高中数学最值问题

合集下载

求最值方法--高考数学复习

求最值方法--高考数学复习

求最值方法 -- 高考数学复习一问一答 -------- 最值问题方法总论1高中数学求最值有哪些方法?答:有 9 种方法: 1)配方法 2)鉴别式法; 3)不等式法; 4)换元法; 5)函数单一性法; 6)三角函数性质法; 7)导数法; 8)数形联合发;9)向量法2如何将恒成立问题转变为最值问题?答:1) a f ( x)恒成立,则a f (x)max 2)a f ( x)恒成立,则 a f (x)min一元整式函数最值1、二次函数张口方向、对称轴、所给区间均确立,如何求最值 ?答:1)确立对称轴与x轴交点的横坐标能否在所给区间。

2)假如在所给区间,一个最值在极点处获得,另一个最值在与极点横坐标较远的端点处获得。

3)若不在所给区间,利用函数的单一性确立其最值。

2、二次函数所给区间确立,对称轴地点变化,如何求最值 ?答: 1)挪动对称轴,将对称轴平移到定区间的左边、右边及区间内议论, 2)在区间内,只考虑对称轴与区间端点的距离即可。

3、二次函数所给区间变化,对称轴地点确立,如何求最值 ?答:分类议论,分为四种状况: 1)对称轴在闭区间左边;2)对称轴在闭区间右边3)对称轴在闭区间内且在中点的左边; 4)对称轴在闭区间内且在中点的右边(或过中点);4、二次函数所给区间、对称轴地点都不确立,如何求最值 ?答:将此中一个看作是“定”的,另一个看作是“动”的,而后如上分四种状况进行议论。

5、什么状况下运用基本不等式求最值?答:当两个变量的和或积为定值时运用,有时需要变形。

即两个正数的积为定值时,它们的和有最小值,两个正数的和为定值时,它们的积有最大值。

6、对于多项式乘积的最值问题,如何求解答:能够考虑睁开后,利用基本不等式求解7、如何求复合型函数的最值答:若函数f ( x), g( x) 在 [ mn.] 上单调性相同,则h( x) f (x)g(x) 在 [m.n] 上与 f ( x), g( x) 有同样的单一性,可利用单一性求h( x) 在[ mn.] 上的最值。

高二数学直线与圆中的范围,最值问题

高二数学直线与圆中的范围,最值问题

高二数学直线与圆中的范围,最值问题全文共四篇示例,供读者参考第一篇示例:高二数学是学生学习数学的重要阶段,其中直线与圆的范围、最值问题是一个重要的知识点。

直线与圆是几何学中常见的基本图形,通过研究它们的范围和最值问题,可以帮助我们更好地理解几何学知识和提高数学解题能力。

一、直线与圆的范围问题在高二数学中,直线与圆的范围问题是一个常见的题型。

在这类问题中,我们需要根据给定的条件,求解直线和圆的交点、直线与圆的位置关系等。

通过分析这些问题,可以帮助我们锻炼逻辑思维能力和几何推理能力。

我们常见的一个问题是求解一条直线与一个圆的交点。

在这种情况下,我们可以通过联立直线方程和圆方程,求解得到交点的坐标。

我们也可以通过图形的几何性质,利用角度和面积关系来求解交点的坐标。

这种方法不仅可以帮助我们更直观地理解直线与圆的位置关系,同时也可以提高我们的几何思维能力。

除了交点问题,直线与圆的位置关系问题也是直线与圆范围问题的重要内容。

在这种情况下,我们需要判断一条直线与一个圆的位置关系,例如直线是否相交、相切或相离等。

通过分析直线与圆的几何性质,我们可以利用距离公式或者向量运算等方法,快速求解出直线与圆的位置关系,从而解决相应的问题。

我们常见的一个问题是求解一个圆与一条直线的最大交点数。

在这种情况下,我们可以通过分析直线与圆的几何性质,确定交点的位置关系,进而求解出最大交点数。

我们也可以利用微积分法,对交点函数进行求导,求得最大值或最小值,从而得出最大交点数。

在实际问题中,直线与圆的最值问题也具有广泛的应用。

在工程设计中,我们常常需要通过求解直线与圆的最值问题,确定构建物体的最优位置、最短路径等。

通过研究直线与圆的最值问题,我们可以应用数学原理,解决实际问题,提高实际工作效率。

第二篇示例:高中数学中,直线与圆是一个重要的内容,其中涉及到了许多范围和最值的问题。

在解决这些问题时,我们需要深入理解直线与圆的性质,并灵活运用数学知识来解决这些问题。

高中数学最值问题12种

高中数学最值问题12种

高中数学最值问题12种高中数学最值问题是指在一定条件下,找出某个函数的最大值和最小值的问题。

这些问题需要通过一定的方法来求解,涉及到导数、不等式、二次函数、三角函数等数学知识。

下面我们将介绍12种高中数学最值问题的解法和相关概念。

1.函数的最大值和最小值:函数的最大值和最小值是指函数的各个值中最大和最小的值。

一元函数的最大值和最小值通常可以通过求解导数为0的点来获得。

多元函数的最大值和最小值可能需要使用拉格朗日乘数法等方法。

2.二次函数的最值:二次函数的最值可以通过求解顶点坐标来获得。

二次函数的最大值发生在开口向下的情况下,最小值发生在开口向上的情况下。

3.三角函数的最值:三角函数的最值可以通过研究函数的周期性和对称性来获得。

一般情况下,三角函数的最值为1和-1。

4.不等式的最值:不等式的最值是指不等式的解集中最大和最小的值。

不等式的最值可以通过求解方程来获得。

需要注意确定不等式边界的方式。

5.绝对值函数的最值:绝对值函数的最值可以通过研究函数的分段性质来获得。

需要考虑绝对值函数的参数取值范围。

6.对数函数的最值:对数函数的最值可以通过研究函数的定义域和值域来获得。

对数函数的最大值和最小值通常发生在底数小于1的情况下。

7.指数函数的最值:指数函数的最值可以通过研究函数的定义域和值域来获得。

指数函数的最大值和最小值通常发生在指数大于1的情况下。

8.等式的最值:等式的最值是指满足等式的变量的最大和最小的值。

等式的最值通常可以通过求解方程组来获得,在求解过程中需要注意排除无解的情况。

9.不定积分的最值:不定积分的最值可以通过求导和临界点的方式来获得。

需要注意确定积分的上下界。

10.定积分的最值:定积分的最值可以通过函数在积分区间上的最值来获得。

需要注意确定积分的上下界和积分变量的取值范围。

11.矩形面积的最值:矩形面积的最值可以通过求解矩形的边长和面积关系来获得。

需要注意确定矩形的条件和限制条件。

12.三角形面积的最值:三角形面积的最值可以通过求解三角形的边长和高的关系来获得。

高考数学利用基本不等式求最值8大题型(解析版)

高考数学利用基本不等式求最值8大题型(解析版)

利用基本不等式求最值8大题型命题趋势基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点,在解决数学问题中有着广泛的应用,尤其是在函数最值问题中。

题型通常为选择题与填空题,但它的应用范围几乎涉及高中数学的所有章节,它在高考中常用于大小判断、求最值、求最值范围等。

在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点。

在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用。

利用基本不等式求最值的方法1.直接法:条件和问题间存在基本不等式的关系2.配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。

3.代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法;类型2:分母为多项式时方法1:观察法适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ3a +4b +μa +3b =3λ+μ a +4λ+3μ b∴3λ+μ=14λ+3μ=2 ,解得:λ=15μ=254.消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5.构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

