广东九年级数学《旋转》单元试卷
九年级上学期数学《旋转》单元测试卷附答案

[答案]B
[解析]
根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
解:如图,
连接A D、BE,作线段A D、BE的垂直平分线,
两线的交点即为旋转中心O′.其坐标是(0,1).
[答案]
[解析]
[分析]
平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),记忆方法是结合平面直角坐标系的图形记忆.
[详解]∵点A(m,5)与点B(2,n)关于原点对称,
∴m=−2,n=−5,
∴3m+2n=−6−10=−16.
故答案为−16.
[点睛]本题考查了关于原点对称点的性质,解题的关键是熟练的掌握关于原点对称点的性质.
⑤锐角,不是中心对称图形;
⑥平行四边形是中心对称图形;
所以,①②④⑥共4个.
故答案为4.
[点睛]本题考查了中心对称图形,解题的关键是熟练的掌握中心对称图形的概念.
14.请在下图各组符号中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形.
________.
[答案]
[解析]
试题分析:从图中可以发现所有的图形都是轴对称图形,而且图形从左到右分别是1-7的数字,所以画一个轴对称图形且数字为6即可.
[详解]A.不是中心对称图形,故此选项错误;
B.不是中心对称图形,故此选项错误;
C.是中心对称图形,故此选项正确;
D.不是中心对称图形,故此选项错误;
故答案选:C.
[点睛]本题考查了中心对称图形,解题的关键是熟练的掌握中心对称图形的定义.
2.如图,△DEF是由△A B C绕着某点旋转得到的,则这点的坐标是()
2024-2025学年人教新版九年级上册数学《第23章 旋转》单元测试卷(有答案)

2024-2025学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题(共10小题,满分30分)1.如图,若点M是等边△ABC的边BC上一点,将△AMC绕点A顺时针旋转得到△ANB,连接MN,则下列结论:①∠BMN=30°;②MN=AM;③BN∥AM,其中正确的个数有()A.3个B.2个C.1个D.0个2.把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°3.下列图形是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)5.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.6.如图,三个完全相同的四边形组成的图案绕点O旋转可以和原图形重合,则旋转角可以是()A.60°B.90°C.120°D.150°7.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.8.李明家有一个时钟,假期间,某天上午他8点整出门锻炼,回家时发现时针刚好旋转了60°,那么李明回家的时间是()A.9点整B.9点半C.10点整D.10点半9.如图,已知点A(﹣1,0),B(0,2),A与A′关于y轴对称,连结A′B,现将线段A′B以A′点为中心顺时针旋转90°得A'B',点B的对应点B′的坐标为()A.(3,1)B.(2,1)C.(4,1)D.(3,2)10.如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N二.填空题(共10小题,满分30分)11.在圆、正六边形、正八边形中,属于中心对称图形的有个.12.在平面直角坐标系中,若点A(a,3)与点B(﹣1,b)于原点对称,则a+b=.13.时钟从下午3时到晚上9时,时针沿顺时针方向旋转了度.14.如图,点O是矩形ABCD的对称中心,点P,Q分别在边AD,BC上,且PQ经过点O,AB=6,AP =3,BC=8,点E是边AB上一动点.则△EPQ周长的最小值为.15.如图,方格纸中每个小正方形的边长均为1,已知A(﹣1,3),B(﹣4,4),C(﹣2,1).(1)画△ABC关于原点成中心对称的△A1B1C1;(2)若第二象限存在点D,使点A、B、C、D构成平行四边形,则D的坐标为.16.如图,在平面直角坐标系中有一个航空母舰的简图.若将该图案各个顶点的纵坐标保持不变,横坐标都减去3,则所得到的新图案是由原图案向平移3个单位长度得到的.17.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.18.如图是由中国结和雪花两种元素组成的一个图案,这个图案绕着它的旋转中心旋转角度α°(0°<α<360°)后能够与它本身重合,则角α最小是度.19.如图,小刚利用计算机绘制了一个树叶图案,曲线C1为抛物线的一部分,顶点为A,曲线C2与曲线C1关于直线y=﹣x对称,点B为点A的对称点,则点B的坐标为.20.如图,O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=130°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.设∠AOB为α,当△COD为等腰三角形时,α为.三.解答题(共6小题,满分60分)21.如图,这是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求BB'的长.22.已知点M(3m﹣2,2m+1),解答下列问题:(1)若点M与(﹣7,﹣7)关于原点对称,求点m的值;(2)若点N(3,9),且直线MN平行于x轴,求点M的坐标.23.如图,在五边形ABCDE中,∠EAB=∠BCD=90°,AB=BC,∠ABC=α,AE+CD=DE.(1)将△ABE绕点B顺时针旋转α,画出旋转后的△BCM,并证明D、C、M三点在一条直线上;(2)求证:△EBD≌△MBD.24.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25.如图,在△ABC中,AB=BC,点O是AC边上的中点,将△ABC绕着点O旋转180°得到△ACD.(1)求证:四边形ABCD是菱形;(2)如果∠ABC=30°,BC=2,求菱形ABCD的面积.26.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案与试题解析一.选择题(共10小题)1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C二.填空题(共10小题)11.【答案】见试题解答内容12.【答案】﹣2.13.【答案】180.14.【答案】.15.【答案】(1)见解答.(2)(﹣5,2)或(﹣3,6).16.【答案】左.17.【答案】见试题解答内容18.【答案】60.19.【答案】(﹣2,0).20.【答案】85°或115°或145°.三.解答题(共6小题)21.【答案】4.22.【答案】(1)m=3;(2)M(10,9).23.【答案】(1)画图见解析,证明见解析;(2)见解析.24.【答案】见解析.25.【答案】(1)略;(2)2.26.【答案】见试题解答内容。
