电子科大移动通信原理课程设计报告

合集下载

移动通信工程课程设计报告

移动通信工程课程设计报告

目录第一章设计目的 (1)第二章设计要求和设计指标 (2)2.1设计要求 (2)2.2 设计指标 (2)第三章设计内容 (3)3.1 语音测试—TEMS测试 (3)3.1.1 TEMS语音测试前准备 (4)3.1.2 进行测试 (4)3。

1.3测试数据的回放和处理 (5)3.1。

4 测试文件导出 (6)3。

1。

5测试数据统计 (7)3.2 优化调整方案 (8)第四章本课程设计改进和建议 (9)第五章总结 (10)参考文献 (11)附录 (12)第一章设计目的本课程设计练习移动通信的一般原理与组网技术,是一门实用性很强的课程。

设置本课程的目的是通过本课程设计之后,对移动通信的基本概念、基本原理和组网技术有较全面的了解和领会,应能应用移动通信的原理与技术分析阐释常见移动通信方式中信息传输的发送与接收原理,应能分析设计一些简单移动通信系统,为移动通信系统的管理维护、研究和开发打下必要的理论基础和技能.移动通信技术迅猛发展,移动通信网络也从第1代逐渐演进到了第4代(4G)。

国内各移动通信网络基础运营企业目前都已提供第3代(3G)的移动通信网络,并且移动通信应用规模在世界上位于前列,通过本课程设计要了解GSM无线网络的原理和功能,无线网络优化的原理,无线网络结构调整及频率优化,网络的测试方法及其指标,要通过数据证明本课题所得出的理论分析、网络结构调整和GSM无线参数的提取的正确性,并进一步说明了网络优化工作对各大运营商的重要性。

第二章设计要求和设计指标2.1设计要求在对数据进行详细采集、分析和研究后,常常会涉及到天馈系统的调整、基站的调测、频率规划的调整、系统参数的调整、话务均衡以及增加一些微蜂窝等优化方案实施活动.(1)对移动通信网络熟悉。

(2)要求优化方案正确合理。

(3)方案能解决一些问题。

(4)设计报告内容的正确性、全面性、逻辑性等。

2.2 设计指标对正式投入运行的GSM网络进行参数采集、数据分析、找出影响网络运行质量的原因,并且通过参数调整或采取某些技术手段使网络达到最佳运行状态,使现有网络资源获取最佳效益,同时也对GSM网络今后的维护及规划建设提出合理化建议。

移动通信课程设计报告

移动通信课程设计报告

移动通信社会调查报告GSM网络优化班级电1005-1班姓名赵聪蕾学号 20102571一、调查目的学习移动通信这门课程之后,对移动通信的基本概念、基本原理和组网技术有较全面的了解和领会,应能应用移动通信的原理与技术分析阐释常见移动通信方式中信息传输的发送与接收原理,应能分析设计一些简单移动通信系统,为移动通信系统的管理维护、研究和开发打下必要的理论基础和实际技能。

我选择了GSM网络优化这个方面进行了调查,对正式投入运行的GSM网络进行参数采集、数据分析、找出影响网络运行质量的原因,并且通过参数调整或采取某些技术手段使网络达到最佳运行状态,使现有网络资源获取最佳效益,同时也对GSM网络今后的维护及规划建设提出合理化建议。

二、GSM网络基本原理1.GSM系统结构GSM(Global System for Mobile Communications;全球移动通信系统)主要分交换部分和无线部分。

其中交换部分和PSTN网很类似,而无线部分是GSM网络特有的由于无线特有的移动行,复杂性,以及传播条件恶劣所带来的衰落等原因,直接影响了无线通信的质量,所以无线部分是优化的重点对象。

一套完整的GSM蜂窝系统主要由:MS(移动台),BSS(基站子系统),NSS(交换网络子系统),OSS(操作支持子系统),这四大部分组成,GSM系统结构如图1-1所示。