热点题型解读【题型1直接法求最值】【例1】(2022春·辽宁锦州·高三校考阶段练习)已知x >0,y >0,且x +y =12,则xy 的最大值为()A.16B.25C.36D.49【答案】C【解析】因为x >0,y >0,x +y =12≥2xy ,即xy ≤36,当且仅当x =y =6时取到等号,故xy的最大值为36.故选:C【变式1-1】(2022·四川广安·广安二中校考模拟预测)已知3x+9y=18,当x+2y取最大值时,则xy的值为( )A.2B.2C.3D.4【答案】B【解析】由已知3x+9y=18可得3x+32y=18,则18=3x+32y≥23x×32y=23x+2y,即3x+2y≤81,所以x+2y≤4,当且仅当x=2y=2时取等号,即x=2,y=1,此时xy=2.故选:B.【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数a,b满足a2+2b2=1,则ab2的最大值是()A.13B.33C.39D.19【答案】C【解析】解:由题知1=a2+2b2=a2+b2+b2≥33a2b2b2,∴3a2b4≤1 3,当且仅当a=b=33时取等号,所以ab2≤39.故选:C.【变式1-3】(2022·上海·高三统考学业考试)已知x>1,y>1且lg x+lg y=4,那么lg x·lg y的最大值是( )A.2B.12C.14D.4【答案】D【解析】∵x>1,y>1,∴lg x>0,lg y>0,∴lg x⋅lg y≤lg x+lg y22=42 2=4,当且仅当lg x=lg y=2,即x=y=100时等号成立.故选:D.【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数a,b满足a+5b2a+b=36,则a+2b的最小值为()A.16B.12C.8D.4【答案】D【解析】因为a+5b2a+b≤a+5b+2a+b22,所以9(a+2b)24≥36.又a>0,b>0.所以a+2b≥4,当且仅当a=83,b=23时,等号成立.故选:D【题型2配凑法求最值】【例2】(2022·全国·高三专题练习)已知-3<x<0,则f x =x9-x2的最小值为________.【答案】-9 2【解析】因为-3<x<0,所以f x =x9-x2=-9-x2⋅x2≥-9-x2+x22=-92,当且仅当9-x 2=x 2,即x =-322时取等,所以f x =x 9-x 2的最小值为-92.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数f (x )=x +9x -1(x >1)的值域为______.【答案】7,+∞【解析】由题知,x >1,所以x -1>0,所以f (x )=x -1 +9x -1+1≥2x -1 ⋅9x -1+1=7,当且仅当x -1=9x -1,即x =4时取等号,所以函数f (x )=x +9x -1(x >1)的值域为7,+∞ .【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知x >0,y >0,且x +y =7,则1+x 2+y 的最大值为()A.36B.25C.16D.9【答案】B【解析】由x +y =7,得x +1 +y +2 =10,则1+x 2+y ≤1+x +2+y 2 2=25,当且仅当1+x =2+y ,即x =4,y =3时,取等号,所以1+x 2+y 的最大值为25.故选:B .【变式2-3】(2022春·山东济宁·高三统考期中)已知向量m =a -5,1 ,n =1,b +1 ,若a >0,b >0,且m⊥n ,则13a +2b +12a +3b 的最小值为()A.15B.110C.115D.120【答案】A【解析】根据题意,m ⋅n =a -5+b +1=0,即a +b =4,则3a +2b +2a +3b =20,又a >0,b >0,故13a +2b +12a +3b =12013a +2b +12a +3b 3a +2b +2a +3b =1202+2a +3b 3a +2b +3a +2b 2a +3b≥120×2+22a +3b 3a +2b ×3a +2b 2a +3b =15,当且仅当2a +3b 3a +2b =3a +2b2a +3b,且a +b =4,即a =b =2时取得等号.故选:A .【题型3消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设x ≥0,y ≥0,x 2+y 22=1,则x 1+y 2的最大值为()A.1B.22C.324D.2【答案】C【解析】因为x 2+y 22=1,所以y 2=2-2x 2≥0,解得:x ∈0,1 ,故x 1+y 2=x 1+2-2x 2=x 3-2x 2=222x 23-2x 2 ≤22×2x 2+3-2x 22=324,当且仅当2x 2=3-2x 2,即x =32时,等号成立,故x 1+y 2的最大值为324.【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数a ,b 满足a 2-2ab +4=0,则b-a4的最小值为()A.1 B.2C.2D.22【答案】B【解析】∵a ,b >0,a 2-2ab +4=0,则有b =a 2+2a,∴b -a 4=a 2+2a -a 4=a 4+2a≥2a 4⋅2a =2,当且仅当a 4=2a ,即a =22时等号成立,此时b =322,故选:B .【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则xy z的最大值为()A.0B.2C.1D.3【答案】C【解析】因为正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则z =4x 2-3xy +y 2,则xy z =xy 4x 2-3xy +y 2=14x y +y x -3≤124x y ⋅y x-3=1,当且仅当y =2x >0时取等号.故xy z 的最大值为1.故选:C .【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,2x +1y -2z 的最大值为()A.0B.3C.94D.1【答案】D【解析】由正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2.∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤12x y ⋅4y x-3=1,当且仅当x =2y >0时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y2=-1y -1 2+1≤1,当且仅当y =1时取等号,即2x +1y -2z的最大值是1.故选:D 【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,ab +ac=2,则1a +1b +c +8a +b +c的取值不可能是()A.1B.2C.3D.4【答案】ABC【解析】a ,b ,c 均为正实数,由ab +ac =2得:a b +c =2,即b +c =2a,所以1a +1b +c +8a +b +c =1a +a 2+8a +2a=2+a 22a +8a a 2+2,由基本不等式得:1a +1b +c +8a +b +c =2+a 22a +8a a 2+2≥22+a 22a ⋅8a a 2+2=4,当且仅当2+a 22a =8aa 2+2,即a =2±2时,等号成立.故选:ABC【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若x 21+y 21=4,x 22+y 22=4,x 1⋅y 2=-2,则x 2⋅y 1的最大值为___________.【答案】2【解析】x 2⋅y 1 2=4-y 22 4-x 21 =4-4x 214-x 21 =20-44x 21+x 21,由y 2=-2x 1,所以y 2 =-2x 1=2x 1≤2,所以1≤x 1 ≤2,所以x 2⋅y 1 2=20-44x 21+x 21≤20-4×24x 21⋅x 21=4,当且仅当|x 1|=2时,等号成立,所以x 2⋅y 1≤2,当且仅当x 2=2,y 1=2或x 2=-2,y 1=-2时取等号,所以x 2⋅y 1的最大值为2.【题型4代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知x >0,y >0,且4x +y =1,则1x +9y的最小值是_____.【答案】25【解析】因为x >0,y >0,且4x +y =1,所以1x +9y =4x +y 1x +9y =4+36xy +y x+9≥13+236x y ⋅y x=25,当且仅当36x y =y x ,即x =110,y =35时,等号成立.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知a >0,b >0,a +b =2,则b a +4b的最小值为_______.【答案】22+2【解析】因为a >0,b >0,且a +b =2,所以b a +4b =b a +4b a +b 2 =b a +2a b +2≥2b a ×2a b+2=22+2,当且仅当b 2=2a 2时取等号故b a +4b 的最小值为22+2【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x +y =xy ,则x +2y 的最小值为______.【答案】9【解析】由2x +y =xy 得2y +1x=1,又因为x >0,y >0,所以x +2y =x +2y 2y +1x =2xy +2y x +5≥22x y ⋅2y x +5=9,当且仅当x =y =3时等号成立,故x +2y 的最小值为9.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知x >-2,y >0,2x +y =3,则x +2y +2x +2+7y的最小值为()A.4B.6C.8D.10【答案】B【解析】因为x >-2,y >0,2x +y =3,所以2x +2 +y =7,x +2>0,所以x +2y +2x +2+7y =x +2y +2x +2+2x +2 +y y =2+2y x +2+2x +2 y≥2+22yx +2⋅2x +2 y=6,当且仅当x +2=y ,即x =13,y =73时等号成立,即x +2y +2x +2+7y 的最小值为6,故选:B .【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且AG=2GM ,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,AB =xAP (x >0),AC =yAQ (y >0),则1x+1y +1的最小值为()A.34B.1C.43D.4【答案】B【解析】由于M 为线段BC 的中点,则AM =12AB +12AC又AG =2GM ,所以AM =32AG ,又AB =xAP (x >0),AC =yAQ (y >0)所以32AG=x 2AP +y 2AQ ,则AG =x 3AP +y 3AQ因为G ,P ,Q 三点共线,则x3+y 3=1,化得x +y +1 =4由1x +1y +1=14x +y +1 1x +1y +1 =14x y +1+y +1x+2 ≥142x y +1⋅y +1x+2=1当且仅当x y +1=y +1x 时,即x =2,y =1时,等号成立,1x +1y +1的最小值为1故选:B 【题型5双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设x >-1,y >-2,且x +y =4,则x 2x +1+y 2y +2的最小值是__________.【答案】167【解析】令x +1=a (a >0),y +2=b (b >0),则x =a -1,y =b -2,因为x +y =4,则有a +b =7,所以x 2x +1+y 2y +2=(a -1)2a +(b -2)2b =a +1a -2+b +4b -4=7-2-4+1a +4b=1+17(a +b )1a +4b =1+171+4+b a +4a b≥1+17×5+2b a ×4a b =167当且仅当b =2a ,即a =73,b =143时取等号,则x ,y 分别等于43,83时,x 2x +1+y 2y +2的最小值是167.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y 满足3x +2y y +83x +2y x=1,则xy 的最小值是()A.54B.83C.43D.52【答案】D 【解析】xy =xy 3x +2y y +83x +2y x=3x x +2y +8y 3x +2y ,令x +2y =m ,3x +2y =n ,则x =n -m 2,y =3m -n4,xy =3x x +2y +8y 3x +2y =3n 2m +6m n -72≥23n 2m ⋅6m n -72=52,当且仅当3n 2m =6m n 且3x +2y y +83x +2y x =1,即x =5,y =52时,等号成立,所以xy ≥52,故xy 有最小值52.故选:D .【变式5-2】(2022·全国·高三专题练习)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y 22x -1≥m 恒成立,则m 的最大值为()A.8 B.16C.22D.42【答案】A【解析】设y -1=b ,2x -1=a ,则y =b +1b >0 ,x =12a +1 a >0 所以4x 2y -1+y 22x -1=a +1 2b +b +1 2a ≥2a +1b +1 ab =2ab +a +b +1ab=2ab +1ab +a +b ab ≥22ab ⋅1ab +2ab ab=2⋅2+2 =8当且仅当a =b =1即x =2,y =1时取等号所以4x 2y -1+y 22x -1的最小值是8,则m 的最大值为8.故选A【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知x >0,y >0,若x +y =1,则33x +2y+11+3y的最小值是___________.【答案】85【解析】设x +y +k =λ3x +2y +μ1+3y ,由对应系数相等得1=3λ1=2λ+3μk =μ,得λ=13k =μ=19所以x +y +19=133x +2y +191+3y整理得1=3103x +2y +1101+3y 即1=1109x +6y +1+3y所以33x +2y +11+3y =1109x +6y +1+3y 33x +2y +11+3y=1+11031+3y 3x +2y +9x +6y 1+3y≥85.经验证当x =y =12时,等号可取到.【题型6齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知a ,b 都是负实数,则a a +2b +ba +b的最小值是____________ .【答案】22-2【解析】a a +2b +b a +b =a 2+2ab +2b 2a 2+3ab +2b 2=1-ab a 2+3ab +2b2=1-1a b+2b a +3,因为a ,b 都是负实数,所以a b>0,2ba >0,所以a b +2b a ≥2a b ×2b a =22(当且仅当a b=2b a 时等号成立).所以a b +2b a +3≥22+3,所以1a b+2b a +3≤122+3,所以-1a b +2b a +3≥-122+3=22-3,所以1-1a b+2b a +3≥1+22-3=22-2.即a a +2b +b a +b的最小值是22-2.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有x 2+y 2≤a x 2-xy +y 2 ,则实数a 的最小值是___________.【答案】2【解析】因为x >0,y >0,则x 2-xy +y 2=x -y 2+xy >0,则x2+y2≤a x2-xy+y2,即x2+y2x2-xy+y2≤a,又x2+y2x2-xy+y2=11-xyx2+y2,因为x2+y2≥2xy,所以1-xyx2+y2≥12,所以11-xyx2+y2≤2,即x2+y2x2-xy+y2≤2,当且仅当x=y时,取等号,所以x2+y2x2-xy+y2max=2,所以a≥2,即实数a的最小值是2.【变式6-2】(2022·全国·高三专题练习)已知x>0,y>0,则x2+3y2xy+y2的最小值为____.【答案】2【解析】∵x,y>0,则x2+3y2xy+y2=x2y2+3xy+1,设xy=t,t>0,则x2+3y2xy+y2=t2+3t+1=t+12-2t+1+4t+1=(t+1)+4t+1-2≥2t+1×4t+1-2=4-2=2,当且仅当t+1=4t+1,即t=1时取等号,此时x=y,故x2+3y2xy+y2的最小值为2.【题型7构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a,b满足2ab=a+b+12,则ab的最小值是_____ ______.【答案】9【解析】由2ab=a+b+12得,2ab≥2ab+12,化简得ab-3ab+2≥0,解得ab≥9,所以ab的最小值是9.【变式7-1】已知x>0,y>0,2xy=x+y+4,则x+y的最小值为______.【答案】4【解析】由题知x>0,y>0,由基本不等式得xy≤x+y22,即x+y+4≤2×x+y22,令t=x+y,t>0,则有t+4≤2×t22,整理得t2-2t-8≥0,解得t≤-2(舍去)或t≥4,即x+y≥4,当且仅当x=y=2时等号成立,所以x+y的最小值为4.【变式7-2】(2022·全国·高三专题练习)若4x2+y2+xy=1,则2x+y的最大值是___________.【答案】2105【解析】∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1≥(2x +y )2-322x +y 2 2=58(2x +y )2,当且仅当2x =y 时,等号成立,此时(2x +y )2≤85,所以2x +y ≤2105,即2x +y 的最大值是2105.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若x >0,y >0,y +1x+4x +2y =5,则2x +y 的最小值为___________.【答案】8【解析】因为x >0,y >0,所以2x +y >0由y +1x +4x +2y=5两边同时乘xy ,得y 2+y +4x 2+2x =5xy ,即4x 2+y 2+4xy +2x +y =5xy +4xy ,则2x +y 2+2x +y =9xy ,因为2xy ≤2x +y 2 2=2x +y 24,所以9xy =92×2xy ≤92×2x +y 24=982x +y2,故2x +y 2+2x +y ≤982x +y 2,整理得2x +y 2-82x +y ≥0,即2x +y 2x +y -8 ≥0,所以2x +y ≥8或2x +y ≤0(舍去),故2x +y 的最小值为8.