数学九年级上册《旋转》单元测试题附答案

人教版数学九年级上学期《旋转》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·南通市启秀中学初三月考)国旗上的五角星需要旋转多少度后才能与自身重合?( )A.36︒B.60︒C.45︒D.72︒2.(2019·北京初三)如图,沿图中的右边缘所在的直线为轴将该图形向右翻折180°后,再将翻折后的正方形绕它的右下顶点按顺时针方向旋转90°,所得到的图形是( )A. B. C. D.3.(2019·河北初三)下列图形与所描述的一致的是( )A.等边三角形是中心对称图形B.所有直角三角形都是轴对称图形C.所有平行四边形都是中心对称图形D.正五边形是中心对称图形4.(2019·抚顺市第十五中学初三)如图,直线3y x =经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 顺时针旋转60°得到△CBD ,若点B 的坐标为(1,0),则点C 的坐标为( )A.(3,12)B.(52,12)C.(33D.(523 5.(2019·厦门市松柏中学初二期中)已知点A 与点()4,5B --关于原点对称,则A 点坐标是( )A.()45-,B.()45-,C.()4,5--D.()4,56.(2019·黑龙江初三)如图,将△ABC 绕点A 逆时针旋转得到△AB′C′,若B′落到BC 边上,∠B =50°,则∠CB′C′的度数为( )A.50°B.60°C.70°D.80°7.(2019·辽宁初三)如图,在矩形ABCD 中,5AD =,将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE EF =,则AB 的长为( )A.52B.53C.8D.108.(2019·山西初三)自然界中存在很多自相似现象,如树木的生长,雪花的形成,土地干旱形成的地面裂纹.分形几何就是专门研究像雪花形状这样的自相似图形(即图形的局部与它的整体具有一定程度的相似关系)的一个数学分支.下列自相似图形中是轴对称图形但不是中心对称图形的是( )A. B. C. D.9.(2019·山东初三)如图,在平面直角坐标系中,ABC ∆的顶点都在方格线的格点上,将ABC ∆绕点P 顺时针方向旋转90,得到'''A B C ∆,则点P 的坐标为( )A.()0,4B.()1,1C.()1,2D.()2,110.(2019·长沙麓山国际实验学校初三月考)如图,△AOB 绕点O 逆时针旋转65°得到△COD ,若∠AOB =30°,∠BOC 的度数是( )A.30°B.35°C.45°D.60°二、填空题(每小题4分,共24分)11.(2019·广东初三)如图,已知△ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣1,0)、C (0,1),将△ABC 绕点B 顺时针旋转90°,得到△A 1B 1C 1,点A 、B 、C 的对应点分别为A 1、B 1、C 1,则点A 1的坐标为_____.12.(2017·上海初三)如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB .设BE =a ,DC =b ,那么AB =_____.(用含a 、b 的式子表示AB )13.(2019·浙江初三月考)如图,将△ABC 绕点A 顺时针旋转一定的角度至△AB'C'处,使得点C 恰好在线B'C'上,若∠ACB=75°,则∠BCB'的度数为_______.14.(2019·浙江初三月考)如图,在平面直角坐标系中,A (2,0),B (0,1),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是____.15.(2019·福建省建瓯市芝华中学初三月考)如图,方格中的四叶风车,其中一个叶轮至少旋转________度才能与相邻的叶轮重合?16.(2019·湖北初三期中)如图①,在△AOB 中,∠AOB =90º,OA =3,OB =4.将△AOB 沿 x 轴依次以点 A 、B 、O 为旋转中心顺时针旋转,分别得到图②图③、…,则旋转得到的图⑧的直角顶点的坐标为____.三、解答题一(每小题6分,共18分)17.(2019·厦门市第五中学初三期中)已知,如图ABC △与111A B C △关于点O 对称,画出点O 和111A B C △18.(2019·江西省宜春实验中学初三期中)如图,在△ABC中,已知∠ABC=30°,将△ABC绕点B逆时针旋转50后得到△A′BC′.已知A′C′∥BC,求∠A的度数.∆绕B点顺时针旋转90,A与C重合,F与19.如图,已知正方形ABCD中,F为BC上一点,把ABF⊥.AB延长线上的E点重合,延长AF交CE于G点,求证AG CE四、解答题二(每小题7分,共21分)20.(2019·辽宁初三)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.21.(2019·浙江初三月考)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC 绕点O 顺时针旋转90°后的△A′B′C′.(2)求点B 绕点O 旋转到点B′的路径长(结果保留π).22.在平面直角坐标系中,ABC ∆的位置如图所示,(每个小方格都是边长为1个单位长度的正方形).(1)画出ABC ∆关于y 轴对称的111A B C ∆;(2)将ABC ∆绕着点A 顺时针旋转90︒,画出旋转后得到的222A B C ∆,并直接写出点2B ,2C 的坐标.五、解答题三(每小题9分,共27分)23.(2019·张家界市民族中学初二期中)在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.24.(2019·山东初三期中)如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且BF =DE,连接AE,AF,EF.(1)判断△ABF与△ADE有怎样的关系,并说明理由;(2)求∠EAF的度数,写出△ABF可以由△ADE经过怎样的图形变换得到;(3)若BC=6,DE=2,求△AEF的面积.25.(2019·南通市崇川学校初二月考)如图点P 是等边△ABC 内一点,将△APC 绕点C 顺时针旋转60°得到△BDC,连接PD.(1)求证:△DPC 是等边三角形;(2)当∠APC=150°时,试判断△DPB 的形状,并说明理由;(3)当∠APB=100°且△DPB 是等腰三角形,求∠APC 的度数。
九年级上册数学《旋转》单元测试附答案