图1-1 GSM 系统结构2.GSM网络组成分为交换系统(SS)和基站系统(BSS)。

另外,所有对网络的维护操作管理(OMC)是通过网管设备来完成的。

2.1 交换系统基本组成:MSC:Mobile services Switching Center,移动业务交换中心。

负责呼叫建立(也包括鉴权程序,呼叫控制,监视和计费。

短信发送。

GMSC:Gateway MSC,关口MSC。

主要用为移动网络和其他网络的接口局。

VLR:Visitor Location Register,拜访位置寄存器。

移动通信原理课程设计报告_实验报告_

移动通信原理课程设计报告_实验报告_

电子科技大学通信抗干扰技术国家级重点实验室实验报告课程名称移动通信原理实验内容无线信道特性分析;BPSK/QPSK通信链路搭建与误码性能分析;SIMO系统性能仿真分析课程教师胡苏成员姓名成员学号成员分工独立完成必做题第二题,参与选做题SIMO仿真中的最大比值合并模型设计参与选做题SIMO仿真中的等增益合并模型设计独立完成必做题第一题参与选做题SIMO仿真中的选择合并模型设计1,必做题目1.1无线信道特性分析1.1.1实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。

仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。

例如信道设置如下图所示:1.1.3实验仿真(1)实验框图(2)图表及说明图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading#从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。

图三:Impulse Response#从冲激响应的图可以看出相位在时间上发生了偏移。

图四:Impulse Response#从频率响应的图可以看出,信号的频率响应失真比较严重。

(3)实验结论根据题目中给出的参数,计算瑞利衰落信道的相干带宽和相干时间:相干带宽 410*2787.421==τπσc B Hz相干时间 005.01==mc f T s1.2 BPSK/QPSK 通信链路搭建与误码性能分析1.2.1 实验目的掌握基于simulink 的BPSK 、QPSK 典型通信系统的链路实现,仿真BPSK/QPSK 信号在AWGN 信道、单径瑞利衰落信道下的误码性能。

移动通信原理课程设计_实验报告_

移动通信原理课程设计_实验报告_

电子科技大学通信抗干扰技术国家级重点实验室实验报告课程名称移动通信原理实验内容无线信道特性分析;BPSK/QPSK通信链路搭建与误码性能分析;SIMO系统性能仿真分析课程教师胡苏1,必做题目1.1无线信道特性分析1.1.1实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。

仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。

例如信道设置如下图所示:1.1.3实验仿真(1)实验框图(2)图表及说明图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading#从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。

图三:Impulse Response#从冲激响应的图可以看出相位在时间上发生了偏移。

图四:Impulse Response#从频率响应的图可以看出,信号的频率响应失真比较严重。

(3)实验结论根据题目中给出的参数,计算瑞利衰落信道的相干带宽和相干时间:相干带宽 410*2787.421==τπσc B Hz相干时间 005.01==mc f T s1.2 BPSK/QPSK 通信链路搭建与误码性能分析1.2.1 实验目的掌握基于simulink 的BPSK 、QPSK 典型通信系统的链路实现,仿真BPSK/QPSK 信号在AWGN 信道、单径瑞利衰落信道下的误码性能。

1.2.2 实验作业1.基于simulink 搭建BPSK/QPSK 通信链路,经过AWGN 信道,接收端相干解调,仿真并绘出BPSK 和QPSK 信号在0b E N 为0~10dB 时(间隔:1dB )误码性能曲线。

通信原理课程设计报告

通信原理课程设计报告

课程设计报告设计题目:基于PCM/TMD/2DPSK通信系统仿真专业班级:电子1 班姓名:符敦富学号:0704030203课程设计报告一、课程设计名称基于PCM/TMD/2DPSK技术的单向传输系统仿真。

二、课程设计的目标和基本任务2.1 课程设计的目标通过课程设计实践,来培养学生的实际动手能力,检验学生对本门课学习的情况,更在于培养学生在实际的工程设计中查阅专业资料、工具书或参考书,掌握工程设计手段和软件工具,并能用设计报告表达设计思想和结果的能力。

培养学生事实求是和严肃认真的工作态度。

通过设计过程,要求学生熟悉和掌握通信原理的基本原理和方法,使学生得到通信系统开发应用方面的初步训练。

让学生独立或集体讨论设计题目的总体设计方案、编程、软件硬件调试、编写设计报告等问题,真正做到理论联系实际,提高动手能力和分析问题、解决问题的能力,实现由学习知识到应用知识的初步过渡。

