①写出运动t秒时,点P所表示的数(用含有点t的式子表示);-的值是否②若点P与点M之间的距离表示为PM,点P与点Q之间的距离表示为PQ.试探究:PQ PM随时间t的变化而变化?若变化,请说明理由;若不变,请求其常数值.(1)直接写出a=___________,b=(2)现有一只蚂蚁P从点A出发,以每秒每秒3个单位长度的速度向右运动.①两只蚂蚁经过多长时间相遇?②设两只蚂蚁在数轴上的点C处相遇,求点③经过多长时间,两只蚂蚁在数轴上相距(1)a=________,b=________;(2)若O为原点,P向左运动,Q向右运动,的值是否发生变化?若不变,求其值;若变化,请说明理由;(3)若动点P、Q同时出发向左运动,此时动点(1)当1t=秒时,A、B同学在数轴上所表示的数为______、______.(2)①若t秒后A恰好追上B,则t=______秒.②记A在数轴上的位置为a,B在数轴上的位置为b,在a ba b+的值为0的这段时间内,B多少米?(3)分别取线段AC、BD中点为E、F,若在点A、B运动期间,2mEF nDA-为定值(其中mn的值.14.如图,数轴上,点A表示的数为7-,点B表示的数为1-,点C表示的数为9,点(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数.15.如图1,在数轴上从左到右依次是A、B、C 三个点,且A、B 两点位于原点O 的两侧,A 点所表示的数为4-,且23OA OB BC AB ==,;(1)求出数轴上点B、C 所表示的数;(2)如图2,动点P 从A 点出发,以4个单位长度每秒的速度沿AC 方向运动,到达C 点后,立即掉头以原速返回;与此同时,另一动点Q 从B 出发,以1.5个单位长度每秒的速度沿BC 方向运动,到达C 后,点P、Q 停止运动.在运动过程中,点Q 的运动时间记为t(秒),当4PQ =时,求出满足条件的t 的值;(3)在第(2)问的条件下,有另一动点M 与P、Q 同时出发,从点C 以3个单位长度每秒的速度沿CA 方向运动,当点P 停止运动时,点M 停止运动.在运动过程中,点Q 的运动时间记为t(秒),当P、Q、M 三点中一点是另外两点的中点时,请直接写出满足条件的t 的值.。