A. B. C. D.
7.已知点A(a,﹣1)与B(2,b)是关于原点O的对称点,则()
A.a=﹣2,b=﹣1B.a=﹣2,b=1C.a=2,b=﹣1D.a=2,b=1
8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()
A 黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)
9.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()
A. B. C. D.
10.如图,将△ABC绕点A逆时针旋转100°,得到△ADE,若点D在线段BC的延长线上,则∠B的大小为( )
A. B. C. D.
二.填空题(共8小题)
21.如图,△ABC中,AD是中线,将△ACD旋转后与△EBD重合.
(1)旋转中心是点,旋转了度;
(2)如果AB=7,AC=4,求中线AD长的取值范围.
22.如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.
23.如图,△A1AC1是由△ABC绕某点P按顺时针方向旋转90°得到的,△ABC的顶点坐标分A(﹣1,6),B(﹣5,0),C(﹣5,6).
A. 点AB. 点BC. 点CD. 点D
【答案】C
【解析】
【分析】
旋转前后对应点的连线段的垂直平分线的交点是旋转中心.
【详解】由旋转的性质可得,旋转前后对应点的连线段的垂直平分线交于一点,如图所示
故选C.
【点睛】本题考查的是旋转中心,熟练掌握旋转中心的性质是解题的关键.
九年级上学期数学《旋转》单元检测题附答案

试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.
①②③是只是中心对称图形,④只是轴对称图形,
故选C.
考点:本题考查的是中心对称图形与轴对称图形
点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
九年级上册数学《旋转》单元测试卷
(满分120分,考试用时120分钟)
一、选择题(每小题4分,共40分)
1.在平面内将一个图形绕一个定点沿某个方向转动一个角度这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )
A. B. C. D.
2.下列图形中,为中心对称图形的是( )
A. B. C. D.
3.下列图形中是轴对称图形,但不是中心对称图形的是()
A. B. C. D.
[答案]B
[解析]
[分析]
根据轴对称图形与中心对称图形的概念求解.
[详解]A、是中心对称图形,不是轴对称图形,不符合题意;
B、是轴对称图形,不是中心对称图形,符合题意;
C、是轴对称图形,也是中心对称图形,不符合题意;
D、是轴对称图形,也是中心对称图形,不符合题意.
2.下列图形中,为中心对称图形的是( )
A. B. C. D.
[答案]B
[解析]
[分析]
根据中心对称图形的定义,结合所给图形即可作出判断.
[详解] 、不是中心对称图形,故选项错误;
、是中心对称图形,故选项正确;
、不是中心对称图形,故选项错误;
、不是中心对称图形,故选项错误.
数学九年级上册《旋转》单元综合测试题含答案

13.如图,△ABC绕点A顺时针旋转80°得到△AEF,若∠B=100°,∠F=50°,则∠α的度数是________.
14.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.
A. B. C. D.
6.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△A′B'C′,连接BB',若AC′∥BB',则∠C′AB ′的度数为( )
A.45°B.30°C.20°D.15°
7. 如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为【 】
A. B. C. D.
3.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()
A. 30°B. 40°C. 50°D. 60°
4.下列英文字母是中心对称图形,但不是轴对称图形 是( )
A. NB. DC. WD. O
5.下列图形中,是轴对称图形,但不是中心对称图形的是()
D、既是中心对称图形又是轴对称图形,故本选项正确.
故选D.