通过本次课程设计使学生熟练掌握Matlab仿真分析通信系统性能的方法,应用Matlab语言编写应用程序、应用simulink仿真分析系统性能。

2.1 课程设计的基本任务及要求1、用SIMULINK仿真,设计并实现一个基于PCM/TMD/2DPSK技术的单向传输系统,要求实现两路语音信号同时传输。

2、要求:(1)熟悉MATLAB环境下的Simulink仿真平台,熟悉2ASK/2DPSK系统的调制解调原理,构建调制解调电路图.(2)用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号的频谱的变化。

并观察解调前后频谱有何变化以加深对该信号调制解调原理的理解。

(3)在调制与解调电路间加上各种噪声源,用误码测试模块测量误码率,并给出仿真波形,改变信噪比并比较解调后波形,分析噪声对系统造成的影响。

三、课程设计任务分析及设计 3.1通信系统各部分组成及原理图3-1 通信系统一般模型发送设备:低通滤波器,PCM 编码器,复接器,调制器等。

接收设备:带通滤波器,PCM 解码器,分接器,解调器等。

电子科技大学 移动通信原理课程设计一

电子科技大学  移动通信原理课程设计一

移动通信原理课程设计一题目一:无线信道的分析一、实验目的1.了解无线信道各种衰落特性;2.掌握各种描述无线信道特性参数的物理意义;3.利用MATLAB中的仿真工具模拟无线信道的衰落特性。

二、实验原理调制解调概述调制是将各种基带信号转换成适于信道传输的调制信号(已调信号或频带信号),就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号。

下图为调制与解调的过程示意图。

数字调制和数字解调统称为数字调制。

调制与解调过程示意图调制技术分为模拟调制技术与数字调制技术,其主要区别是:模拟调制是对载波信号的某些参量进行连续调制,在接收端对载波信号的调制参量连续估值,而数字调制是用载波信号的某些离散状态来表征所传送信息,在接收端只对载波信号的离散调制参量进行检测。

数字调制系统中有幅度键控(ASK)、移频键控(FSK)和移相键控(PSK)三种方式,其中移相键控调制方式具有抗噪声能力强、占用频带窄的特点,在数字化设备中应用广泛,具体的数字调制方式有2ASK、2PSK、2FSK、QAM、QPSK、MSK、GSMK等。

OPSK信号产生的原理QPSK信号波形正交相移键控(QPSK)就是四进制绝对相位调制4PSK,就是用四进制数字信息去控制载波的相位,使得载波相位改变一个值△φn需要有四种取值和它对比。

通常有两种△φn 等间隔选择方案,一种称为π/2型,另一种称为π/4型,可以使得平均误码率尽可能减小。

如图2-16(a)所示。

图2-16 四进制相位调制相位匹配图四种信息码元和四种相位值之间的对应关系很多,要求相邻两个相位值代表的数字信息之中只有一位不相同。

这么做是为了降低系统的平均误比特率,因为当受到噪声等干扰影响的时候,一个相位值很容易错判成其相邻相位值。

一种常用的相位配置如图2-16(b)所示。

QPSK波形如图2-17所示。

通信原理课程设计报告(FSK)

通信原理课程设计报告(FSK)