【题型8多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知a >0,b >0,则4b +ba2+2a 的最小值为()A.22 B.42C.42+1D.22+1【答案】B【解析】因为a >0,b >0,所以4b +ba2+2a ≥24b ⋅b a 2+2a =4a+2a ≥24a⋅2a =42,当且仅当4b =b a2且4a =2a ,即a =2,b =22时取等号,即4b +ba2+2a 的最小值为4 2.故选:B .【变式8-1】(2022春·江苏淮安·高三校联考期中)当0<x <2a ,不等式1x 2+12a -x2≥1恒成立,则实数a 的取值范围是()A.2,+∞B.0,2C.0,2D.2,+∞【答案】B【解析】1x 2+12a -x 2≥1恒成立,即1x 2+12a -x 2 min≥1∵0<x <2a ,∴2a -x >0,又1x 2+1(2a -x )2≥21x 2(2a -x )2=2x (2a -x )≥2x +2a -x 22=2a 2,上述两个不等式中,等号均在x =2a -x 时取到,∴1x 2+12a -x 2min=2a 2,∴2a2≥1,解得-2≤a ≤2且a ≠0,又a >0,实数a 的取值范围是0,2 .故选:B .【变式8-2】(2022·全国·模拟预测)已知a >0,b >0,c >1,a +2b =2,则1a +2bc +2c -1的最小值为()A.92B.2C.6D.212【答案】D【解析】1a +2b =121a +2b a +2b =125+2b a +2a b≥125+4 =92,当且仅当a =b =23时等号成立,(应用基本不等式时注意等号成立的条件)所以1a +2bc +2c -1≥92c -1 +2c -1+92≥29c -1 2⋅2c -1+92=212,当且仅当9c -1 2=2c -1,即c =53且a =b =23时,等号成立,故最小值为212,故选:D【变式8-3】(2022春·安徽·高三校联考阶段练习)已知a ,b ,c ∈R +,θ∈-π2,π2,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,则θ的取值范围是()A.-π2,π2B.-π3,π3C.-π4,π4D.-π6,π6【答案】C【解析】因为a ,b ,c ∈R +,θ∈-π2,π2 ,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,所以2b a +c a 2+4b 2+c 2 max≤cos θ,因为a ,b ,c ∈R +,所以2ab =12×2a 2b ≤12a 2+2b 2 =12a 2+2b 2,当且仅当a =2b 时等号成立;2bc =12×2c 2b ≤12c 2+2b 2 =12c 2+2b 2,当且仅当c =2b 时等号成立.所以2b a +c a 2+4b 2+c 2=2ab +2bc a 2+4b 2+c 2≤12a 2+2b 2 +12c 2+2b 2a 2+4b 2+c 2=22,当且仅当a =2b =c 时等号成立,所以2b a +c a 2+4b 2+c2的最大值为22,所以cos θ≥22,又因为θ∈-π2,π2,所以θ∈-π4,π4.故选:C.【变式8-4】(2023·全国·高三专题练习)若a,b,c均为正实数,则ab+bca2+2b2+c2的最大值为()A.12B.14C.22D.32【答案】A【解析】因为a,b均为正实数,则ab+bca2+2b2+c2=a+ca2+c2b+2b≤a+c2a2+c2b×2b=a+c22a2+c2=12a2+2ac+c22a2+c2=1212+aca2+c2≤1212+ac2a2×c2=12,当且仅当a2+c2b=2b,且a=c,即a=b=c时取等号,则ab+bca2+2b2+c2的最大值为12.故选:A.限时检测(建议用时:60分钟)1.(2022春·江苏徐州·高三学业考试)若正实数x,y满足1x+2y=1,则x+2y的最小值为()A.7B.8C.9D.10【答案】C【解析】因为x,y是正数,所以有1x+2yx+2y=5+2yx+2xy≥5+22yx∙2xy=9,当且仅当2yx=2xy时取等号,即当且仅当x=y=3时取等号,故选:C2.(2022春·广东湛江·高三校考阶段练习)已知x>2,y=x+1x-2,则y的最小值为()A.2B.1C.4D.3【答案】C【解析】因为x>2,所以x-2>0,1x-2>0,由基本不等式得y=x+1x-2=x-2+1x-2+2≥2x-2⋅1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立,则y的最小值为4.故选:C3.(2022春·河南·高三安阳一中校联考阶段练习)已知a>1,b>1,且aln+4bln=2,则a elog+b e4log的最小值为()A.92lg B.212 C.252 D.12【答案】C【解析】a e log =1a ln ,b e 4log =4b ln ,因为a >1,b >1,故a >0ln ,b ln >0,a e log +b e 4log =1a ln +4b ln =12×a ln +4b ln 1a ln +4bln=12×17+4b ln a ln +4a ln bln≥12×17+24b ln a ln ⋅4a ln bln=252,当且仅当a ln =b ln 时,即a =b =e 25时等号成立.所以a e log +b e 4log 的最小值为252.故选:C4.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数a ,b 满足4a +9b =4,则ab 的最大值为()A.19B.16C.13D.12【答案】A【解析】正数a ,b 满足4a +9b =4,由基本不等式得:4a +9b =4≥24a ⋅9b ,解得:ab ≤19,当且仅当4a =9b ,即a =12,b =29时,等号成立,ab 的最大值为19.故选:A 5.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知a >0,b >0,9是3a 与27b 的等比中项,则a 2+2a +3b 2+1b 的最小值为()A.9+26 B.21+264C.7D.14+263【答案】B【解析】由等比中项定义知:3a ⋅27b =3a +3b =92,∴a +3b =4,∴a 2+2a +3b 2+1b =a +3b +2a +1b =4+142a +1b a +3b =4+145+6b a +a b≥4+145+26b a ⋅a b =4+5+264=21+264(当且仅当6b a =ab,即a =46-8,b =43-6 3时取等号),即a 2+2a +3b 2+1b的最小值为21+264.故选:B .6.(2022春·河南南阳·高三校考阶段练习)在△ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM =xAB ,AN =yAC ,(x >0,y >0),则4x +y 的最小值是()A.43B.103C.3D.2【答案】C【解析】在△ABC 中,E 为重心,所以AE =23⋅12AB +AC =13AB +AC ,设AM =xAB ,AN =yAC ,(x >0,y >0),所以AB =1x AM ,AC =1y AN ,所以AE =13⋅1x AM +13⋅1yAN .因为M 、E 、N 三点共线,所以13x +13y=1,所以4x +y 13x +13y=43+13+y 3x +4x 3y ≥53+2y 3x ⋅4x 3y =3(当且仅当y 3x =4x 3y ,即x =12,y =1时取等号).故4x +y 的最小值是3.故选:C .7.(2022春·四川德阳·高三阶段练习)已知实数a 、b >0,且函数f x =x 2-2a +b x +2a +b -1的定义域为R ,则a 2b +2a 的最小值是()A.4B.6C.22D.2【答案】A【解析】∵f x =x 2-2a +b x +2a +b -1定义域为R ,∴x 2-2a +b x +2a +b -1≥0在R 上恒成立,∴△=-2a +b 2-4×2a +b -1 ≤0,即:a +b 2-2a +b +1≤0∴a +b -1 2≤0,解得:a +b =1又∵a >0,b >0∴a 2b +2a =1-b 2b +2a =12b +2a -12=12b +2a a +b -12=a 2b +2ba +2≥2a 2b ⋅2b a+2=4当且仅当a 2b =2b a ,即a =23,b =13时取等号.故选:A .8.(2022春·江西宜春·高三校考阶段练习)设x >y >z ,且1x -y +1y -z ≥nx -zn ∈N 恒成立,则n 的最大值为()A.2B.3C.4D.5【答案】C【解析】因为x >y >z ,所以x -y >0,y -z >0,x -z >0,所以不等式1x -y +1y -z ≥n x -z 恒成立等价于n ≤x -z 1x -y +1y -z恒成立.因为x -z =x -y +y -z ≥2x -y y -z ,1x -y +1y -z≥21x -y ⋅1y -z ,所以x -z ⋅1x -y +1y -z≥4x -y y -z⋅1x -y ⋅1y -z =4(当且仅当x -y =y -z 时等号成立),则要使n ≤x -z 1x -y +1y -z恒成立,只需使n ≤4n ∈N ,故n 的最大值为4.故选:C 9.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足4a 2-ab +b 2=1,以下说法正确的是()A.a ≤21515B.a +b <1C.45≤4a 2+b 2≤43D.2a -b ≤2105【答案】ACD【解析】由4a 2-ab +b 2=1,可得b 2-ab +4a 2-1=0,关于b 的方程有解,所以△=-a 2-44a 2-1 ≥0,所以a 2≤415,即a ≤21515,故A 正确;取a =0,b =1,4a 2-ab +b 2=1,则a +b =1,故B 错误;由4a 2-ab +b 2=1,可得4a 2+b 2=ab +1=1+12⋅2ab ,又-4a 2+b 22≤2ab ≤4a 2+b 22,令t=4a 2+b 2,则-t 2≤2t -1 ≤t 2,所以45≤t ≤43,即45≤4a 2+b 2≤43,故C 正确;由4a 2-ab +b 2=1,可得2a -b 2+3ab =1,所以2a -b 2=1-3ab =1+32⋅2a ⋅-b ,令u =2a -b ,由2a ⋅-b ≤2a -b 22,可得u 2≤1+38u 2,所以u 2≤85,即2a -b ≤2105,故D 正确.故选:ACD .10.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且2a +b -2=0,则()A.a 2+16>8a B.2a +1b≥9 C.a 2+b 2≥255D.32<a +b -5a -2<4【答案】ACD【解析】对于A 选项,a 2+16-8a =a -4 2≥0,当且仅当a =4时等号成立,当a =4时,由于2a +b -2=0,得b =2-2a =2-8=-6,与b 为正数矛盾,故a ≠4,即得a 2+16>8a ,故A 选项正确;对于B 选项,∵2a +b -2=0,∴a +b2=1.又∵a >0,b >0∴2a +1b =2a +1b a +b 2 =2+b a +a b+12≥52+2b a ⋅a b =92,当且仅当b a =a b,即a =b =23时等号成立;故B 选项不正确;对于C 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∵a 2+b 2=a 2+2-2a 2=5a 2-8a +4=5a -45 2+45,∴a 2+b 2≥45,当且仅当a =45时等号成立,∴a 2+b 2≥255,故C 选项正确;对于D 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∴a +b -5a -2=a +2-2a -5a -2=-a -3a -2=-a -2 -5a -2=-1-5a -20<a <1 ,当0<a <1时,-2<a -2<-1,∴-5<5a -2<-52,得32<-1-5a -2<4,即32<a +b -5a -2<4,故D 选项正确.故选:ACD11.(2022春·山西·高三校联考阶段练习)(多选)若a >b >1,且a +3b =5,则()A.1a -b +4b -1的最小值为24 B.1a -b +4b -1的最小值为25C.ab -b 2-a +b 的最大值为14 D.ab -b 2-a +b 的最大值为116【答案】BD【解析】由a >b >1,可知a -b >0,b -1>0,a -b +4b -1 =a +3b -4=5-4=1,1a -b +4b -1=a -b +4b -1 a -b +4a -b +4b -1 b -1=17+4b -1 a -b +4a -b b -1≥17+24b -1 a -b ⋅4a -b b -1=25当且仅当a -b =b -1=15 时,等号成立,1a -b +4b -1的最小值为25.又1=a -b +4b -1 ≥2a -b ⋅4b -1 =4a -b ⋅b -1 .当且仅当a -b =4b -1 =12时,等号成立,所以ab -b 2-a +b =a -b ⋅b -1 ≤116,故ab -b 2-a +b 的最大值为116.故选:BD .12.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是()A.y =x +4xB.y =x +5x +1x >0 C.y =x sin +4xsin ,x ∈0,π2D.y =4x +41-x【答案】BD【解析】对于A ,当x >0时,y =x +4x ≥2x ⋅4x =4,当且仅当x =4x,即x =2时取等号;当x <0时,y =x +4x =--x +-4x ≤-2x ⋅4x =-4,当且仅当-x =-4x ,即x =-2时取等号,所以y ∈-∞,-4 ⋃4,+∞ ,A 错误;对于B ,y =x +5x +1=x +1+4x +1=x +1+4x +1,因为x >0,所以x +1>1,x +1+4x +1≥2x +1⋅4x +1=4,当且仅当x +1=4x +1,即x =3时取等号,所以y =x +5x +1x >0 的最小值为4,B 正确;对于C ,因为x ∈0,π2,所以x sin ∈0,1 ,由对勾函数性质可知:y =x sin +4x sin ,x ∈5,+∞ ,C 错误;对于D ,4x >0,y =4x +41-x =4x +44x ≥24x ×44x =4,当且仅当4x =44x ,即x =12时取等号,所以y =4x +41-x 的最小值为4,D 正确.故选:BD13.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足4x +7y =4,则2x +3y+12x +y的最小值为______.【答案】94【解析】因为4x +7y =4,所以2x +3y +12x +y =142x +3y +2x +y 2x +3y +12x +y ,所以2x +3y +12x +y =144+2x +3y 2x +y +22x +y x +3y +1,因为x ,y 为正实数,所以2x +3y 2x +y >0,22x +yx +3y>0,所以2x +3y 2x +y +22x +y x +3y≥22x +3y 2x +y ⋅22x +yx +3y =4,当且仅当x +3y =2x +y 4x +7y =4时等号成立,即x =815,y =415时等号成立,所以2x +3y +12x +y ≥144+4+1 =94,当且仅当x =815,y =415时等号成立,所以2x +3y +12x +y 的最小值为94.14.(2022春·天津静海·高三静海一中校考阶段练习)若a ,b ∈R ,且b 2-a 2=1,则a +b2-a 2b的最大值为___________.【答案】2【解析】由题知,a ,b ∈R ,且b 2-a 2=1,即b 2=a 2+1,所以a +b2-a 2b =a +1b ,当a =0时,b 2=1,即b =±1,此时a +1b =±1,所以a +b 2-a 2b的最大值为1,当a ≠0时,a +1b2=a 2+2a +1b 2=1+2a a 2+1≤1+2a 2a =2,当且仅当a =1时取等号,此时-2≤a +1b ≤2;所以a +a 2-b 2b 的最大值为2.综上,a +a 2-b 2b的最大值为2.15.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数x ,y 满足83x 2+2xy +3xy +2y 2=1,则xy的最小值是_________.【答案】52【解析】根据题意,由83x 2+2xy +3xy +2y 2=1可得8xy +2y 2 +33x 2+2xy 3x 2+2xy xy +2y 2=1,即16y 2+9x 2+14xy =3x 3y +8x 2y 2+4xy 3=xy 4y 2+3x 2+8xy所以16y 2+9x 2+14xy 4y 2+3x 2+8xy =xy =16y 2x2+9+14y x 4y 2x2+3+8y x ;又因为x ,y 均是正数,令y x =t ∈0,+∞ ,则xy =f t =16t 2+14t +94t 2+8t +3所以, f t =16t 2+14t +94t 2+8t +3=4-18t +34t 2+8t +3=4-14t 2+8t +318t +3令 g t =4t 2+8t +318t +3,则g t =29t +1127+16918t +3=29t +16 +16918t +3+1027≥229t +16 ×16918t +3+1027=1827当且仅当29t +16 =16918t +3,即t =12时,等号成立;所以f t =4-14t 2+8t +318t +3≥4-11827=4518=52所以f t 的最小值为f t min =52;即当t =y x =12,x =2y =5时,即x =5,y =52时,等号成立.16.(2022春·陕西商洛·高三校联考阶段练习)已知正实数a ,b ,c 满足a 2+ab +b 2-12c 2=0,则当a +bx取得最大值时,a -b 2+c 的最大值为______.【答案】916【解析】由a 2+ab +b 2-12c 2=0,可得12c 2=a +b 2-ab ≥a +b 2-a +b 22=34a +b 2,即a +bc≤4,当且仅当a =b 时,等号成立,所以当a +b c 取得最大值时,a =b ,c =a +b 4=a 2,所以a -b 2+c =32a -a 2=-a -342+916,故当a =34,b =34,c =38时,a -b 2+c 取最大值916.。