【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3. 如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()
人教版数学九年级上学期
《旋转》单元测试
(满分120分,考试用时120分钟)
九年级上册数学《旋转》单元测试卷(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(每小题3分,共36分)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D . 2.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 A .30° B . 90° C .120° D .180°3.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A′B′C′的位置后,再沿CB 方向向左平移,使点B′落在原三角板ABC 的斜边AB 上,则三角板A′B′C′平移的距离为( )A. 6 cmB. 4 cmC. (6-23)cmD. (43-6)cm4.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( ) A .点M B .格点N C .格点P D .格点Q5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45 后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A.22,22⎛⎫-⎪⎪⎝⎭B.(1,0)C.22,22⎛⎫--⎪⎪⎝⎭D.(0,1)-6.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°7.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2 019的坐标为( )A.(1010,0) B.(1310.5,32) C.(1345,32) D.(1346,0)9.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则PAB △的面积为( )A .10B .8C .6D .310.如图,正方形ABCD 的边长为2,点E ,F 分别在边AD ,CD 上,若∠EBF =45°,则△EDF 的周长等于( )A .22B .3C .4D .4211.如图,将一个三角板ABC ∆,绕点A 按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A .62-B .6C .2D .112.如图,△ABC 中,∠A=30°,∠ACB=90°,BC=2,D 是AB 上的动点,将线段CD 绕点C 逆时针旋转90°,得到线段CE ,连接BE ,则BE 的最小值是( )A.3-1 B.32C.3D.2二、填空题(每小题3分,共18分)13.一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为__________.14.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)15.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.16.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B 按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.17.已知两个完全相同的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC 恰有一边与DE 平行的时间为__________s18.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线CH 相交于点P ,若2,75AB DBP ︒=∠=,则2DP 的值是____.三、解答题(共46分)19.(6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平面直角坐标系中直线AB 上的一个动点,点N 是x 轴上的一个动点,且以O 、A 2、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.21、(8分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.22.(8分)如图1,点B在线段CE上,Rt△ABC≌Rt△BAC∠=︒,1∠=∠=︒,30ABC CEFCEF,90BC=.(1)点F到直线CA的距离是_________;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;=时,求OF的长.②如图2,在旋转过程中,线段CF与AB交于点O,当OE OB23.(8分)如图,正方形ABCD中,点P从点A出发沿AD边向点D运动,到达点D停止.作射线CP,将CP绕着点C逆时针旋转45°,与AB边交于点Q,连接PQ(1)画图,完善图形.(2)三条线段DP,PQ,BQ之间有无确定的数量关系?请说明理由.⊥于H.若线段CP的最大值为4,求点H运动的路径长.(3)过点C作CH PQ24.(8分)在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(6,0)A ,点(0,8)B .以A 点为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点,,O B C 的对应点分别为,,D E F ,记旋转角为(090)αα︒︒<<.(1)如图①,当30α︒=时,求点D 的坐标;(2)如图②,当点E 落在AC 的延长线上时,求点D 的坐标;(3)当点D 落在线段OC 上时,求点E 的坐标(直接写出结果即可).参考答案一、选择题(每小题3分,共36分)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A.B.C.D.【答案】C【解析】A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选C.【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后两部分重合.2.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.3.如图,直角三角板ABC的斜边AB=12 cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A. 6 cmB. 4 cmC. (6-23)cmD. (43-6)cm【答案】C【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.【解析】∵AB=12cm,∠A=30°,∴BC=12AB=12×12=6cm,由勾股定理得,AC=22AB BC-=22126-=63cm, ∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′, ∴B′C′=BC=6cm,∴AB′=AC-B′C′=63-6,过点B′作B′D⊥AC交AB于D,则B′D=33AB′=33×(63-6)=(6-23)cm.故选C.【点睛】本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.4.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是() A.点M B.格点N C.格点P D.格点Q【答案】B【分析】此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【解析】如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选B.【点睛】熟练掌握旋转的性质是确定旋转中心的关键所在.5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .2222⎛- ⎝⎭B .(1,0)C .22,22⎛-- ⎝⎭ D .