七年级数学上册数轴上动点问题专项练习

七年级数学上册数轴上动点问题专项练习

七年级数学上册数轴上动点问题专项练习1.已知数轴上有两点A、B,点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数;(2)是否存在这样的点P,使点P到点A,B的距离之和为20?若存在,请求出x的值;若不存在,请说明理由?(3)点Q是数轴上另一个动点,动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒4个单位长度的速度沿数轴向左匀速运动,点M为AP的中点,点N在线段BQ上,且BN=BQ,设运动时间为t(t>0)秒.①分别求数轴上点M,N表示的数(用含t的式子表示);②t为何值时,M,N之间的距离为10?2.如图,已知点A,B是数轴上原点O两侧的两点,其中点A在负半轴上,点B在正半轴上,AO=2,OB=10.动点P从点A出发以每秒2个单位长度的速度向右运动,到达点B后立即返回,速度不变;动点Q从点O出发以每秒1个单位长度的速度向右运动,当点Q到达点B时,动点P,Q停止运动.设P,Q两点同时出发,运动时间为t秒.(1)当点P从点A向点B运动时,点P在数轴上对应的数为.当点P从点B 返回向点O运动时,点P在数轴上对应的数为(以用含t的代数式表示)(2)当t为何值时,点P,Q第一次重合?(3)当t为何值时,点P,Q之间的距离为3个单位?3.如图,已知数轴上点A表示的数为9,B是数轴上一点,且AB=15.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为t(t>0)秒.发现:(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);探究:(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P.Q 同时出发,问,为何值时点P追上点Q?此时P点表示的数是多少?(3)若M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.点P 在运动的过程中,线段MN的长度是否发生变化?在备用图中画出图形,并说明理由.拓展:(4)若点D是数轴上一点,点D表示的数是x,请直接写出|x+6|+|x﹣9|的最小值是.4.阅读理解:若A,B,C为数轴上三点且点C在A,B之间,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣2,点B表示的数为2.表示1的点C到A的距离是3,到B的距离是1,那么点C是【A,B】的好点;又如,表示﹣1的点D到A的距离是1,到B的距离是3,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:(1)若M、N为数轴上两点,点M所表示的数为﹣6,点N所表示的数为2.数所表示的点是【M,N】的好点;数所表示的点是【N,M】的好点;(2)若点A表示的数为a,点B表示的数为b,点B在点A的右边,且点B在A,C之间,点B是【C,A】的好点,求点C所表示的数(用含a、b的代数式表示);(3)若A、B为数轴上两点,点A所表示的数为﹣33,点B所表示的数为27,现有一只电子蚂蚁P从点A出发,以每秒6个单位的速度向右运动,运动时间为t秒.如果P,A,B中恰有一个点为其余两点的好点,求t的值.5.阅读理解:点A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是有序点对[A,B]的好点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是有序点对[A,B]的好点;但点C不是有序点对[B,A]的好点.知识运用:(1)同理判断:如图①,点B[D,C]的好点,点B[C,D]的好点(两空均填“是”或“不是”);(2)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.数轴上数所表示的点是[M,N]的好点;(3)如图③,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.①用含t的代数式表示PB=,PA=;②当t为何值时,P、A和B中恰有一个点为其余两点的好点?6.阅读理解:【探究与发现】如图1,在数轴上点E表示的数是8,点F表示的数是4,求线段EF的中点M所示的数对于求中点表示数的问题,只要用点E所表示的数﹣8,加上点F所表示的数4,得到的结果再除以2,就可以得到中点M所表示的数:即M点表示的数为:.【理解与应用】把一条数轴在数m处对折,使表示﹣20和2020两数的点恰好互相重合,则m=.【拓展与延伸】如图2,已知数轴上有A、B、C三点,点A表示的数是﹣6,点B表示的数是8.AC=18.(1)若点A以每秒3个单位的速度向右运动,点C同时以每秒1个单位的速度向左运动设运动时间为t秒.①点A运动t秒后,它在数轴上表示的数表示为(用含t的代数式表示)②当点B为线段AC的中点时,求t的值.(2)若(1)中点A、点C的运动速度、运动方向不变,点P从原点以每秒2个单位的速度向右运动,假设A、C、P三点同时运动,求多长时间点P到点A、C的距离相等?7.已知数轴上的A、B两点分别对应的数字为a、b,且a,b满足|4a﹣b|+(a﹣4)2=0.