通信原理课程设计报告(FSK)第一篇:通信原理课程设计报告(FSK)2FSK系统的调制与解调(一)课程设计目的:1.培养自己综合运用理论知识解决问题的能力。

2.学会应用Matlab的Simulink工具对通信系统进行仿真。

3.培养学生的自主创新能力与创新思维。

4.让学生初步掌握如何撰写课程设计总结报告。

(二)设计要求与内容:1).设计内容:完成2FSK系统,调制方法为开关法,解调法为相干解调。

2).设计要求:(1)设计2FSK系统数字通信系统的原理图。

(2)根据通信原理,设计出各个模块的参数(包括低通滤波器、带通滤波器、基带信号、载波信号、高斯白噪声等)。

(3)观察仿真结果并进行波形分析(中间波形变化、眼图)。

(4)分析计算影响系统性能的因素。

(三)设计步骤1).2FSK系统原理图:2).各个模块具体参数:(1).正弦波发生器1:(2).正弦波发生器2:(3).高斯白噪声:(5)带通通滤波器2:4).带通通滤波器1:6).低通通滤波器1:(((7)带通滤波器2:(8).判决器:3).仿真结果及波形分析:(1)基带信号:(2)调制信号1:(3)调制信号2:(4)调制后信号:(5)加了噪声的信号:(6)经过带通滤波器1后:(7)经过带通滤波器2后:(8)经过低通滤波器1后:(9)经过低通滤波器2后:(10)解调后的信号:(11)经判决器解调后的信号:(12)眼图:(四)分析误码率:1r Pe=erfc()22r =A2σ22由A=1σ=0.05⇒ r =10 2pe=8.50036660252034*10-4(五)设计心得体会:从设计中检验我所学的理论知识到底有多少,巩固已经学会的,不断学习我们所遗漏的新知识,把这门课学的扎实。

第二篇:通信原理课程设计报告课题学院专业学生姓名学号班级指导教师通信原理课程设计报告基于MATLAB的2FSK仿真电子信息工程学院通信工程二〇一五年一月基于MATLAB的基带传输系统的研究与仿真——码型变换摘要HDB3码编码规则首先将消息代码变换成AMI码;然后检查AMI码中的连0情况,当无4个或4个以上的连0串时,则保持AMI的形式不变;若出现4个或4个以上连0串时,则将1后的第4个0变为与前一非0符号(+1或-1)同极性的符号,用V表示(+1记为+V,-1记为-V);最后检查相邻V符号间的非0符号的个数是否为偶数,若为偶数,则再将当前的V符号的前一非0符号后的第1个0变为+B或-B符号,且B的极性与前一非0符号的极性相反,并使后面的非0符号从V符号开始再交替变化关键词: HDB3码 MATLAB编码原则 V码 B码目一、背景知识二、MATLAB仿真软件介绍三、仿真的系统的模型框图四、使用MATLAB编程(m文件)完成系统的仿真五、仿真结果六、结果分析七、心得、参考文献录正文部分一、背景知识在实际的传输系统中,并不是所有的代码电气波形都可以信道中传输。

移动通信课程设计报告

移动通信课程设计报告

直接序列扩频通信系统Simulink的仿真设计摘要:本次设计的是直接序列扩频通信系统,主要利用了Matlab/Simulink对直接序列扩频系统进行仿真,并详细的分析了仿真结果。

首先介绍直接序列扩频的系统原理,然后基于Simulink的发射机和接收机仿真,设计误码率分析模块部分,再对前后扩频解扩频谱波形比较及收发误码率进行分析,最后对设计完成的系统加入干扰源,完成对系统抗干扰性能的分析。

关键词:直接序列扩频;扩频通信;Matlab/Simulink目录第一章绪论 (1)1.1 课题背景及意义 (1)1.2 课程设计的总体介绍 (1)1.3 课程设计的基本任务和要求 (1)1.4 Simulink的简介 (2)第二章直接序列扩频原理 (3)2.1 扩频通信的定义及原理 (3)2.2 直接序列扩频定义及原理 (3)2.3 PN序列生成与作用 (4)第三章基于Simulink的发射机仿真设计 (6)3.1 直接序列扩频通信系统发射机的设计 (6)3.2 基于Simulink的发射机的仿真 (6)3.3 基于Simulink的接收机仿真设计 (10)第四章直接序列扩频通信系统的抗干扰性能分析 (12)第五章结束语 (18)参考文献 (18)第一章绪论1.1 课题背景及意义扩展频谱通信是现代通信系统中的一种新兴的通信方式,其较强的抗干扰、抗衰落和抗多径性能以及频谱利用率高、多址通信等诸多优点为人们所认识,并被广泛的应用于军事通信和民用通信的各个领域,从而推动了通信事业的迅速发展。

扩频通信,即(Spread Spectrum Communication)扩展频谱通信,它与光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。

扩频通信是将待传送的信息数据被伪随机编码(扩频序列:Spread Sequence)调制,实现频谱扩展后再传输;接收端则采用相同的编码进行解调及相关处理,恢复原始信息数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