(0,1)-【答案】A【分析】根据旋转的性质分别求出点A 1、A 2、A 3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案. 【解析】四边形OABC 是正方形,且OA 1=,()A 0,1∴,将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,∴由勾股定理得:点A 1的横坐标为22,点A 1的纵坐标为22,122A ∴⎝⎭, 继续旋转则()2A 1,0,322A ⎝⎭,A 4(0,-1),A 522⎛ ⎝⎭,A 6(-1,0),A 72222⎛⎫- ⎪ ⎪⎝⎭,A 8(0,1),A 92222⎛ ⎝⎭,......,发现是8次一循环,所以20198252÷= (3)∴点2019A 的坐标为22,22⎛⎫- ⎪ ⎪⎝⎭,故选A .【点睛】本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.6.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°【答案】C【分析】由旋转的性质和平行线的判定依次判断,可求解.【解析】当∠EAB=30°时.∵∠CAB=90°,∴∠CAE=60°=∠E,∴AC∥DE,故A不合题意;当∠EAB=45°,∴∠BAD=45°=∠B,∴BC∥AD,故B不合题意;当∠EAB=60°时,三角尺不存在一组边平行.当∠EAB=75°时,如图,延长AB交DE于点M,∴∠BAD=15°,∴∠EMA=∠D+∠MAB=45°=∠ABC,∴BC∥DE.故选C.【点睛】本题考查了旋转的性质,平行线的判定,熟练运用旋转的性质是本题的关键.7.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大【答案】A【分析】根据正方形性质得出∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,求出∠BOM=∠CON,根据ASA证△BOM≌△CON,推出两个正方形的重叠部分四边形OMCN的面积等于S△BOC=14S正方形ABCD,即可得出选项.【解析】∵四边形ABCD、四边形OEFG是两个边长相等正方形,∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,∴∠BOC-∠COM=∠EOG-∠COM,即∠BOM=∠CON,∵在△BOM和△CON中BOM CONOB OCOBM OCN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOM≌△CON,∴两个正方形的重叠部分四边形OMCN的面积是S△COM+S△CNO=S△COM+S△BOM=S△BOC=14S正方形ABCD,即不论旋转多少度,阴影部分的面积都等于14S正方形ABCD,故选A.【点睛】本题考查了正方形性质和全等三角形的性质和判定的应用,关键是求出△BOM≌△CON,即△BOM得面积等于△CON的面积.8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2 019的坐标为( )A.(1010,0) B.(1310.5,3C.(1345,3D.(1346,0)【答案】D【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2019=336×6+3,因此点3B 向右平移1344(即3364 )即可到达点2019B ,根据点3B 的坐标就可求出点2019B 的坐标.【解析】连接AC ,如图所示.∵四边形OABC 是菱形,∴OA =AB =BC =OC .∵∠ABC =60°,∴△ABC 是等边三角形.∴AC =AB .∴AC =OA .∵OA =1,∴AC =1.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B 3向右平移1344(即336×4)到点B 2019.∵B 3的坐标为(2,0),∴B 2019的坐标为(1346,0),故选:D【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.9.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则PAB △的面积为( )A .10B .8C .6D .3【答案】D【分析】将△BPC 绕点B 逆时针旋转60°得△BEA ,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长BP ,作AF ⊥BP 于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF的长,根据三角形的面积公式即可得到结论.【解析】∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=12AP=32,∴△PAB的面积=12PB•AF=12×4×32=3,故选:D.【点睛】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.10.如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于( )A.22B.3 C.4 D.42【答案】C【分析】根据正方形的性质得AB=BC,∠BAE=∠C=90°,根据旋转的定义,把把△ABE绕点B顺时针旋转90°可得到△BCG,根据旋转的性质得BG=BE,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∠EBG=∠ABC=90°,于是可判断点G在CB的延长线上,接着利用“SAS”证明△FBG≌△EBF,得到EF=CF+AE,然后利用三角形周长的定义得到答案.【解析】∵四边形ABCD为正方形,∴AB=BC,∠BAE=∠C=90°,∴把△ABE 绕点B 顺时针旋转90°可得到△BCG ,如图,∴BG =BE ,CG =AE ,∠GBE =90°,∠BAE =∠C =90°,∴点G 在DC 的延长线上,∵∠EBF =45°,∴∠FBG =∠EBG ﹣∠EBF =45°,∴∠FBG =∠FBE ,在△FBG 和△EBF 中,BF =BF ,∠FBG =∠FBE ,BG =BE∴△FBG ≌△FBE (SAS ),∴FG =EF ,而FG =FC +CG =CF +AE ,∴EF =CF +AE ,∴△DEF 的周长=DF +DE +CF +AE =CD +AD =2+2=4,故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和正方形的性质. 11.如图,将一个三角板ABC ∆,绕点A 按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A .62-B .6C .2D .1【答案】A【分析】连接BD ,延长BE 交AD 于点F ,根据旋转性质可知AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,由此得出△ABD 为等边三角形,然后进一步通过证明△BAE ≅△BDE 得出∠ABE=∠DBE ,根据等腰三角形“三线合一”可知BF ⊥AD ,且AF=DF ,由此利用勾股定理分别计算出AB 、BF 的长,最后通过BE=BF −EF 进一步计算即可得出答案.【解析】如图,连接BD ,延长BE 交AD 于点F ,由旋转可知,AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,∴△ABD为等边三角形,∴AB=BD,在△BAE与△BDE中,∵AE=DE,BA=BD,BE=BE,∴△BAE≅△BDE(SSS),∴∠ABE=∠DBE,根据等腰三角形“三线合一”可得BF⊥AD,且AF=DF,∵AC=BC=2,∠ACB=90°,∴AB=222222+=,∴AB=BD=AD=22,∴AF=2,∴BF=226AB AF-=,∵∠AED=90°,AE=DE,∴∠FAE=45°,∵BF⊥AD,∴∠FEA=45°,∴EF=AF=2,∴BE=BF−EF=62-,故选:A.【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.12.如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是()A.3-1 B.32C.3D.2【答案】A【分析】过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB 的延长线于点J;通过证明△CKD≌△CHE (ASA),进而证明所构建的四边形CKJH是正方形,所以当点E 与点J重合时,BE的值最小,再通过在Rt△CBK中已知的边角条件,即可求出答案.