(1)直接写出a、b的值;(2)P从A出发,以每秒3个长度的速度沿数轴正方向运动,当PA=PB时,求P运动的时间和P表示的数;(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位的速度向C 点运动,同时,Q从B点出发,以每秒1个长度的速度向正方向运动,点P运动到C点立即返回再沿数轴向左运动.当PQ=10时,求P点对应的数.8.如图,数轴上A,B两点对应的数分别为10和﹣3,点P和点Q同时从原点出发,点P 以每秒1个单位长度的速度沿数轴正方向运动,点Q以每秒3个单位长度的速度先沿数轴负方向运动,到达点B后再沿数轴正方向运动,当点P到达点A后,两个点同时结束运动.设运动时间为t秒.(1)当t=1时,求线段PQ的长度;(2)通过计算说明,当t在不同范围内取值时,线段PQ的长度如何用含t的式子表示?(3)当点Q是BP的中点时直接写出t的值.9.某校为准备运动会,在一条笔直的跑道上画一段跑道AB,如图,主席台0为原点,A 点表示数a米,B点表示数b米,且关于x多项式﹣5x5﹣bx2+2ax3+x+40x2+120x3﹣4不含x的3次项和2次项.(1)a=;b=;AB跑道为米赛跑跑道.(2)甲、乙两机器人同时从0出发,甲向A以3米/分速度画线,乙向B以2米/分速度画线,甲、乙两机器人到达终点A、B后,立刻按原速度返回到0点.设两机器人运动时间为t分钟,用含t的式子求出它们从0出发到回到0的过程中,甲、乙两机器人的距离.(3)在(2)的条件下,t为何值时,两机器人相距60米?并直接写出两机器人相距60米时,各自所在位置所表示的数.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B 点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案1.解:(1)∵点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,∴点B对应的数为4,∵点P到点A,B的距离相等,∴x﹣(﹣12)=4﹣x,∴x=﹣4.∴点P对应的数为﹣4..(2)当点P在点A左边时,﹣12﹣x+4﹣x=20,解得:x=﹣14;当点P在点A,B之间时,PA+PB=16<20,∴此情况不存在;当点P在点B右边时,x﹣(﹣12)+x﹣4=20,解得:x=6.综上所述:存在这样的点P,使点P到点A,B的距离之和为20,且x的值为﹣14或6.(3)①当运动时间为t秒时,点P对应的数为6t﹣12,点Q对应的数为4﹣4t,∵M为AP的中点,点N在线段BQ上,且,∴点M对应的数为3t﹣12,点N表示的数为.②∵MN=10,∴.解得:,t2=6.答:t为或6时,MN距离为10.2.解:(1)由题意知,点P在数轴上对应的数为:2t﹣2.当点P从点B返回向点O运动时,点P在数轴上对应的数为:22﹣2t.故答案是:2t﹣2;22﹣2t;(2)由题意,得2t=2+t,解得t=2;(3)①当点P追上点Q后(点P未返回前),2t=2+t+3.解得t=5;②当点P从点B返回,未与点Q相遇前,2+t+3+2t﹣12=12.解得,t=;③点点P从B返回,并且与点Q相遇后,2+t﹣3+2t﹣12=12解得t=综上所述,当t的值是5或或时,点P、Q间的距离是3个单位.3.解:(1)设点B表示的数为x,则有:AB=9﹣x=15解得:x=﹣6;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动∴经t秒后点P走过的路程为5t∴点P表示的数为:9﹣5t故答案为:﹣6;9﹣5t;(2)设点P运动t秒时,在点C处追上点Q,如图则AC=5t,BC=2t,∵AC﹣BC=AB∴5t﹣2t=15解得:t=5,∴点P运动5秒时,在点C处追上点Q.当t=5时,9﹣5t=9﹣25=﹣16.此时P点表示的数是﹣16.(3)没有变化.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点,∴PM=AP,PN=BP.分两种情况:①当点P在点A、B两点之间运动时(如图):∴MN=MP+NP=AP+BP=(AP+BP)=AB=10;②当点P运动到点B的左侧时(如图):∴MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=10综上所述,线段MN的长度不发生变化,其值为10.(4)①当x<﹣6时,|x+6|+|x﹣9|=﹣(x+6)﹣(x﹣9)=﹣x﹣6﹣x+9=3﹣2x ∵x<﹣6∴3﹣2x>15;②当﹣6≤x≤9时,|x+6|+|x﹣9|=x+6﹣(x﹣9)=15③当x>9时,|x+6|+|x﹣9|=x+6+x﹣9=2x﹣3∵x>9∴2x﹣3>15综上,当﹣6≤x≤9时,|x+6|+|x﹣9|取得最小值15.故答案为:15.4.解:(1)由题意知,数0或6所表示的点是【M,N】的好点;数﹣4或﹣10所表示的点是【N,M】的好点;故答案是:0或6,﹣4或﹣10;(2)设点C所表示的数为c,依题意得(3)依题意得,AB=60①P是【A,B】的好点②P是【B,A】的好点③B是【A,P】的好点④B是【P,A】的好点答:当时,P,A,B中恰有一个点为其余两点的好点.5.(1)因为BD=2,BC=1,BD=2BC,所以B是[D,C]好点,但不是[C,D]好点.