浅谈高中数学中最值问题的六种解法

浅谈高中数学中最值问题的六种解法
一 — 一
又.1 s i n 2 1 , 所 以 n 一 ・ 一
( 0 ,一 2 ) 的 直 线 的 斜 率 , 而 动 点 P 的 轨 迹 为 y=x 2( o )

三、 利用导数求 最值
例3 已知 函数. 厂 ( ) =
上 的最 大值 是
A. 0 B . 1 C. 2 D_ 3
问题的解法作点探讨和归纳 。

元 函 数 t 八 , , ) 一 i + 彳 + _ + _ z 的 最 小 值。
分 析 我 们 知 道 , 单 调 增 函 数 f ( x ) 具 有 性 质

利用“ 二分法 ” 求最值

( X 一 2 ) 【 厂 ( 。 ) 一 f ( x 2 ) ] 0 ,单调 减 函数 - 厂 ( ) 具有 性 质
1 + t a l l 2 的结构基本一致 ,
故可令 =t a n 0, Oc( 一 ,


s i n 2 0 ,一 <2 0<
l 1
a b ) 2 - _ 0 ( - 2 ) 设 = +一 2 =( a b 6 O , 它表 过点 p 。 , ( 。 6 ) : ) 与 ’匕 伏 示 小 ~ 6 , L J 点 一 Q
故 静 。 同 理 , 静
当 = = =. 1 时

静 一 ”
三 式 相 加 , 有 z ) = + + 等 + + z ) ] = 。 ,
_ , , y , z ) :O
二、 利用三角代换求最值
例 2 求 函数 分析
的最值 。
五、 利用线性规划求最值 例 5 已知口 ,析 因I 一 X I 表示数轴上的动点 到 n 之间的距离。 当I —l l +l 一1 9 l 最小时, 为区间[ 1 , 1 9 ] 1  ̄的任意一个分

高中数学的最值问题

高中数学的最值问题

高中数学的最值问题一、函数最值函数最值是高中数学中一个重要的概念,是指在给定区间内,函数值取到的最大值或最小值。

求解函数最值的方法主要有:1.利用函数的单调性:如果函数在某区间内单调递增或递减,那么该函数在这个区间内的最大值或最小值将出现在区间的端点处。

因此,我们需要找到这个区间的端点,并比较这些端点处的函数值。

2.利用二次函数对称轴:对于一些二次函数,我们可以找到它的对称轴,并利用对称轴与区间端点的关系,求出函数的最值。

3.利用导数求极值:对于一些复杂函数,我们可以利用导数求出其极值点,并判断极值点是最大值还是最小值。

二、三角函数最值三角函数最值是指在给定区间内,三角函数值取到的最大值或最小值。

求解三角函数最值的方法主要有:1.利用三角函数的性质:三角函数具有许多性质,如周期性、对称性等,这些性质可以帮助我们找到函数的最值。

2.利用配方法:对于一些三角函数表达式,我们可以利用配方法将其转化为二次函数形式,再利用二次函数的最值求解。

3.利用导数求极值:对于一些复杂的三角函数,我们可以利用导数求出其极值点,并判断极值点是最大值还是最小值。

三、数列最值数列最值是指在一个数列中,某个项的值取到的最大值或最小值。

求解数列最值的方法主要有:1.利用不等式:对于一些数列,我们可以利用不等式来求解其最值。

常用的不等式包括均值不等式、排序不等式等。

2.利用函数的单调性:对于一些数列,我们可以将其看作是一个函数,并利用函数的单调性来求解其最值。

3.利用数列的极限:对于一些数列,我们可以利用数列的极限来求解其最值。

常用的极限包括等比数列的极限、等差数列的极限等。

四、不等式最值不等式最值是指在一个不等式中,某个变量的取值范围取到的最小值或最大值。

求解不等式最值的方法主要有:1.利用不等式的性质:不等式具有许多性质,如传递性、可加性等,这些性质可以帮助我们缩小变量的取值范围,从而求出不等式的最值。

2.利用函数的单调性:对于一些不等式,我们可以将其看作是一个函数,并利用函数的单调性来求解其最值。

高中数学最值问题

高中数学最值问题

高中数学最值问题高中数学最值问题是数学中常见的一类问题,这类问题涉及到有限次数的变量所取得的函数最大或最小值的求解。

它的求解要求使用到最优化的原理,或者使用凸函数的概念,或者借助泰勒展开式来分析等。

在学习高中数学最值问题时,我们进行的讨论可以概括为三种:函数的最值的概念,最值问题的判断,以及最值问题的求解。

首先,函数的最值概念是研究高中数学最值问题时先要学习的一个重要概念。

函数的最值是指,当我们在一定区域内对函数求解时,函数图像可能出现函数最大值或最小值的现象,这就是函数的最值现象。

如果函数的最大值和最小值的定义给出的话,可以使用视图法、泰勒展开式等方法,来判定函数在某个特定的取值处是最大值还是最小值。

其次,最值问题的判断技巧包括三个方面:一是通过方程的极值点判断,二是通过导数的正负判断,三是针对凹函数和凸函数的判断。

在通过方程的极值点判断最值问题时,我们首先将方程求导,如果使得函数的导数等于零,就是极值点。

极值点被称为有可能是函数的最值点。

另外,通过导数的正负判断最值点,如果导数的正负性改变,说明函数原函数的图像发生变化,而导数正负性改变时必定会出现最值点。

最后,针对凹函数和凸函数的判断也有一定的方法,凹函数的最小值点可以判定为图像上最小的点,而凸函数最大值点则可以判定为图像上最大的点。

最后,最值问题的求解也有不同的方法。

如果问题中给出有限次变量的两个或多个取值,那么我们可以采用穷举法,逐个把变量的取值带入函数,然后从中筛选出最值。

如果问题中没有给出有限次变量的取值,我们可以采取最优化法,通过求导法或贪心法来求解最值问题,具体求解方法还可以借助复杂的数学工具,比如算法、微积分、拓扑学等,来实现问题的求解。

总之,高中数学最值问题的研究从原理到应用都是非常重要的一个学科,主要涉及到函数的最值概念、最值问题的判断,以及最值问题的求解等内容。

不仅可以帮助我们更好地理解数学原理,而且可以帮助学生更好地掌握最值问题的分析和求解技巧,从而在学习和实践中运用知识,有效地提升学生的解决问题能力。

高中数学多元函数最值问题(十二大题型)

高中数学多元函数最值问题(十二大题型)