【解析】如图,过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB 的延长线于点J ;∵将线段CD 绕点C 逆时针旋转90° ,得到线段CE ∴∠DCE=∠KCH = 90°∵∠ECH=∠KCH - ∠KCE ,∠DCK =∠DCE-∠KCE ∴∠ECH =∠DCK又∵CD= CE ,CK = CH ∴在△CKD 和△CHE 中90ECH DCK CK CHDKC EHC ∠=∠=⎧∠=∠=︒⎪⎨⎪⎩∴△CKD ≌△CHE (ASA) ∴∠CKD=∠H=90°,CH=CK ∴∠CKJ =∠KCH =∠H=90°∴四边形CKJH 是正方形 ∴CH=HJ=KJ=C'K∴点E 在直线HJ 上运动,当点E 与点J 重合时,BE 的值最小∵∠A= 30° ∴∠ABC=60°在Rt △CBK 中, BC= 2, ∴勾股定理得:CK =3,BK= = 1∴KJ = CK =3,所以BJ = KJ-BK=31-;BE 的最小值为31-.故选A.【点睛】本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键.二、填空题(每小题3分,共18分)13.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为__________.【答案】15°或45°.【解析】分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,∠BAD=45°,即α=45°.故答案为:15°或45°.【点睛】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.14.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)【答案】2﹣1.【解析】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFDE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=﹣1.故答案为﹣1.【考点】本题主要考查了以正方形旋转为载体的求线段长度.15.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.【答案】(﹣2,﹣2).【解析】作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【考点】本题主要考查了以等边三角形和坐标系旋转为载体的求点的坐标.16.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B 按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.【答案】y=x﹣1.【解析】∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣2,令y=0,则x=1,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO+∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△AFE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.【考点】本题主要考查了以线段旋转和一次函数为载体的求解析式.17.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB 与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s【答案】3秒或12秒或15秒【解析】①如图(2),当AC∥DE时,∵AC∥DE,∴∠ACB=∠CHD=90°.∵∠E=30°,∴∠D=60°,∴∠HFD=90°-60°=30°,∴t=30°÷10°=3.②如图3,当BC∥DE时,∵BC∥ED,∴∠BFE=∠E=30°,∴∠BFD=30°+90°=120°,∴t=120°÷10=12.③如图4,当BA ∥ED 时,延长DF 交DA 于G .∵∠E=30°,∴∠D=60°,∵BA ∥ED ,∴∠BGD=180°-∠D=120°,∴∠BFD=∠B+∠BGF=30°+120°=150°,∴t=150°÷10°=15. 故答案为3秒或12秒或15秒【点睛】本题主要考查平行线的性质.分三种不同的情况讨论,解题的关键是画出三种情况的图形.18.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线CH 相交于点P ,若2,75AB DBP ︒=∠=,则2DP 的值是____. 【答案】53+【分析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .首先证明∠CPB =90°,求出DT ,PT 即可解决问题.【解析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .∵四边形ABCD 是正方形,∴AC ⊥BD ,AE =EB ,∠EAM =∠EBN =45°,∵四边形EFGH 是正方形,∴∠MEN =∠AEB =90°,∴∠AEM =∠BEN ,∴△AEM ≌△BEN (ASA ),∴AM =BN ,EM =EN ,∠AME =∠BNE ,∵AB =BC ,EF =EH ,∴FM =NH ,BM =CN ,∵∠FMB =∠AME ,∠CNH =∠BNE ,∴∠FMB =∠CNH ,∴△FMB ≌△HNC (SAS ),∴∠MFB =∠NHC ,∵∠EFO +∠EOF =90°,∠EOF =∠POH ,∴∠POH +∠PHO =90°,∴∠OPH =∠BPC =90°, ∵∠DBP =75°,∠DBC =45°,∴∠CBP =30°,∵BC =AB =2,∴由勾股定理:PB 3PR =12PB 3RC =12, ∵∠RTD =∠TDC =∠DCR =90°,∴四边形TDCR 是矩形,∴TD =CR =12,TR =CD =AB =2, 在Rt △PDT 中,PD 2=DT 2+PT 2=2213()(25232++=+故答案为53+【点睛】本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于常考题型.三、解答题(共46分)19.(6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平面直角坐标系中直线AB 上的一个动点,点N 是x 轴上的一个动点,且以O 、A 2、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.【答案】(1)、(2)答案见解析;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1.(2)利用网格特点和平移的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2.(3)讨论:当OA2为平行四边形的边时,利用平行四边形的判定和点平移的坐标特征确定N点坐标;当OA2为平行四边形的对角线时,利用平行四边形的性质和点平移的坐标特征确定N点坐标.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质和平行四边形的判定.20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【答案】(1)B;(2)(1)(3)(5);(3)C;(4)见解析【分析】(1)根据旋转对称图形的定义进行判断;(2)先分别求每一个图形中的旋转角,然后再进行判断;(3)根据旋转对称图形的定义进行判断;(4)利用旋转对称图形的定义进行设计.【解析】解:(1)矩形、正五边形、菱形、正六边形都是旋转对称图形,但正五边形不是中心对称图形,故选:B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为:(1)(3)(5).