(2)因为MN=6,6÷3=2,当为[M,N]好点是,左边距离是右边距离的2倍,所以左边为4个单位,右边为2个,所以这个数是2.(3)①因为AB=60,PB等于2t,所以AP等于60﹣2t.②因为P、A和B中恰有一个点为其余两点的好点,所以分为5种情况讨论,分别如下:第一种:P为【A,B】的好点,由题意得,x﹣(﹣40)=2(20﹣x),解得:x=0,t =20÷2=10(秒).第二种:A为【B,P】的好点,由题意得,20﹣(﹣40)=2(x﹣(﹣40)),解得:x=﹣10,t=(20﹣(﹣10))÷2=15(秒).第三种:P为【B,A】的好点,由题意得,20﹣x=2(x﹣(﹣40)),解得:x=﹣20,t=(20﹣(﹣20))÷2=20(秒).第四种:A为【P,B】的好点,由题意得,x﹣(﹣40)=2(20﹣(﹣40)),解得:x=80(舍).第五种:B为【A,P】的好点.由题意得,20﹣(﹣40)=2(20﹣x),解得:x=﹣10,t=(20﹣(﹣10))÷2=15(秒).此种情况点P的位置与②中重合,即点P为AB中点.综上可知,当t为10 秒、15 秒或20 秒,P、A和B中恰有一个点为其余两点的好点.6.解:m==1000;故答案为:1000;(1)①点A向右移动的距离为3t,因此点A从数轴上表示﹣6的点向右移动3t的单位后,所表示的数为3t﹣6,故答案为:3t﹣6,②当点B为线段AC的中点时,Ⅰ)当移动后点C在点B的右侧时,此时t<4,如图1,由BA=BC得,8﹣(3t﹣6)=(12﹣t)﹣8,解得,t=5>4(舍去)Ⅱ)当移动后点C在点B的左侧时,此时t>4,如图2,由BA=BC得,(3t﹣6)﹣8=8﹣(12﹣t),解得,t=5,答:当点B为线段AC的中点时,t的值为5秒.(2)根据运动的方向、距离、速度可求出,点P、C相遇时间为12÷(2+1)=4秒,点A、C相遇时间为18÷(3+1)=秒,点A追上点P的时间为6÷(3﹣2)=6秒,当点P到点A、C的距离相等时,①如图2﹣3所示,此时t<4,由PA=PC得,2t﹣(3t﹣6)=(12﹣t)﹣2t,解得,t=3;②当A、C相遇时符合题意,此时,t=,③当点A在点P的右侧,点C在点P的左侧时,此时t>6,∵点A追上点P时用时6秒,之后PA距离每秒增加1个单位长度,而PC每秒增加4个单位长度,∴不存在点P到点A、C的距离相等的情况,因此:当点P到点A、C的距离相等时,t=3或t=.7.解:(1)∵|4a﹣b|+(a﹣4)2=0∴4a﹣b=0,a﹣4=0,解得a=4,b=16.答:a、b的值分别为4、16.(2)设P运动的时间为t1秒,P表示的数为x.根据题意,得x﹣4=16﹣x,解得x=10.3t1=x﹣4=10﹣4=6,∴t1=2.答:P运动的时间为2秒,P表示的数为10.(3)设点P、Q同时出发运动时间为t2秒,则P对应的数为(3t2+4),Q表示的数为16+t2.根据题意,得|4+3t2﹣(16+t)|=10解得t2=1,或t2=11(舍去),∴3t2+4=7.当P返回时,设时间为t,则P表示的数为36﹣3t,Q表示的数为+t,则列出方程36﹣3t+10=+t,解得t=,∴P表示的数为.答:P点对应的数7或.8.解:(1)当t=1时,P点对应的有理数为1,Q点对应的有理数为﹣3×1=﹣3,所以PQ=1﹣(﹣3)=4;(2)①当0<t<1时,P点对应的有理数为t,Q点对应的有理数为﹣3t,PQ=t﹣(﹣3t)=4t;②当1≤t<3时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=t﹣(3t﹣6)=﹣2t+6;③当3≤t≤10时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=3t﹣6﹣t=2t﹣6.综上所述,PQ=;(3)①当0<t<1时,则﹣3t×2=﹣3+t,解得t=;②当1≤t<3时,则(3t﹣6)×2=﹣3+t,解得t=.故t的值是或.9.解:(1)﹣5x5﹣bx2+2ax3+x+40x2+120x3﹣4=﹣5x5+(40﹣b)x2+(120+2a)x3+x ﹣4,∵关于x多项式﹣5x5﹣bx2+2ax3+x+40x2+120x3﹣4不含x的3次项和2次项,∴120+2a=0,40﹣b=0,解答a=﹣60,b=40,∴AB=40﹣(﹣60)=100.故答案为:﹣60,40,100;(2)甲到达A点用时t==20(分),乙到达B点用时t==20(分).①如果t≤20,甲在数轴上表示的数为﹣3t,乙在数轴上表示的数为2t,所以甲、乙两机器人的距离为:2t﹣(﹣3t)=5t(米);②如果t>20,甲在数轴上表示的数为﹣60+3(t﹣20)=3t﹣120,乙在数轴上表示的数为40﹣2(t﹣20)=80﹣2t,所以甲、乙两机器人的距离为:80﹣2t﹣(3t﹣120)=200﹣5t(米);(3)①如果t≤20,令5t=60,解得t=12,符合题意,此时甲表示的数为﹣36,乙表示的数为24;②如果t>20,令200﹣5t=60,解得t=28,符合题意,此时甲表示的数为﹣36,乙表示的数为24.答:两机器人相距60米时,两次都是甲表示的数为﹣36,乙表示的数为24.10.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.。