多元函数最值问题目录题型一:消元法题型二:判别式法题型三:基本不等式法题型四:辅助角公式法题型五:柯西不等式法题型六:权方和不等式法题型七:拉格朗日乘数法题型八:三角换元法题型九:构造齐次式题型十:数形结合法题型十一:向量法题型十二:琴生不等式法方法技巧总结解决多元函数的最值问题不仅涉及到函数、导数、均值不等式等知识,还涉及到消元法、三角代换法、齐次式等解题技能.必考题型归纳题型一消元法1(2023·全国·高三专题练习)已知正实数x,y满足ln x=ye x+ln y,则y-e-x的最大值为.2(2023·广东梅州·高三五华县水寨中学校考阶段练习)已知实数m,n满足:m⋅e m=(n-1)ln(n-1)=t(t >0),则ln tm(n-1)的最大值为.3(2023·天津和平·高三天津一中校考阶段练习)对任给实数x>y>0,不等式x2-2y2≤cx(y-x)恒成立,则实数c的最大值为.题型二判别式法1(2023·重庆渝中·高一重庆巴蜀中学校考期中)若x,y∈R,4x2+y2+xy=1,则当x=时,x+y取得最大值,该最大值为.2(2023·全国·高三竞赛)在△ABC中,2cos A+3cos B=6cos C,则cos C的最大值为.3(2023·高一课时练习)设非零实数a,b满足a2+b2=4,若函数y=ax+bx2+1存在最大值M和最小值m,则M-m=.1(2023·江苏·高三专题练习)若正实数x,y满足(2xy-1)2=(5y+2)(y-2),则x+12y的最大值为.2(2023·全国·高三专题练习)设a,b∈R,λ>0,若a2+λb2=4,且a+b的最大值是5,则λ=.题型三基本不等式法1设x、y、z是不全是0的实数.则三元函数f x,y,z=xy+yzx2+y2+z2的最大值是.2(2023·天津和平·高三耀华中学校考阶段练习)若实数x,y满足2x2+xy-y2=1,则x-2y5x2-2xy+2y2的最大值为.3(2023·全国·高三专题练习)已知正数a,b,c,则ab+bc2a2+b2+c2的最大值为.1(2023·江苏苏州·高三统考开学考试)设角α、β均为锐角,则sinα+sinβ+cosα+β的范围是.2y=cos(α+β)+cosα-cosβ-1的取值范围是.题型五柯西不等式法1(2023·广西钦州·高二统考期末)已知实数a i,b i∈R,(i=1,2⋯,n),且满足a21+a22+⋯+a2n=1,b21+b22 +⋯+b2n=1,则a1b1+a2b2+⋯+a n b n最大值为()A.1B.2C.n2D.2n2(2023·陕西渭南·高二校考阶段练习)已知x,y,z是正实数,且x+y+z=5,则x2+2y2+z2的最小值为.3(2023·江苏淮安·高二校联考期中)已知x2+y2+z2=1,a+3b+6c=16,则x-a22+y-b2+z-c 的最小值为.1(2023·全国·高三竞赛)已知x、y、z∈R+,且s=x+2+y+5+z+10,t=x+1+y+1+ z+1,则s2-t2的最小值为.A.35B.410C.36D.452(2023·全国·高三竞赛)设a、b、c、d为实数,且a2+b2+c2-d2+4=0.则3a+2b+c-4d 的最大值等于.A.2B.0C.-2D.-221(2023·甘肃·高三校联考)已知x>0,y>0,且12x+y+1y+1=1,则x+2y的最小值为 .2已知实数x,y满足x>y>0且x+y=1,则2x+3y+1x-y的最小值是3已知a>1,b>1,则a2b-1+b2a-1的最小值是.1已知x,y>0,1x+22y=1,则x2+y2的最小值是.题型七拉格朗日乘数法1x>0,y>0,xy+x+y=17,求x+2y+3的最小值.2设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是.题型八三角换元法1(2023·山西晋中·高三祁县中学校考阶段练习)已知函数f(x)=-3x3-3x+3-x-3x+3,若f(3a2)+f(b2 -1)=6,则a1+b2的最大值是2(2023·浙江温州·高一校联考竞赛)2x2+xy+y2=1,则x2+xy+2y2的最小值为.题型九构造齐次式1(2023·江苏·高一专题练习)已知x>0,y>0,则2xyx2+8y2+xyx2+2y2的最大值是.2(2023·河南·高三信阳高中校联考阶段练习)已知实数a,b>0,若a+2b=1,则3ab+1ab的最小值为()A.12B.23C.63D.83(2023·天津南开·高三统考期中)已知正实数a,b,c满足a2-2ab+9b2-c=0,则abc的最大值为.题型十数形结合法1(2023·全国·高三专题练习)函数f x =x2+ax+b(a,b∈R)在区间[0,c](c>0)上的最大值为M,则当M取最小值2时,a+b+c=2(2023·江苏扬州·高三阶段练习)已知函数f x =x ln x,x>02x+4e,x≤0,若x1≠x2且f x1 =f x2 ,则x1-x2的最大值为()A.2e-1e B.2e+1 C.5e D.52e3(2023·全国·高三专题练习)已知函数f x =x ln x,x>0x+1,x≤0,若x1≠x2且f x1 =f x2 ,则x1-x2的最大值为()A.22B.2C.2D.11(2023·江苏·高三专题练习)已知函数f x =x,0≤x≤1,ln2x,1<x≤2,若存在实数x1,x2满足0≤x1<x2≤2,且f x1=f x2,则x2-x1的最大值为()A.e2B.e2-1 C.1-ln2 D.2-ln4向量法1(2023·江苏南通·高一海安高级中学校考阶段练习)17世纪法国数学家费马在给朋友的一封信中曾提出一个关于三角形的有趣问题:在三角形所在平面内,求一点,使它到三角形每个顶点的距离之和最小,现已证明:在△ABC 中,若三个内角均小于120°,则当点P 满足∠APB =∠APC =∠BPC =120°时,点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上知识,已知a为平面内任意一个向量,b 和c 是平面内两个互相垂直的向量,且|b |=2,|c |=3,则|a -b |+|a +b |+|a -c |的最小值是.2(2023·浙江嘉兴·高一统考期末)已知平面向量a ,b ,c 满足a =1,b =2,|a |2=a ⋅b ,c ⋅c -b2=0,则|c -a |2+|c -b|2的最小值为.3(2023·湖北武汉·高一湖北省武昌实验中学校联考期末)已知向量a ,b 满足a +b ⋅b =0,a+4b =4,则a +b+b 的最大值为.琴生不等式法1(2023·福建龙岩·高三校考阶段练习)若函数f x 的导函数f x 存在导数,记f x 的导数为f x .如果对∀x ∈a ,b ,都有f x <0,则f x 有如下性质:f x 1+x 2+⋅⋅⋅+x nn ≥f (x 1)+f (x 2)+⋅⋅⋅+f (x n )n .其中n ∈N *,x 1,x 2,⋯,x n ∈a ,b .若f x =sin x ,则在锐角△ABC 中,根据上述性质推断:sin A +sin B +sin C 的最大值为.2(2023·全国·高三竞赛)半径为R 的圆的内接三角形的面积的最大值是.3(2023·北京·高三强基计划)已知正实数a ,b 满足a +b =1,求a +1a b +1b的最小值.多元函数最值问题目录题型一:消元法题型二:判别式法题型三:基本不等式法题型四:辅助角公式法题型五:柯西不等式法题型六:权方和不等式法题型七:拉格朗日乘数法题型八:三角换元法题型九:构造齐次式题型十:数形结合法题型十一:向量法题型十二:琴生不等式法方法技巧总结解决多元函数的最值问题不仅涉及到函数、导数、均值不等式等知识,还涉及到消元法、三角代换法、齐次式等解题技能.必考题型归纳题型一消元法1(2023·全国·高三专题练习)已知正实数x ,y 满足ln x =ye x +ln y ,则y -e -x 的最大值为.【答案】1e2/e -2【解析】由ln x =ye x +ln y 得ln x y =ye x ,所以x y ln x y =xe x ,则xe x=ln x y ⋅e ln xy ,因为x >0,e x>0,eln xy>0,所以lnxy>0,令f (x )=xe x x >0 ,则f (x )=e x (x +1)>0,所以f x 在0,+∞ 上单调递增,所以由xe x=ln x y ⋅e ln xy ,即f x =f ln x y,得x =ln x y ,所以y =x e x ,所以y -e -x =x e x -1e x =x -1e x,令g (x )=x -1e xx >0 ,则g (x )=2-xe x,令g (x )>0,得0<x <2;令g (x )<0,得x >2,所以g (x )在0,2 上单调递增,在2,+∞ 上单调递减,所以g (x )max =g (2)=1e 2,即y -e -x 的最大值为1e2.故答案为:1e2.2(2023·广东梅州·高三五华县水寨中学校考阶段练习)已知实数m ,n 满足:m ⋅e m =(n -1)ln (n -1)=t (t >0),则ln tm (n -1)的最大值为.【答案】1e【解析】由已知得,m >0,n -1>0,ln n -1 >0,令f x =xe x (x >0),则f x =x +1 e x >0,∴f x 在0,+∞ 上单调递增,又因为m ⋅e m =(n -1)ln (n -1),所以f m =f ln n -1 ,∴m =ln n -1 ,∴m n -1 =(n -1)⋅ln n -1 =t ,∴ln t m n -1=ln t t ,令g t =ln tt(t >0),所以g t =1-ln tt 2,则当t ∈(0,e )时,g (t )>0,g (t )单调递增;当t ∈(e ,+∞)时,g (t )<0,g (t )单调递减;所以g (t )max =g (e )=1e.故答案为:1e.3(2023·天津和平·高三天津一中校考阶段练习)对任给实数x >y >0,不等式x 2-2y 2≤cx (y -x )恒成立,则实数c 的最大值为.【答案】22-4【解析】因为对任给实数x >y >0,不等式x 2-2y 2≤cx (y -x )恒成立,所以c ≤x 2-2y 2xy -x 2=xy2-2x y-x y 2,令x y =t >1,则c ≤t 2-2t -t 2=f (t ),f(t )=t 2-4t +2t -t 2 2=(t -2+2)(t -2-2)t -t 22,当t >2+2时,f (t )>0,函数f (t )单调递增;当1<t <2+2时,f (t )<0,函数f (t )单调递减,所以当t =2+2时,f (t )取得最小值,f (2+2)=22-4,所以实数c 的最大值为22-4故答案为:22-4题型二判别式法1(2023·重庆渝中·高一重庆巴蜀中学校考期中)若x ,y ∈R ,4x 2+y 2+xy =1,则当x =时,x +y 取得最大值,该最大值为.【答案】 1530/1301541515/41515【解析】令x +y =t ,则y =t -x ,则4x 2+y 2+xy =4x 2+t -x 2+x t -x =4x 2-tx +t 2=1,即4x 2-tx +t 2-1=0,由Δ=t 2-16t 2-1 ≥0,解得:-41515≤t ≤41515,故x +y ≤41515,故x +y =415154x 2+y 2+xy =1,解得:x =1530,y =71530,所以当且仅当x =1530,y =71530时,等号成立,故答案为:1530,415152(2023·全国·高三竞赛)在△ABC 中,2cos A +3cos B =6cos C ,则cos C 的最大值为.【答案】14-16【解析】令cos A =x ,cos B =y ,cos C =z ,则2x +3y =6z ,即y =2z -23x .因为cos 2A +cos 2B +cos 2C +2cos A cos B cos C =1,所以x 2+2z -23x 2+z 2=1-2x 2z -23x z ,整理得139-43z x 2+4z 2-83z x +5z 2-1=0,Δ=4z 2-83z 2-45z 2-1 139-4z3≥0,化简得(z +1)(z -1)4z 2+4z 3-139≥0,于是4z 2+4z 3-139≤0,得z ≤14-16,所以cos C 的最大值为14-16.故答案为:14-16.3(2023·高一课时练习)设非零实数a ,b 满足a 2+b 2=4,若函数y =ax +bx 2+1存在最大值M 和最小值m ,则M -m =.【答案】2【解析】化简得到yx 2-ax +y -b =0,根据Δ≥0和a 2+b 2=4得到b -22≤y ≤b +22,解得答案.y =ax +bx 2+1,则yx 2-ax +y -b =0,则Δ=a 2-4y y -b ≥0,即4y 2-4yb -a 2≤0,a 2+b 2=4,故4y 2-4yb +b 2-4≤0,2y -b +2 2y -b -2 ≤0,即b -22≤y ≤b +22,即m =b -22,M =b +22,M -m =2.故答案为:2.1(2023·江苏·高三专题练习)若正实数x ,y 满足(2xy -1)2=(5y +2)(y -2),则x +12y的最大值为.【答案】322-1【解析】令x +12y =t ,(t >0),则(2xy -1)2=(2yt -2)2=(5y +2)(y -2),即(4t 2-5)y 2+(8-8t )y +8=0,因此Δ=(8-8t )2-32(4t 2-5)≥0⇒2t 2+4t -7≤0,解得:0<t ≤-1+322,当t =-1+322时,y =4t -44t 2-5=62-817-122>0,x =35-242122-16>0,因此x +12y 的最大值为322-1故答案为:322-12(2023·全国·高三专题练习)设a ,b ∈R ,λ>0,若a 2+λb 2=4,且a +b 的最大值是5,则λ=.