(3)①中心对称图形,旋转180°一定会和本身重合,是旋转对称图形;故命题①正确;②等腰三角形绕一个定点旋转一定的角度α(0°<α≤180°)后,不一定能与自身重合,只有等边三角形是旋转对称图形,故②不正确;③圆具有旋转不变性,绕圆心旋转任意角度一定能与自身重合,是旋转对称图形;故命题③正确;即命题中①③正确,故选:C.(4)图形如图所示:【点睛】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21、(8分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.【答案】(1)证明见试题解析;(2)①证明见试题解析;②△DEP为等腰直角三角形.【分析】:(1)由旋转的性质得到∠BCP=∠DCQ,即可证明△BCP≌△DCQ;(2)①由全等的性质和对顶角相等即可得到答案;②由等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,即可判断△DEP的形状.【解析】(1)∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,∵BC=CD,∠BCP=∠DCQ,PC=QC,∴△BCP≌△DCQ;(2)①如图b, ∵△BCF≌DCQ, ∴∠CBF=∠EDF, 又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ②∵△BCP为等边三角形,∠BCP=60°,∴∠PCD=30°,又CP=CD,∠CPD=∠CDP=75° ,又∠BPC=-60° ,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形.【考点】1.四边形综合题;2.正方形的性质;3.旋转的性质;4.全等三角形的判定与性质;5.综合题.22.(8分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【答案】(1)1;(2)12π;(3)23OF = 【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF =∠ECF =30°,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点F 到直线CA 的距离即为EF 的长,于是可得答案;(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt △CEF 求出CF 和CE 的长,然后根据S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )即可求出阴影面积;②作EH ⊥CF 于点H ,如图4,先解Rt △EFH 求出FH 和EH 的长,进而可得CH 的长,设OH=x ,则CO 和OE 2都可以用含x 的代数式表示,然后在Rt △BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【解析】(1)∵30BAC ∠=︒,90ABC ∠=︒,∴∠ACB =60°,∵Rt △ABC ≌Rt △CEF ,∴∠ECF =∠BAC =30°,EF =BC =1,∴∠ACF =30°,∴∠ACF =∠ECF =30°,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF =1;故答案为:1;(2)①线段EF 经旋转运动所形成的平面图形如图3中的阴影所示:在Rt △CEF 中,∵∠ECF =30°,EF =1,∴CF =2,CE 3由旋转的性质可得:CF=CA =2,CE=CG 3,∠ACG =∠ECF =30°,∴S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )=S 扇形ACF -S 扇形CEG =2230330236036012πππ⨯⨯-=; 故答案为:12π;②作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F =60°,EF =1, ∴13,2FH EH ==∴CH =13222-=, 设OH=x ,则32OC x =-,222222334OE EH OH x x =+=+=+⎝⎭, ∵OB=OE ,∴2234OB x =+, 在Rt △BOC 中,∵222OB BC OC +=,∴2233142x x ⎛⎫++=- ⎪⎝⎭, 解得:16x =,∴112263OF =+=. 【点睛】本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.23.(8分)如图,正方形ABCD 中,点P 从点A 出发沿AD 边向点D 运动,到达点D 停止.作射线CP ,将CP 绕着点C 逆时针旋转45°,与AB 边交于点Q ,连接PQ(1)画图,完善图形.(2)三条线段DP ,PQ ,BQ 之间有无确定的数量关系?请说明理由.(3)过点C 作CH PQ ⊥于H .若线段CP 的最大值为4,求点H 运动的路径长.【解析】(1)画图,如图1.(2)DP ,PQ ,BQ 之间有确定的数量关系,PQ DP BQ =+.理由如下:如图1,∵ABCD 是正方形,∴可将DCP ∆绕点C 逆时针旋转90°到BCM ∆. ∴DCP BCM ∆∆≌,90PCM ∠=︒.∴DP BM =,CP CM =,190D ∠=∠=︒.∴Q ,B ,M 在同一条直线上.∵45PCQ ∠=︒,∴45MCQ ∠=︒.∴PCQ MCQ ∠=∠.∵CQ CQ =,∴()SAS PCQ MCQ ∆∆≌.∴PQ MQ =. ∴PQ DP BQ =+.(3)如图2,由(2),2M ∠=∠.∵3190∠=∠=︒,∴(AAS)PCH MCB ∆∆≌.∴CH CB =.当点P 还在点A 处时,CP 是正方形的对角线,此时最长.即正方形的对角线为4. ∴正方形的边长22CB =∴22CH =当点P 从A 到点D 时,点H 从点B 沿圆弧到点D ,圆心角90BCD ∠=︒.∴点H 运动的路径长为1224CB ππ⨯⋅=.。
九年级上学期数学《旋转》单元综合测试卷(含答案)

A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
考点:中心对称图形.
[详解]
请在此输入详解!
2.观察下列图案,能通过左图顺时针旋转90°得到的()
C. 黑(3,3),白(3,1)D. 黑(3,1),白(3,3)
7.有两个完全重合 矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②……则第10次旋转后得到的图形与图①~④中相同的是().
A 图①B.图②C.图③D.图④
③先绕着点 旋转 ,再向右平移一个单位;④绕着 的中点旋转 即可.
15.已知坐标平面上的机器人接受指令“(A,A)”﹙A≥0,0°<A<180°﹚后的行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走A.若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令(2,60°)后,所在位置的坐标为____________.
A. 图①B. 图②C. 图③D. 图④
[答案]B
[解析]
试题分析:依题意,旋转10次共旋转了10×45°=450°,
因为450°-360°=90°,
所以,第10次旋转后得到的图形与图②相同,
故选B.
点睛:根据图中给出的旋转规律,得知变化为周期性变化,结合周角的定义即可解答本题.
8. 如图,△A B C中,A B=4,B C=6,∠B=60°,将△A B C沿射线B C的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东九年级数学《旋转》单元试卷
一、填空题(每小题3分,共30分)
1.如图所示,等边三角形ABC 经过顺时针旋转
后成为△EBD ,则其旋转中心是 .旋转角度是 .
2.如图所示,△ABC 绕点A 旋转30°后成为△ADE , 已知∠CAB=100°,则∠EAD= ,∠BAD= .
3.将任意一个三角形绕着其中一边的中点旋转180°, 所得图形与原图形可拼成一个 .
4.一条线段绕其上一点旋转90°后与原来的线段 .
5.平面直角坐标系中有一个点A (-2,6), 则与点A 关于原点对称的点的坐标是 . 经过这两点的直线的解析式为 .
6.在直角坐标系中,已知点A (3,4),由点A 分别向x 轴、y 轴作垂线,垂足为M ,N ,当矩形OMAN 绕点O 旋转180°后得到矩形OM 1A 1N 1(如图所示),则OM 1= = ,ON 1= = ,点A 1的坐标为 .