移动通信原理课程设计报告一、题目描述仿真一:M=1,选定BPSK调制,AWGN和瑞利信道下的误符号率性能曲线(横坐标为符号信噪比Es/N0),并与相应的理论曲线比较。

仿真二:对2发1收的STBC-MIMO系统(Alamouti空时码),分析2发射天线分别受到独立瑞利信道下的误码率性能曲线,并与相同条件下单天线曲线进行对比分析。

二、系统设置三、仿真代码3.1算法说明1、信号产生:利用Matlab中的随机整数随机数产生函数randi.2、调制方法的实现:不同的调制方式对应唯一的一个星座图;通过输入序列找出星座图上的对应位置,即可输出调制结果。

3、信道模拟实现方法:AWGN信道用MATLAB自带函数randn实现,对应平均噪声功率为零;瑞利信道用randn+j*randn,对应平均噪声功率为零。

4、误码率性能曲线:发射信号序列长度设定130比特,仿真4000次,使信噪比在[0,30]每隔2取值,求平均误比特率。

5、收发系统的实现方法:对于单发单收的模型,只需将发送信号加噪声信号即为接收信号;对于二发一收的模型,因为发射天线是相互独立的,所以每根发射天线的接收信号与单发单收模型的接收信号计算方法相同,最后采用最大比合并得到接收信号。