【答案】4【解析】令a +b =d ,由a +b =da 2+λb 2=4消去a 得:(d -b )2+λb 2=4,即(λ+1)b 2-2db +d 2-4=0,而b ∈R ,λ>0,则Δ=(2d )2-4(λ+1)(d 2-4)≥0,d 2≤4(λ+1)λ,-2λ+1λ≤d ≤2λ+1λ,依题意2λ+1λ=5,解得λ=4.故答案为:4题型三基本不等式法1设x 、y 、z 是不全是0的实数.则三元函数f x ,y ,z =xy +yzx 2+y 2+z 2的最大值是.【答案】22【解析】引入正参数λ、μ.因为λ2x 2+y 2≥2λxy ,μ2y 2+z 2≥2μyz ,所以,xy ≤λ2x 2+12λy 2,yz ≤μ2y 2+12μz 2.两式相加得xy +yz ≤λ2x 2+12λ+μ2 y 2+12μz 2.令λ2=12λ+μ2=12μ,得λ=2,μ=12故xy +yz ≤22x 2+y 2+z 2.因此,f x ,y ,z =xy +yz x 2+y 2+z2的最大值为22.2(2023·天津和平·高三耀华中学校考阶段练习)若实数x ,y 满足2x 2+xy -y 2=1,则x -2y5x 2-2xy +2y 2的最大值为.【答案】24【解析】由2x 2+xy -y 2=1,得(2x -y )(x +y )=1,设2x-y=t,x+y=1t,其中t≠0.则x=13t+13t,y=23t-13t,从而x-2y=t-1t,5x2-2xy+2y2=t2+1t2,记u=t-1t,则x-2y5x2-2xy+2y2=uu2+2,不妨设u>0,则1u+2u≤12u×2u=24,当且仅当u=2u,即u=2时取等号,即最大值为24.故答案为:2 4.3(2023·全国·高三专题练习)已知正数a,b,c,则ab+bc2a2+b2+c2的最大值为.【答案】6 4【解析】∵ab+bc2a2+b2+c2=ab+bc2a2+13b2+23b2+c2≤ab+bc223ab+223bc=1223=64(当且仅当2a=3 3b,63b=c时取等号),∴ab+bc 2a2+b2+c2的最大值为64.故答案为:6 4.题型四辅助角公式法1(2023·江苏苏州·高三统考开学考试)设角α、β均为锐角,则sinα+sinβ+cosα+β的范围是.【答案】1,3 2【解析】因为角α、β均为锐角,所以sinα,cosα,sinβ,cosβ的范围均为0,1,所以sinα+β=sinαcosβ+cosαsinβ<sinα+sinβ,所以sinα+sinβ+cosα+β>sinα+β+cosα+β=2sinα+β+π4因为0<α<π2,0<β<π2,π4<α+β+π4<3π4,所以2sinα+β+π4>2×22=1,sinα+sinβ+cosα+β=sinα+sinβ+cosαcosβ-sinαsinβ=1-sinβsinα+cosαcosβ+sinβ≤1-sinβ2+cos2β+sinβ=21-sinβ+sinβ,当且仅当1-sinβcosα=sinαcosβ时取等,令1-sinβ=t,t∈0,1,sinβ=1-t2,所以=21-sinβ+sinβ=2t+1-t2=-t-2 22+32≤32.则sinα+sinβ+cosα+β的范围是:1,3 2.故答案为:1,3 22y=cos(α+β)+cosα-cosβ-1的取值范围是.【答案】-4,1 2【解析】y=cosαcosβ-sinαsinβ+cosα-cosβ-1=(cosβ+1)cosα-(sinβ)sinα-(cosβ+1)=(cosβ+1)2+sin2βsin(α+φ)-(cosβ+1)=2+2cosβsin(α+φ)-(cosβ+1)因为sin(α+φ)∈[-1,1],所以-2+2cosβ-(cosβ+1)≤y≤2+2cosβ-(cosβ+1),令t=1+cosβ,则t∈[0,2],则-2t-t2≤y≤2t-t2,所以y≥-2t-t2=-t+2 22+12≥-4,(当且仅当t=2即cosβ=1时取等);且y≤2t-t2=-t-2 22+12≤12,(当且仅当t=22即cosβ=-12时取等).故y的取值范围为-4,1 2.题型五柯西不等式法1(2023·广西钦州·高二统考期末)已知实数a i,b i∈R,(i=1,2⋯,n),且满足a21+a22+⋯+a2n=1,b21+b22 +⋯+b2n=1,则a1b1+a2b2+⋯+a n b n最大值为()A.1B.2C.n2D.2n【答案】A【解析】根据柯西不等式,a21+a22+⋯+a2nb21+b22+⋯+b2n≥a1b1+a2b2+⋯+a n b n2,故a1b1+a2b2+⋯+a nb n≤1,又当a1=b1=a2=b2=...=a n=b n=1n时等号成立,故a1b1+a2b2+⋯+a n b n最大值为1故选:A2(2023·陕西渭南·高二校考阶段练习)已知x,y,z是正实数,且x+y+z=5,则x2+2y2+z2的最小值为.【答案】10【解析】由柯西不等式可得x2+2y2+z212+122+12≥(x+y+z)2,所以52x2+2y2+z2≥25,即x2+2y2+z2≥10,当且仅当x1=2y12=z1即x=2y=z也即x=2,y=1,z=2时取得等号,故答案为:103(2023·江苏淮安·高二校联考期中)已知x2+y2+z2=1,a+3b+6c=16,则x-a2+y-b2+z-c2的最小值为.【答案】9【解析】∵a +3b +6c =16≤12+32+6 2a 2+b 2+c 2=4a 2+b 2+c 2∴a 2+b 2+c 2≥4,当且仅当a 1=b 3=c6时等号成立,即a =1,b =3,c =6,∵x -a 2+y -b 2+z -c 2=1-2xa +by +cz +a 2+b 2+c 2≥1-2x 2+y 2+z 2a 2+b 2+c 2+a 2+b 2+c 2=1-2a 2+b 2+c 2+a 2+b 2+c 2=a 2+b 2+c 2-1 2≥9,当且仅当a x =b y =c z 时等号成立,可取x =14,y =34,z =64故答案为:91(2023·全国·高三竞赛)已知x 、y 、z ∈R +,且s =x +2+y +5+z +10,t =x +1+y +1+z +1,则s 2-t 2的最小值为.A.35 B.410C.36D.45【答案】C【解析】由s +t =x +2+x +1 +y +5+y +1 +z +10+z +1 ,s -t =1x +1+x +2+4y +1+y +5+9z +1+z +10.知s 2-t 2=s +t s -t ≥1+2+3 2=36.当x +1+x +2=12y +1+y +5 =13z +1+z +10 时,取得最小值36.故答案为C2(2023·全国·高三竞赛)设a 、b 、c 、d 为实数,且a 2+b 2+c 2-d 2+4=0.则3a +2b +c -4d 的最大值等于.A.2B.0C.-2D.-22【答案】D【解析】由题意得a 2+b 2+c 2+22=d 2,所以42d 2=a 2+b 2+c 2+22 32+22+12+2 2 ≥3a +2b +c +22 2(利用柯西不等式).从而,4d ≥3a +2b +c +22 ≥3a +2b +c +2 2.故3a +2b +c -4d ≤-2 2.当且仅当a =32,b =22,c =2,d =±42时,等号成立.题型六权方和不等式法1(2023·甘肃·高三校联考)已知x >0,y >0,且12x +y +1y +1=1,则x +2y 的最小值为.【答案】3+12【解析】设x +2y =λ1(2x +y )+λ2(y +1)+t ,可解得λ1=12,λ2=32,t =-32,从而x +2y =12(2x +y )+32(y +1)-32=12(2x +y )+32(y +1) 12x +y +1y +1-32≥3+12,当且仅当x =12+33,y =33时取等号.故答案为:3+12.2已知实数x ,y 满足x >y >0且x +y =1,则2x +3y +1x -y的最小值是【答案】3+222【解析】2x +3y +1x -y ≥2+1 22x +2y =3+222.当2x +3y =1x -y 时,x =2-12,y =32-2取等号.3已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【解析】a +b -2=t >0,a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥8.当a +b -2=2a b -1=ba -1时,即a =2,b =2,两个等号同时成立.1已知x ,y >0,1x +22y=1,则x 2+y 2的最小值是.【答案】33【解析】1=1x +22y=132x 212+232y 212≥1+232x 2+y 212=33x 2+y2.即当1x 2=2y 21x +22y=1时,即x =3,y =32,有x 2+y 2的最小值为33.题型七拉格朗日乘数法1x >0,y >0,xy +x +y =17,求x +2y +3的最小值.【解析】令F (x ,y ,λ)=x +2y +3-λ(xy +x +y -17)F x ′=1-λy -λ=0,F y ′=2-λx -λ=0,F λ′=-(xy +x +y )+17=0,联立解得x =5,y =2,λ=13,故x +2y +3最小为12.2设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是.【答案】2105【解析】令L =2x +y +λ(4x 2+y 2+xy -1),由L x =2+8λx -3λy =0L y =1+2λy -3λx =0L λ=4x 2+y 2+xy -1=0,解得x =±1010y =±105,所以2x +y 的最大值是2⋅1010+105=2105.三角换元法1(2023·山西晋中·高三祁县中学校考阶段练习)已知函数f (x )=-3x 3-3x +3-x -3x +3,若f (3a 2)+f (b 2-1)=6,则a 1+b 2的最大值是【答案】33【解析】设g (x )=f (x )-3,所以g (x )= -3x 3-3x +3-x -3x ,所以g (-x )=-3(-x )3+3x +3x -3-x ,∴g (-x )+g (x )=0,所以g (-x )=-g (x ),所以函数g (x )是奇函数,由题得g (x )=-9x 2-3-3-x ln3-3x ln3<0,所以函数g (x )是减函数,因为f 3a 2 +f b 2-1 =6,所以f 3a 2 -3+f b 2-1 -3=0,所以g 3a 2 +g b 2-1 =0,所以g 3a 2 =g (1-b 2),所以3a 2=1-b 2,∴3a 2+b 2=1,设a =33cos θ,b =sin θ,不妨设cos θ>0,所以a 1+b 2=33cos θ1+sin 2θ=33(1+sin 2θ)cos 2θ=33(1+sin 2θ)(1-sin 2θ)=331-sin 4θ≤33,所以a 1+b 2的最大值为33.故答案为332(2023·浙江温州·高一校联考竞赛)2x 2+xy +y 2=1,则x 2+xy +2y 2的最小值为.【答案】-42+97【解析】根据条件等式可设x =2cos θ7,y =sin θ-cos θ7,代入所求式子,利用二倍角公式和辅助角公式化简,根据三角函数的性质可求出最值.∵2x 2+xy +y 2=1,则7x 24+x 24+xy +y 2=1,即7x 2 2+x 2+y 2=1,设7x 2=cos θ,x 2+y =sin θ,则x =2cos θ7,y =sin θ-cos θ7,∴x 2+xy +2y 2=2cos θ7 2+2cos θ7⋅sin θ-cos θ7 +2sin θ-cos θ72=4cos 2θ7-2sin θcos θ7+2sin 2θ=471+cos2θ2 -sin2θ7+1-cos2θ=-17sin2θ-57cos2θ+97=427sin 2θ+φ +97,其中φ是辅助角,且tan φ=357,当sin 2θ+φ =-1时,原式取得最小值为-42+97.故答案为:-42+97.题型九构造齐次式1(2023·江苏·高一专题练习)已知x >0,y >0,则2xy x 2+8y 2+xyx 2+2y 2的最大值是.【答案】23【解析】由题意,2xy x 2+8y 2+xy x 2+2y 2=3x 3y +12xy 3x 4+10x 2y 2+16y 4=3x y+4yxx y2+16yx 2+10=3x y+4yxx y+4y x2+2=3x y+4yxx y+4y x+2x y+4y x,设t =x y +4y x ,则t =x y +4y x ≥2x y ⋅4y x =4,当且仅当x y =4y x,即x =2y 取等号,又由y =t +2t 在[4,+∞)上单调递增,所以y =t +2t 的最小值为92,即t +2t ≥92,所以3x y+4yxxy +4y x+2x y+4y x≤3t +2t=23,所以2xy x 2+4y 2+xy x 2+2y 2的最大值是23.