7.如图所示,直线EF 过平行四边形ABCD 对角线的交点O ,且分别交AD ,BC 于E ,F ,那么阴影部分的面积是平行四边形ABCD 面积的 .
E
D
C B A E
D
C
B
A
1题图
2题图
8.有下列说法:①中心对称图形一定不是轴对称图形; ②关于某点对称的两个图形一定可以重合; ③如果两个三角形的对应点连
线都经过同一点,那么这两个三角形成中心对称.其中正确的有 (填序号)
9.如图,把△ABC 绕点A 顺时针方向旋转90°,则B 点旋转后的坐标是 .
10.等边三角形绕中心点至少旋转 度后能与自身重合,正方形
二、单项选择题(每小题3分,共30分)
11.下列各图中,可以看成由下面矩形顺时针旋转90°而形成的图形的是( )
F
D
B
6题图
9题图 7题图
A B C D
12.将一图形绕着点O顺时针方向旋转70°后,再绕着点O逆时针方
向旋转
120°,这时如果要使图形回到原来的位置,需要将图形绕着点O ()
A.顺时针方向旋转50°
B.逆时针方向旋转50°
C.顺时针方向旋转190°
D.逆时针方向旋转190°
13.经过旋转,下列说法错误的是
()
A.图形上的每一点到旋转中心的距离相等
B.图形的形状与大小都没有发生变化
C.图形上可能存在不动点
D.图形上任意两点的连线与其对应两点的连线长度相等
14.在平面直角坐标系中,点A(3,20)绕原点旋转180°后所得点
的坐标为()
A.(-3,20)
B.(3,-20)
C.(-3,-20)
D.(20,-3)
15.如图所示,正方形OABC的边长为2,则该正方形绕点O逆时针旋
转45°后,点B的坐标为
( )
A.(2,2)
B.(0,22)
C.(22,0)
D.(0,2)
16.下列图形既是轴对称图形,又是中心对称图形的是 ( )
17.经过矩形的对称中心的任意一条直线把这个矩形分成两部分,
设这两部分的面积分别为S 1和S 2, 则S 1和S 2之间的关系是 ( )
A B C D
15题图
A. S1>S1
B. S1<S2
C. S1= S2
D. S1和S2的大小关系无法确定
18.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC的位置,则∠EFC的度数是()
A.90°
B.30°
C.45°
D.60°
19.几张扑克牌如图(1)所示放在桌子上,然后把其中一张旋转180°
后得到如图(2)所示的样子,那么所旋转的牌从左数起是()
A. 第一张
B. 第二张
C. 第三张
D.第四张
(1)
(2)
20.将5个边长都为2㎝的正方形按如图所示的样子摆放,点A.B.C.D.分别是四个正方形的中心,则图中四块阴影部分的面积的和为( ).
A. 2 2cm
B. 4 2cm
C. 6 2cm
D. 82cm
三、解答题(每小题10分,共60分)
21.如图所示,△///C B A 是△ABC 旋转后得到的,请画出它的旋转中心O ,并画出其中一个旋转角.
C /
B /
A /
C
B
A
F E
D
C
B
A
20题图 18题图
22.用四块如图(1)所示的正方形瓷砖拼成一个新的正方形,使拼成的图案分别符合下列要求:
(1)图(2)的大正方形只是轴对称图形,不是中心对称图形;(2)图(3)的大正方形不是轴对称图形,但是中心对称图形;(3)图(4)的大正方形既是轴对称图形又是中心对称图形
23.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.
(1)三角尺旋转了多少度?
(2)连接CD,试判断△CBD的形状;
(3)求∠BDC的度数.
D
A
21题图
(1)(2)(3)(4)
22题图
24.如图所示,△ABC 中,∠BAC=120°,以BC 为边向外作等边三角形BCD ,把△ABD 绕着点D 按顺时针方向旋转60°到△ECD 的位置,若AB=3,AC=2,求∠BAD 的度数和AD 的长.
E
D
C
B
A
23题图
24题图
25.如图所示,△ABC 中,A(-2,3),B(-3,1),C(-1,2). (1)将△ABC 向右平移4个单位,画出平移后的△111C B A ; (2)画出△ABC 关于x 轴对称的△222C B A ;
(3)将△ABC 绕原点O 旋转180°,画出旋转后的△333C B A ; (3)在△111C B A ,△222C B A ,△333C B A 中, 与 成轴对称,对称轴是 ; 与 成中心对称,对称中心的坐标是 .
25题图
26.将一幅三角板(Rt △ABC 和Rt △DEF )按如图(1)摆放,点E, A, D, B 在一条直线上,且D 是AB 的中点,将Rt △DEF 绕点D 顺时针方向旋转α(0°<α<90°)角,在旋转过程中,直线DE 与AC 相交于点M ,直线DF 与BC 相交于点N ,分别过点M, N 作直线AB 的垂线,垂足分别为G, H.
(1)当α=30°时(如图(2)),求证:AG=DH;
(2)当α=60°时(如图(3)),(1)中的结论是否仍成立?请写出你的结论,并说明理由.
F
E
D C
B
A H G F
E
D C(N)
B
A N
M
H
G
F
E
D
C
B
A 26题图
(1)
(2)
(3)。