七年级数学上册动点问题专项练习

七年级数学上册动点问题专项练习

七年级数学上册动点问题专项练习七年级数学上册动点问题专项练明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

例如,数轴上两点的坐标分别为a和b,则它们之间的距离为|a-b|。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

基础题1.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点。

1)求动点A所走过的路程及A、C之间的距离。

动点A所走过的路程为2+5=7个单位长度。

A、C之间的距离为|(-2)-1|=3个单位长度。

2)若C表示的数为1,则点A表示的数为5.2.画个数轴,想一想1) 已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是1个单位。

2) 已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系1=|(-3)+5|,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是(a+b)/2.3) 已知在数轴上表示数x的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数x。

由于|x-(-2)|=2|x-6|,所以x=-5.应用题1、已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位?设甲到B的距离为x,则甲到A的距离为24+x,甲到C的距离为34-x。

七上数学动点问题专项训练

七上数学动点问题专项训练

七上数学动点问题专项训练1.点A从原点出发向数轴负方向运动,同时,点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度。

已知,点B的速度比点A的速度快4个单位长度/秒。

(1)求出点A、B两点运动的速度,单位:单位长度/秒;(2)在数轴上标出A、B两点从原点出发3秒后的位置。

2.在一个600米的环形跑道上,点A、B两个加油站相距160米。

如果甲、乙两个人从不同的加油站同时同向出发,甲每秒跑4.5米,经过40秒之后,两个人相距多远?3.在一个300米的环形跑道上,甲和乙两名运动员同时从同一点出发,分别以每秒25米和每秒20米的速度相向而行。

当两人相遇时,跑了多少时间?4.在一个正方形的操场上,小明和小红两名同学同时从操场的一个顶点出发,沿着正方形的边开始跑步。

小明向北跑,小红向东跑,当小明跑到另一个顶点时,小红才跑了半圈。

问小明和小红各跑了多少路程?5.在一个直角坐标系中,A、B两点分别位于第四象限和第二象限。

已知A点的坐标为(-3a,4a),B点的坐标为(b,-9),且AB平行于x轴。

求A、B两点的坐标。

6.在一个长为12厘米,宽为4厘米的长方形中,有一个动点P从长方形的左上角开始,按逆时针方向绕着长方形边缘移动。

当点P再次回到起始位置时,所经过的路程是多少厘米?7.一个自行车队正在训练,第一名队员以每小时50千米的速度行驶。

当他行驶了8分钟后,第二名队员从后面追赶上来。

他需要多少时间才能追上第一名队员?8.一条长度为21厘米的线段AB,被分成三段,每段的长度分别为a、b、c(单位:厘米)。

已知a、b、c都是整数,且满足a+b>c的条件。

求出这三段线段的长度。

9.在一个边长为10厘米的正方形中,有一个动点P从A点(0,0)开始,按逆时针方向绕正方形边缘移动。

当点P再次回到起始位置时,所经过的路程是多少厘米?10.在一个长为6厘米,宽为4厘米的长方形中,有一个动点Q从长方形的右上角开始,按顺时针方向绕着长方形边缘移动。

完整版)七年级上册数学期末动点问题专题

完整版)七年级上册数学期末动点问题专题

完整版)七年级上册数学期末动点问题专题七年级上期末动点问题专题1.数轴上的动点问题已知数轴上两点A、B对应的数分别为-1和3,数轴上一动点P对应的数为x。

1) 若点P到点A和点B的距离相等,求点P对应的数。

解:由题意得,PA=PB,即 |x-(-1)|=|x-3|,解得x=1.2) 当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A 和点B的距离相等。