故答案为:23.2(2023·河南·高三信阳高中校联考阶段练习)已知实数a ,b >0,若a +2b =1,则3a b +1ab的最小值为()A.12 B.23C.63D.8【答案】A 【解析】由3a b +1ab,a +2b =1,a ,b >0,所以3a b +1ab =3ab +a +2b 2ab=3a b +a 2+4ab +4b 2ab =3a b +a b+4+4b a =4a b+4b a +4≥24a b ⋅4b a +4=8+4=12,当且仅当4a b=4b a ⇒a =b =13时,取等号,所以3a b +1ab 的最小值为:12,故选:A .3(2023·天津南开·高三统考期中)已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则abc的最大值为.【答案】14/0.25【解析】由a 2-2ab +9b 2-c =0,得c =a 2-2ab +9b 2,∵正实数a ,b ,c∴则ab c =ab a 2-2ab +9b 2=1a b+9b a -2则a b+9b a ≥2a b ⋅9b a =6,当且仅当a b=9ba ,且a ,b >0,即a =3b 时,等号成立a b+9b a -2≥4>0则1a b +9b a -2≤14所以,ab c 的最大值为14.故答案为:14.题型十数形结合法1(2023·全国·高三专题练习)函数f x =x 2+ax +b (a ,b ∈R )在区间[0,c ](c >0)上的最大值为M ,则当M 取最小值2时,a +b +c =【答案】2【解析】解法一:因为函数y =x 2+ax +b 是二次函数,所以f x =x 2+ax +b (a ,b ∈R )在区间[0,c ](c >0)上的最大值是在[0,c ]的端点取到或者在x =-a2处取得.若在x =0取得,则b =±2;若在x =-a 2取得,则b -a 24=2;若在x =c 取得,则c 2+ac +b =2;进一步,若b =2,则顶点处的函数值不为2,应为0,符合题意;若b =-2,则顶点处的函数值的绝对值大于2,不合题意;由此推断b =a 24,即有b =2,a +c =0,于是有a +b +c =2.解法二:设g x =x 2,h x =-ax -b ,则f x =g x -h x .首先作出g x =x 2在x ∈0,c 时的图象,显然经过(0,0)和c ,c 2 的直线为h 1x =cx ,该曲线在[0,c ]上单调递增;其次在g x =x 2图象上找出一条和h 1x =cx 平行的切线,不妨设切点为x 0,x 20 ,于是求导得到数量关系2x 0=c .结合点斜式知该切线方程为h 2x =cx -c 24.因此M min =120--c 24 =2,即得c =4.此时h x =cx -c 28,即h x =4x -2,那么a =-4,b =2.从而有a +b +c =2.2(2023·江苏扬州·高三阶段练习)已知函数f x =x ln x ,x >02x +4e ,x ≤0,若x 1≠x 2且f x 1 =f x 2 ,则x 1-x 2的最大值为()A.2e -1eB.2e +1C.5eD.52e 【答案】D【解析】当x >0时,f x =x ln x ,求导f x =ln x +1,令f x =0,得x =1e当x ∈0,1e 时,f x <0,f x 单调递减;当x ∈1e,+∞ 时,f x >0,f x 单调递增;作分段函数图象如下所示:设点A 的横坐标为x 1,过点A 作y 轴的垂线交函数y =f x 于另一点B ,设点B 的横坐标为x 2,并过点B作直线y =2x +4e 的平行线l ,设点A 到直线l 的距离为d ,x 1-x 2 =52d ,由图形可知,当直线l 与曲线y =x ln x 相切时,d 取最大值,令f x =ln x +1=2,得x =e ,切点坐标为e ,e ,此时,d =2e -e +4e5=5e ,∴x 1-x 2 max =52×5e =52e ,故选:D3(2023·全国·高三专题练习)已知函数f x =x ln x ,x >0x +1,x ≤0 ,若x 1≠x 2且f x 1 =f x 2 ,则x 1-x 2 的最大值为()A.22B.2C.2D.1【答案】B【解析】设点A 的横坐标为x 1,过点A 作y 轴的垂线交函数y =f x 于另一点B ,设点B 的横坐标为x 2,并过点B 作直线y =x +1的平行线l ,设点A 到直线l 的距离为d ,计算出直线l 的倾斜角为π4,可得出x 1-x 2 =2d ,于是当直线l 与曲线y =x ln x 相切时,d 取最大值,从而x 1-x 2 取到最大值.当x >0时,f x =x ln x ,求导f x =ln x +1,令f x =0,得x =1e当x ∈0,1e 时,f x <0,f x 单调递减;当x ∈1e ,+∞ 时,f x >0,f x 单调递增;如下图所示:设点A 的横坐标为x 1,过点A 作y 轴的垂线交函数y =f x 于另一点B ,设点B 的横坐标为x 2,并过点B 作直线y =x +1的平行线l ,设点A 到直线l 的距离为d ,x 1-x 2 =2d ,由图形可知,当直线l 与曲线y =x ln x 相切时,d 取最大值,令f x =ln x +1=1,得x =1,切点坐标为1,0 ,此时,d =1-0+12=2,∴x 1-x 2 max =2×2=2,故选:B .1(2023·江苏·高三专题练习)已知函数f x =x ,0≤x ≤1,ln 2x ,1<x ≤2, 若存在实数x 1,x 2满足0≤x 1<x 2≤2,且f x 1 =f x 2 ,则x 2-x 1的最大值为()A.e 2B.e 2-1 C.1-ln2 D.2-ln4【答案】B 【解析】f x =x ,0≤x ≤1,ln 2x ,1<x ≤2的图象如下存在实数x 1,x 2满足0≤x 1<x 2≤2,且f x 1 =f x 2 ,即x 1=ln 2x 2∴x 2∈1,e 2,则x 2-x 1=x 2-ln 2x 2 令g x =x -ln 2x ,x ∈1,e 2,则gx =x -1x∴g x 在1,e 2 上单调递增,故g x max =g e 2 =e2-1故选:B 向量法1(2023·江苏南通·高一海安高级中学校考阶段练习)17世纪法国数学家费马在给朋友的一封信中曾提出一个关于三角形的有趣问题:在三角形所在平面内,求一点,使它到三角形每个顶点的距离之和最小,现已证明:在△ABC 中,若三个内角均小于120°,则当点P 满足∠APB =∠APC =∠BPC =120°时,点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上知识,已知a为平面内任意一个向量,b 和c 是平面内两个互相垂直的向量,且|b |=2,|c |=3,则|a -b |+|a +b |+|a -c |的最小值是.【答案】3+23【解析】以b 为x 轴,c 为y 轴,建立直角坐标系如下图,设a=x ,y ,则b =2,0 ,c =0,3 ,a -c =x 2+y -3 2,a -b =x -2 2+y 2,a +b =x +2 2+y 2,∴a -c +a -b +a +b即为平面内一点x ,y 到0,3 ,2,0 ,-2,0 三点的距离之和,由费马点知:当点P x ,y 与三顶点A 0,3 ,B -2,0 ,C 2,0 构成的三角形ABC 为费马点时a -c+a -b +a +b最小,将三角形ABC 放在坐标系中如下图:现在先证明△ABC 的三个内角均小于120°:AB =BC =22+32=13,BC =4,cos ∠BAC =AB2+AC 2-BC 22AB ∙AC=1113>0,cos ∠ABC =cos ∠ACB =AB2+BC 2-AC 22AB ∙BC=113>0,∴△ABC 为锐角三角形,满足产生费马点的条件,又因为△ABC 是等腰三角形,点P 必定在底边BC 的对称轴上,即y 轴上,∠BPC =120°,∴∠PCB =30°,PO =OC ∙tan ∠PCB =2×33=233,即P 0,233 ,现在验证∠BPA =120°:BP =22+233 2=43,AP =3-233,cos ∠BPA =BP 2+AP 2-AB 22BP ∙AP =-12,∴∠BPA =120°,同理可证得∠CPA =120°,即此时点P 0,233 是费马点,到三个顶点A ,B ,C 的距离之和为BP +CP +AP =2×43+3-233=3+23,即a -c +a -b +a +b 的最小值为3+23;故答案为:3+23.2(2023·浙江嘉兴·高一统考期末)已知平面向量a ,b ,c 满足a =1,b =2,|a |2=a ⋅b ,c ⋅c -b 2=0,则|c -a |2+|c -b |2的最小值为.【答案】72-3【解析】令OA =a ,OB =b ,OC =c ,OB 中点为D ,OD 中点为F ,E 为AB 的中点,由|a |=1,|b |=2,|a |2=a ⋅b ,得1=1×2×cos <a ,b >,则cos <a ,b >=12,<a ,b >=60°即∠AOB =60°,所以AB =OA 2+OB 2-2OA ⋅OB cos ∠AOB =22+12-2×2×1×12=3,所以AO 2+AB 2=OB 2,即∠OAB =90°,∠ABO =30°,所以EF =BF 2+BE 2-2BF ⋅BE cos ∠ABO =32 2+32 2-2×32×32×32=32,因为c ⋅c -b 2=0,所以OC ⋅OC -12OB =0,即OC ⋅OC -OD =0,所以OC ⋅DC =0,所以点C 的轨迹为以OD 为直径的圆,∵2(|c -a |2+|c -b |2)=2(|CA |2+|CB |2)=4|CE |2+|AB |2=4|CE |2+3 2=4|CE |2+3≥4EF -122+3=7-23,当且仅当C 、E 、F 共线且C 在线段EF 之间时取等号.∴|c -a |2+|c -b |2的最小值为72-3.故答案为:72-3.3(2023·湖北武汉·高一湖北省武昌实验中学校联考期末)已知向量a ,b 满足a +b ⋅b =0,a +4b =4,则a +b +b 的最大值为.【答案】4103/4310【解析】取平行四边形OACB ,连接OC设OA =a ,OB =b ,则OC =a +b ,因为向量a ,b 满足a +b ⋅b =0,所以a +b ⊥b ,即OC ⊥OB ,设OB =m ,OC =n ,m ,n >0,如图以O 为原点,OB ,OC 所在直线为x ,y 轴建立平面直角坐标系,则O 0,0 ,B m ,0 ,C 0,n ,A -m ,n 所以a =OA =-m ,n ,b =OB =m ,0 ,则a +4b =-m ,n +4m ,0 =3m ,n =9m 2+n 2=4,故9m 2+n 2=16,所以a +b +b =0,n +m ,0 =n +m因为9m 2+n 2=16,又sin 2θ+cos 2θ=1,可设3m =4sin θ,n =4cos θ,θ∈0,π2 即m =43sin θ,n =4cos θ,所以m +n =43sin θ+4cos θ=43 2+42sin θ+φ =4103sin θ+φ ,其中tan φ=443=3,φ∈0,π2 ,所以θ+φ∈0,π ,所以sin θ+φ ∈0,1 ,故m +n 的最大值为4103,即a +b +b 的最大值为4103.故选:4103.题型十二琴生不等式法1(2023·福建龙岩·高三校考阶段练习)若函数f x 的导函数f x 存在导数,记f x 的导数为f x .如果对∀x ∈a ,b ,都有f x <0,则f x 有如下性质:f x 1+x 2+⋅⋅⋅+x n n ≥f (x 1)+f (x 2)+⋅⋅⋅+f (x n )n.其中n ∈N *,x 1,x 2,⋯,x n ∈a ,b .若f x =sin x ,则在锐角△ABC 中,根据上述性质推断:sin A +sin B +sin C 的最大值为.【答案】332/323.【解析】f x =sin x ,则f (x )=cos x ,f (x )=-sin x .在锐角△ABC 中,A ,B ,C ∈0,π2,则f (x )=-sin x <0∴ sin A +sin B +sin C 3≤sin A +B +C 3 =sin π3=32,∴ sin A +sin B +sin C 的最大值为332.故答案为:332.2(2023·全国·高三竞赛)半径为R 的圆的内接三角形的面积的最大值是.【答案】334R 2【解析】设⊙O 的内接三角形为△ABC .显然当△ABC 是锐角或直角三角形时,面积可以取最大值(因为若△ABC 是钝角三角形,可将钝角(不妨设为A )所对边以圆心为对称中心作中心对称成为B C ).因此,S △AB C >S △ABC .下面设∠AOB =2α,∠BOC =2β,∠COA =2γ,α+β+γ=π.则S △ABC =12R 2sin2α+sin2β+sin2γ .由讨论知可设0<α、β、γ<π2,而y =sin x 在0,π 上是上凸函数.则由琴生不等式知sin2α+sin2β+sin2γ3≤sin 2α+β+γ 3=32.所以,S △ABC ≤12R 2×3×32=334R 2.当且仅当△ABC 是正三角形时,上式等号成立.故答案为334R 23(2023·北京·高三强基计划)已知正实数a ,b 满足a +b =1,求a +1a b +1b的最小值.【解析】设f (x )=ln x +1x ,0<x <1,则f (x )=x 2-1x 3+x,从而f (x )=-x 4+4x 2+1x 3+x2>0,故f (x )在(0,1)下凸,因此f (a )+f (b )2≥f a +b 2,即a +1a b +1b ≥254,当且仅当a =b =12时等号成立.所以a +1a b +1b的最小值为华254.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最值问题一、点击高考最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面。