6、调制方式:BPSK7、编码和译码方法:二发一收空时编码,最大似然译码。

8、误码率的计算:错误比特数/传输的总比特数。

3.2仿真代码代码一:调制函数function[mod_symbols,sym_table,M]=modulator(bitseq,b)N_bits=length(bitseq);if b==1 %BPSK调制sym_table=exp(1i*[0,-pi]);sym_table=sym_table([1 0]+1);inp=bitseq;mod_symbols=sym_table(inp+1);M=2;elseif b==2 %QPSK调制sym_table=exp(1i*pi/4*[-3 3 1 -1]);sym_table=sym_table([0 1 3 2]+1);inp=reshape(bitseq,b,N_bits/b);mod_symbols=sym_table([2 1]*inp+1);M=4;elseif b==3 %8PSK调制sym_table=exp(1i*pi/4*[0:7]);sym_table=sym_table([0 1 3 2 6 7 5 4]+1);inp=reshape(bitseq,b,N_bits/b);mod_symbols=sym_table([4 2 1]*inp+1);M=8;elseif b==4 %16QAM调制m=0;sq10=sqrt(10);for k=-3:2:3for l=-3:2:2m=m+1;sym_table(m)=(k+1i*l)/sq10;endendsym_table=sym_table(...[0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10]+1);inp=reshape(bitseq,b,N_bits/b);mod_symbols=sym_table([8 4 2 1]*inp+1);M=16;elseerror('unimplemented modulation');end代码二:单发单收系统在高斯信道和瑞利信道下的仿真clear allL_frame=130; N_packet=4000;b=1; % Set to 1/2/3/4 for BPSK/QPSK/8PSK/16QAMSNRdBs=[0:2:30]; sq2=sqrt(2);NT=1;NR=1;% SISOfor i_SNR=1:length(SNRdBs)SNRdB=SNRdBs(i_SNR);sigma=sqrt(0.5/(10^(SNRdB/10)));for i_packet=1:N_packetsymbol_data=randi([0 1],L_frame*b,NT);[temp,sym_tab,P]=modulator(symbol_data.',b);X=temp.‘; % frlg=length(X), X为调制后的信号序列Hr = (randn(L_frame,1)+1i*randn(L_frame,1))/sq2 ;%Rayleigh Channel,见原理说明6.1Ha=randn(L_frame,1); %AWGN channelZ1=0;R1=Hr.*X+ sigma*(randn(L_frame,1)+1i*randn(L_frame,1));Z1=Z1+R1.*conj(Hr);R2=X+sigma*Ha;for m=1:Pd1(:,m)=abs(Z1-sym_tab(m)).^2; %最大似然译码d2(:,m)=abs(R2-sym_tab(m)).^2;end[y1,i1] = min(d1,[],2);Xd=sym_tab(i1).';[y2,i2]=min(d2,[],2);Xa=sym_tab(i2).';temp1 = X>0; temp2 = Xd>0;temp3=Xa>0;noeb_p1(i_packet)=sum(sum(temp1~=temp2));noeb_p2(i_packet)=sum(sum(temp1~=temp3));endBER1(i_SNR)=sum(noeb_p1)/(N_packet*L_frame*b);BER2(i_SNR)=sum(noeb_p2)/(N_packet*L_frame*b);SNRw=10^(SNRdB/10);BER3(i_SNR)=1/2*erfc(sqrt(SNRw));%theoretical BER in AWGN channel BER4(i_SNR)=1/2*(1-sqrt(SNRw/(1+SNRw)));endsemilogy(SNRdBs,BER1,'-rx'), hold on, axis([SNRdBs([1 end]) 1e-6 1e0]) semilogy(SNRdBs,BER2,'-ro'), hold on, axis([SNRdBs([1 end]) 1e-6 1e0]) semilogy(SNRdBs,BER3,'-^'), hold on, axis([SNRdBs([1 end]) 1e-6 1e0]) semilogy(SNRdBs,BER4,'-g*'), hold on, axis([SNRdBs([1 end]) 1e-6 1e0]) title(‘BER perfoemancde of AWGN and Rayleigh channel'), xlabel('SNR[dB]'), ylabel('BER')grid on, set(gca,'fontsize',9)legend('Rayleigh practice','AWGN practice','AWGNtheoretical','Rayleigh theoretical')代码三:二发一收系统空时编码仿真算法流程图:%Alamounti_scheme.mclear;N_frame=130;N_packets=4000;NT=2;NR=1; %two transmitter and one reciever diversityb=2;SNRdbs=[0:2:30];sq_NT=sqrt(NT);sq2=sqrt(2);for i_SNR=1:length(SNRdbs)SNRdb=SNRdbs(i_SNR);sigma=sqrt(0.5/(10^(SNRdb/10)));for i_packet=1:N_packetsmsg_symbol=randi([0 1],N_frame*b,NT);tx_bits=msg_symbol.';tmp=[];tmp1=[];for i=1:NT[tmp1,sym_tab,P]=modulator(tx_bits(i,:),b);tmp=[tmp;tmp1];endX=tmp.';%pay attention to the matrix dimension%space-time codingX1=X;X2=[-conj(X(:,2)) conj(X(:,1))];%channel known by receiverfor n=1:NTHr(n,:,:)=(randn(N_frame,NT)+1i*randn(N_frame,NT))/sq2;endH=reshape(Hr(n,:,:),N_frame,NT);%receive signalR1=sum(H.*X1,2)/sq_NT+sigma*(randn(N_frame,1)+1i*randn(N_frame,1));R2=sum(H.*X2,2)/sq_NT+sigma*(randn(N_frame,1)+1i*randn(N_frame,1));%MLD decoder,见原理6.2说明Z1=R1.*conj(H(:,1))+conj(R2).*H(:,2);Z2=R1.*conj(H(:,2))-conj(R2).*H(:,1);for m=1:Pd1(:,m)=abs(sum(Z1,2)-sym_tab(m)).^2;d2(:,m)=abs(sum(Z2,2)-sym_tab(m)).^2;end[y1,i1]=min(d1,[],2);S1d=sym_tab(i1).';clear d1[y2,i2]=min(d2,[],2);S2d=sym_tab(i2).';clear d2Xd=[S1d S2d];tmp1=X>0;tmp2=Xd>0;noeb_p(i_packet)=sum(sum(tmp1~=tmp2));endBER(i_SNR)=sum(noeb_p)/(N_packets*N_frame*b);endsemilogy(SNRdbs,BER,'-^');axis([SNRdbs([1 end]) 1e-6 1e0]) grid on, hold onxlabel('SNR[db]'),ylabel('BER');四、仿真图图(1)图(2)五、仿真分析5.1题目一:由图(1)AWGN 和瑞利信道下的误符号率性能曲线与相应的理论曲线基本重合,且AWGN 性能强于瑞利信道。

相关文档
最新文档