解:设P点向左运动t分钟后到达距离O点x的位置,则A点和B点向左运动5t和20t个单位长度后,分别到达距离O 点-5t和3-20t的位置。

由于PA=PB,因此有:x-(-1+1t)|=|x-3-17t|解得t=2,代入得到x=-1+2t=-3.2.射线上的动点问题如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O 匀速运动(点Q运动到点O时停止运动),两点同时出发。

1) 当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度。

解:设Q点向左运动t秒后到达距离O点x的位置,则有:OC-x|=|OP+t|OB-2x|=2|PA-OP-t|AB-3x|=3|PA-OP-t|解得x=10,t=10,因此Q点的运动速度为3cm/s。

2) 若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm。

解:设P点向右运动t秒后到达距离O点y的位置,则有:y|=|x+t-20|y|=|60-x-t|解得t=25,因此P、Q两点相距70cm时,P点向右运动了25秒,Q点向左运动了25秒。

3) 当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值。

解:设P点向右运动t秒后到达线段AB上的点E,则有:OE|=|20+t/2|由于AE=40,因此有AP=AE-PE=40-(20+t/2)=60-t/2.又因为OF=FB=30,因此有:OB-AP/EF=2OB/AB-AP/AF=2(20+t)-60/(2OF)=t+1.3.相向而行的动点问题甲、乙物体分别从相距70米的两处同时相向运动。