以最值为载体,可以考查中学数学的所有知识点,考查分类讨论、数形结合、转化与化归等诸多数学思想和方法,还可以考查学生的思维能力、实践和创新能力。

因此,它在高考中占有比较重要的地位。

回顾近几年高考,从题型分布来看,大多数一道填空或选择题,一道解答题;从分值来看,约占总分的10%左右。

特别是2003年北京卷,选择、填空题各一道,解答题有两道,总分值有36分之多;2003年上海卷,填空题各一道,解答题有两道,总分值有36分之多;2003年上海卷,填空题一道,解答题也是两道,总分值有近30分,两份试卷中均有一道实际应用问题。

由此看来,最值问题虽然是老问题,但一直十分活跃,尤其导数的引入,更是为最值问题的研究注入了新的活力。

可以预见:2005年的高考命题中,有关最值问题,题型、题量、分值将保持稳定,题目的背景会更贴近学生的实际生活,更关注社会热点问题,难度不会太难。

二、考点回顾:分析已有考法,最值问题的呈现方式一般有以下几种:1、函数的最值;2、学科内的其它最值,如三角形的面积最值问题、几何体的体积最值问题、数列的最大项等等;3、字母的取值范围;4、不等式恒成立问题,常常转化为求函数的最值,例如:f(x)≥0对x∈R恒成立⇔f(x)的最小值≥0成立,f(x)≤0对x∈R恒成立⇔f(x)的最大值≤0成立;5、实际应用问题:实际应用问题中,最优化问题占的比例较大,通过建模可化为最值问题。

这类题已成为这几年高考的热点。

可以肯定,这个热度会继续保持。

三、知识概要1、求函数最值的方法:“数”和“形”,数形结合:配方法 直接法 均值不等式法单调性代数方法 导数法判别式法间接法有界性函数的图像平面几何知识几何方法 线性规划解析几何 斜率两点间距离2、求几类重要函数的最值方法;(1)二次函数:配方法和函数图像相结合;(2)),0()(R a a xa x x f ∈≠+=:均值不等式法和单调性加以选择; (3)多元函数:数形结合成或转化为一元函数。

3、实际应用问题中的最值问题一般有下列三种模型:能直接判断线性规划建立目标函数曲函数的最值四、典型例题分析例1(2002·全国卷·理·21) 设a 为实数,)(1)(2R x a x x x f ∈+-+=,(1)讨论)(x f 的奇偶性;(2)求)(x f 的最小值。

【考查目的】本题主要考查函数的概念,函数的概念,函数的奇偶性和分段函数的最值等基础知识,考查分类讨论的思路和逻辑思维能力。

【例题详解】(1)解法一:常规思路:利用定义。

2)(x x f =-+1++a x ,2)(x x f -=-.1---a x若22),()()(x x f x f x f 即为奇函数,则-=-R x a x a x ∈=+-++此等式对+.02 都不成立,故)(x f 不是奇函数;若)(x f 为偶函数,则)()(x f x f =-,即2x +21x a x =++,1+-+a x 此等式对R x ∈恒成立,只能是0=a .故0=a 时,)(x f 为偶数;0≠a 时,)(x f 既不是奇函数也不是偶函数。

解法二:从特殊考虑: ,1)0(+=a f又R x ∈,故)(x f 不可能是奇函数。

若0=a ,则=)(x f 1)(2++=-x x x f ,)(x f 为偶函数;若0≠a ,则12)(,1)(22++=-+=a a a f a a f ,知)()(a f a f ≠-,故)(x f 在0≠a 时,既不是奇函数又不是偶函数。

(2)当a x ≤时,43)21(1)(22++-=++-=a x a x x x f ,由二次函数图象及其性质知: 若21≤a ,函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f ; 若21>a ,函数)(x f 在],(a -∞上的最小值为43)21(=f ,且)()21(a f f ≤。

当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f 。

若21-≤a ,函数)(x f 在),[+∞a 上的最小值为a f -=-43)21(,且)()21(a f f ≤-; 若21->a ,函数)(x f 在),[+∞a 上单调递增,从而函数函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f 。

综上所述,当21-≤a 时,函数)(x f 的最小值是a -43;当2121≤<-a 时,函数)(x f 的最小值为12+a ;当21>a 时,函数)(x f 的最小值是43+a 。

【特别提示】1.研究函数奇偶性的关键是考察函数的定义域是否关于原点对称以及)(x f 与)(x f -是否具有相等或相反的关系;或从特殊情形去估计,再加以验证。

2.二次函数的最值解,一般借助于二次函数的图像,考察图像的对称轴与所给定义域区间的相对位置关系不确定,则需分类讨论。

3.本题根据绝对值的定义去绝对值后,变形为分段函数,分段函数的最值,有些同学概念不清,把每段函数的最小值都认为是整个函数的最小值,从而出现了一个函数有几个最小值的错误结论。

例2、已知函数xa x x x f ++=2)(2).,1[,+∞∈x (1)当21=a 时,求函数)(x f 的最小值; (2)若对任意0)(),,1[〉+∞∈x f x 恒成立,试求实数a 的取值范围。

【考察目的】本题考查求函数的最小值的三种通法:利用均值不等式,利用函数单调性,二次函数的配方法,考查不等式恒成立问题以及转化化归思想。

【例题详解】(1)当21=a 时,211)(',221)(zxx f x x x f -=++=。

1≥x ,∴ 0)(>x f 。

∴ )(x f 在区间),1[+∞上为增函数。

∴ )(x f 在区间),1[+∞上的最小值为27)1(=f 。

(2) 02)(2>++=xa x x x f 在区间),1[+∞上恒成立; ∴ 022>++a x x 在区间),1[+∞上恒成立;∴ a x x ->+22在区间),1[+∞上恒成立;函数x x y 22+=在区间),1[+∞上的最小值为3∴ 3<-a即 3->a【特别提示】1.第(1)题中,,221)(++=xx x f 这类函数,若0>x ,则优先考虑用均值不等式求最小值,但要注意等号是否成立,即用均值不等式来求最值时,必须注意:一正、二定、三相等,缺一不可。

2.不等式恒成立问题常转化为求函数的最值。

例3、设P 为圆2x +2y =1上的动点,则点P 到直线01043=--y x 的距离的最小值为____。

【考查目的】本题考查直线和圆的基础知识,解几中的最值问题及多元函数的最值问题,考查数形结合这一重要数学思想方法。

【例题详解】解法一:设点P ),(00y x ,则点P 到直线01043=--y x 的距离为:5104300--=y x d又12020=+y x ,令)(sin ,cos 00R y x ∈==ααα,则 510sin 4cos 3--=ααd=)34(tan 510)cos(5=-+ϕϕα =2)cos(-+ϕα∴当1)cos(=+ϕα时,d 有最小值1。

解法二:圆心O 到直线01043=--y x 的距离为2,故圆上的点P 到直线01043=--y x 的距离的最小值为2-1=1。

【特别提示】1.本题是解析几何中的最值问题,可借助于形的直观性直接求解,如解法二;也可建立目标函数,转而求函数的最值,如解法一。

2.解法一涉及到求多元函数的最值,一般是通过消元转化为一元函数。

3.函数2)cos(-+=ϕαd 的最小值,有很多同学误以为:当cos()ϕα+取 最小值-1时,函数有最小值,忽视了绝对值。

例4、设曲线x e y -=)0(≥x 在点t e t M -,()处的切线l 与x 轴,y 轴所围成的三角形面积为)(t S 。

(1)求切线l 的方程;(2)求)(t S 的最大值。

【考查目的】本题考查导数公式,导数的几何意义,以及导数的应用等导数的基础知识,考查综合应用能力。

【例题详解】(1)x e y --='∴在点M (t,e t -)处的切线l 的斜率为-t e -∴切线l 的方程为)(t x e e y t t --=---(2)令,0=x 得);1(t e y t +=-令,0=y 得,1t x +=∴ t t S +=121)( )1(t e t +- 2)1(21t e t +=- )0(≥t ∴ t t e t t e t S --+++-=)1()1(21)('2 )1)(1(21t t e t -+=- 令10)('==t t S 得又,0)('S 1;0)('10<>><≤t t t S t 时,时, ∴et t 2)(S 1取到最大值时,= 【特别提示】1.由导数的几何意义知,函数在点M 处的导数值就是曲线在点M 处的切线的全斜率,这是本题的突破口2.建立目标函数,转而求目标函数的最值,这是通法。

3.导数法是求函数最值的通法,但不一定是最佳方法,注意选择。

例1(2004·江苏卷·19)制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损。

某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?【考查目的】本题主要考查简单线性规划的基本知识,以及运用数学知识解决实际问题的能力。

【例题详解】设投资人分别用y x 万元、万元投资甲、乙两个项目,由题意知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0,0,5.11.03.0,10y x y x y x目标函数y x z 5.0+=上述不等式组表示的平面区域如图所示,阴影部分(含边界)是可行域作直线00,05.0:l y x l 关作平行于直线=+的一组直线,,5.0R z z y ∈=+与可行域相交,其中有一条直线经过可行域上的M 点,此时纵截距最大,这里点M 是直线8.11.03.010=+=+y y x 和的交点。

解方程组⎩⎨⎧=+=+8.11.03.0,10y x y x 得 6,4==y x此时765.04=⨯+=z (万元)。

6,4==∴y x 当时z 取得最大值。

相关文档
最新文档