七年级数学动点题50道

七年级数学动点题50道

七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。

(1)当t = 1时,求PQ的长度。

(2)求经过多少秒后,PQ = 5。

解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。

所以公式。

(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。

则公式。

当公式时,即公式。

则公式或公式。

当公式时,公式,公式(舍去,因为时间不能为负)。

当公式时,公式,公式。

2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。

解析:因为点C在点A、B之间,公式,公式。

又因为公式,所以公式。

去括号得公式。

移项得公式。

合并同类项得公式。

解得公式。

3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。

(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。

解析:(1)点P表示的数为公式。

当点P到点B的距离为2时,公式。

则公式或公式。

解得公式或公式。

(2)点Q表示的数为公式,公式。

当公式时,公式。

即公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。

(1)求t秒后,点M表示的数和点N表示的数。

(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。

(2)当点M与点N相距4个单位长度时,公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

初一数学-数轴上的动点问题压轴题-专题训练说课讲解

初一数学-数轴上的动点问题压轴题-专题训练说课讲解

初一数学-数轴上的动点问题压轴题-专题训练七年级数学上册 数轴上的动点问题 专题训练1.在数轴上依次有A,B,C 三点,其中点A,C 表示的数分别为-2,5,且BC=6AB .(1)在数轴上表示出A,B,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是2,21,41(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,求点P 对应的数;若不存在,请说明理由.2.已知多项式x 3-3xy 2-4的常数项是a ,次数是b(1) 直接写出a ,b ,并将这两个数在数轴上所对应的点A 、B 表示出来(2) 数轴上A 、B 之间的距离记作|AB |,定义:|AB |=|a -b |,设点P 在数轴上对应的数为x ,当|PA |+|PB|=13时,直接写出x 的值_____________(3) 若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,23AO =OB ,求点B 的速度5510643210-1-2-3-43.(本题12分)已知A、B两个动点同时在数轴上匀速运动,且保持运动的方向不变.若A、B两点的起始位置分别用有理数a、b表示,c是最大的负整数,且|a-19c2|+|b-8c3|=0(1) 求a、b、c的值m表示,求m的值(4)A、B两点能否相距18个单位长度?如果能,求出此时运动了多少秒及此时A、B两点表示的有理数;如果不能,请说明理由c>0,且|c|>|b|>|c|,数轴上a、b、c对应的点4.(本题7分)已知ab<0,a是A、B、C(1) 若|a|=-a时,请在数轴上标出A、B、C的大致位置(2) 在(1)的条件下,化简:|a-b|-|b+c|+|c+a|5.如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0(1) 求点C 表示的数(2) 点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t(3) 若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:① PCPBPA 的值不变;②2BM -BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值6.数轴上点A 对应的数是﹣1,B 点对应的数是1,一只小虫甲从点B 出发沿着数轴的正方向以每秒4个单位的速度爬行至C 点,再以同样速度立即返回到A 点,共用了4秒钟.(1)求点C 对应的数;(2)若小虫甲返回到A 点后再作如下运动:第1次向右爬行3个单位,第2次向左爬行5个单位, 第3次向右爬行7个单位,第4次向左爬行9个单位,……依次规律爬下去,求它第10次爬行后停在点所对应的数.(3)①若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点B 出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动t 秒后,甲、乙两只小虫的距离为: .(用含t 的式子表示)②若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点B 和点C 出发背向而行,乙的速度是每秒2个单位,丙的速度是每秒1个单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册
数轴上的动点问题专题训练
1.在数轴上依次有
A,B,C 三点,其中点
A,C 表示的数分别为-2,5,且BC=6AB .
(1)在数轴上表示出A,B,C 三点;
(2)若甲、乙、丙三个动点分别从
A 、
B 、
C 三点同时出发,沿数轴负方向运动,它们的
速度分别是2,2
1
,41(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?
(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,求点
P 对应的
数;若不存在,请说明理由
.
2.已知多项式
x 3-3xy 2
-4的常数项是
a ,次数是b
(1) 直接写出a ,b ,并将这两个数在数轴上所对应的点A 、B 表示出来
(2) 数轴上A 、B 之间的距离记作|AB|,定义:|AB|=|a -b|,设点P 在数轴上对应的数为
x ,当|PA|
+|PB|=13时,直接写出
x 的值_____________
(3) 若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,
2
3AO =OB ,
求点B 的速度
3.(本题12分)已知A 、B 两个动点同时在数轴上匀速运动,且保持运动的方向不变.若A 、B
两点的起始位置分别用有理数a 、b 表示,c 是最大的负整数,且
|a -19c 2|+|b -8c 3|=0
(1) 求a 、b 、c 的值
(2) 根据题意及表格中的已知数据,填写完表格:运动时间(秒)
0 5 7
t
A 点位置a -1
B 点位置
b
17 27
(3) 若A 、B 两点同时到达点M 的位置,且点
M 用有理数m 表示,求m 的值(4) A 、B 两点能否相距
18个单位长度?如果能,求出此时运动了多少秒及此时A 、B 两点表示
5
5
10
6
4
32
1
-1
-2
-3
-4
的有理数;如果不能,请说明理由4.(本题7分)已知ab <0,
a
c >0,且|c|>|b|>|c|,数轴上a 、b 、c 对应的点是
A 、
B 、C
(1) 若|a|=-a 时,请在数轴上标出
A 、
B 、
C 的大致位置
(2) 在(1)的条件下,化简:|a -b|-|b +c|+|c +a|
5.如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,
C 是AB 的
中点,且a 、b 满足|a +3|+(b +3a)2
=0 (1) 求点C 表示的数
(2) 点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若
AP +
BQ =2PQ ,求时间t (3) 若点P 从A 向右运动,点
M 为AP 中点,在P 点到达点B 之前:①
PC
PB PA 的值不变;②
2BM -BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值
6.数轴上点
A 对应的数是﹣
1,
B 点对应的数是
1,一只小虫甲从点
B 出发沿着数轴的正方向以每秒
4
个单位的速度爬行至
C 点,再以同样速度立即返回到A 点,共用了
4秒钟.
(1)求点
C 对应的数;
(2)若小虫甲返回到
A 点后再作如下运动
:第1次向右爬行3个单位,第2次向左爬行5个单位, 第
3次向右爬行
7个单位,第4次向左爬行9个单位,……依次规律爬下去,求它第10次爬行后停
在点所对应的数.
(3)①若小虫甲返回到
A 后继续沿着数轴的负方向以每秒
4个单位的速度爬行
,这时另一小虫乙
从点
B 出发沿着数轴的负方向以每秒
6个单位的速度爬行
,则运动
t 秒后,甲、乙两只小虫
的距离为:.(用含
t 的式子表示)
②若小虫甲返回到
A 后继续沿着数轴的负方向以每秒
4个单位的速度爬行,同时另两只小。

相关文档
最新文档