包络检波及同步检波实验

合集下载

包络检波及同步检波实验

包络检波及同步检波实验

1、二极管包络检波的工作原理
当输入信号较大(大于0.5伏)时,利用二极管单向 导电特性对振幅调制信号的解调,称为大信号 检波。
大信号检波原理电路如图1所示
图1:大信号检波原理电路
R1 IN
D R2
GND
R3 C1 3 3n
OUT
C2 0 .1 u F
图2二极管包络检波电路图
2、同步检波
同步检波器用于对载波被抑止的双边带或单 边带信号进行解调。它的特点是必须外加一个 频率和相位都与被抑止的载波相同的电压。 外加载波信号电压加入同步检波器可以有两种方 式,框图如下:
二、实验原理
检波过程是一个解调过程,它与调制过程正好相反。 检波器的作用是从振幅受调制的高频信号中还原出原 调制的信号。常用的检波方法有包络检波和同步检波 两种。全载波振幅调制信号的包络直接反映了调制信 号的变化规律,用二极管包络检波的方法进行解调。 而抑制载波的双边带或单边带振幅调制信号的包络不 能直接反映调制信号的变化规律,无法用包络检波进 行解调,所以采用同步检波方法。
解调抑制载波的双边带调幅信号
载波信号不变,将调制信号 Vs 的峰值电压调 至 80mV ,调节 Rp1 使调制器输出为抑制载 波的双边带调幅信号,然后加至二极管包络检 波器输入端,观察记录检波输出波形,并与调 制信号相比较。
2、1496构成解调器
1、解调全载波信号
( 1 )将图 4 中的 C ' L 另一端接地, C5 另一 端接 A ,按调幅实验中实验内容 2 ( 1 )的条件获得 调制度分别为 30 %、 100 %及> 100 %的调幅波。 将它们依次加至解调器 V ^米的输入端,并在解调器 的载波输入端加上与调幅信号相同的载波信号,分别 记录解调输出波形,并与调制信号相比。

调幅波信号的解调实验报告

调幅波信号的解调实验报告

调幅波信号的解调实验报告一、实验目的本实验旨在通过解调调幅波信号,了解调幅波的特点、解调原理和应用。

二、实验原理1. 调幅波的特点调幅波是一种将模拟信号转换为载波信号的方法,其特点包括:能够传输音频、视频等模拟信号;易于产生和检测;但容易受到噪声和多径效应的影响。

2. 解调原理解调是指将调制后的信号还原为原始模拟信号的过程。

常见的解调方法包括:包络检波法、相干检波法和同步检波法。

其中,包络检波法是通过检测AM信号的包络来获得原始信号;相干检波法是通过将接收到的AM信号与本地振荡器产生同频率振荡,然后进行相减来获得原始信号;同步检波法则是在接收端使用一个与发送端同步的时钟来还原出原始信息。

3. 实验装置本次实验所需装置如下:(1)函数发生器:用于产生载频及模拟信息。

(2)功率放大器:用于放大载频及模拟信息。

(3)带通滤波器:用于滤除载波及其它高频干扰信号。

(4)检波器:用于解调信号。

(5)示波器:用于观察信号波形。

三、实验步骤1. 按照实验原理所述,连接实验装置。

2. 将函数发生器的输出接到功率放大器的输入端,将功率放大器的输出接到带通滤波器的输入端,将带通滤波器的输出接到检波器的输入端,将检波器的输出接到示波器上。

3. 设置函数发生器产生频率为1kHz、幅度为500mVp-p的正弦信号;设置载频频率为10kHz、幅度为100mVp-p;设置功率放大器增益为20dB;设置带通滤波器截止频率为11kHz~9kHz之间;设置示波器时基和电压增益适当。

4. 观察并记录示波器上解调后的信号,并比较其与原始模拟信号的差异。

四、实验结果与分析在完成实验步骤后,我们观察到了以下结果:1. 示波器上显示出了经过解调后的模拟信号,其幅度和频率与原始模拟信号相同。

2. 通过比较解调前后的信号,我们发现解调后的信号更加平滑,波形更加接近原始信号。

这说明我们成功地将调幅波信号解调出了原始模拟信号,并且解调后的信号比解调前的信号更加接近原始信息。

实验5振幅解调器、包络检波、同步检波详解

实验5振幅解调器、包络检波、同步检波详解

太原理工大学现代科技学院高频电子线路课程实验报告专业班级测控14-4学号2014101XXX姓名XXXXXXXX指导教师XXXXXXX实验名称 振幅解调器、包络检波、同步检波 同组人 专业班级 测控14-4 姓名 XX 学号 201410XXX 成绩实验5 振幅解调器、包络检波、同步检波5-1 振幅解调基本工作原理解调过程是调制的反过程,即把低频信号从高频载波上搬移下来的过程。

解调过程在 收信端,实现解调的装置叫解调器。

一.普通调幅 波的解调振幅调制的解调被称为检波,其作用是从调幅波中不失真地检出调制信号。

由于普通调幅波的包络反映了调制信号的变化规律,因此常用非相干解调方法。

非相干解调有两种方式,即小信号平方律检波和大信号包络检波。

我们只介绍大信号包络检波器。

1.大信号检波基本工作原理大信号检波电路与小信号检波电路基本相同。

由于大信号检波输入信号电压幅值一般在 500mV 以上,检波器的静态偏置就变得无关紧要了。

下面以图 6-1 所示的简化电路为例进行分析。

大信号检波和二极管整流的过程相同。

图 6-2 表明了大信号检波的工作原理。

输入信号 ui(t) 为正并超过 C 和 RL 上的 uo(t) 时,二极管导通,信号通过二极管向 C 充电,此时 uo(t) 随充电电压上升而升高。

当 ui(t) 下降且小于uo(t) 时,二极管反向截止,此时停止向 C 充电, uo(t) 通过 RL 放电, uo(t) 随放电而下降。

……………………………………装………………………………………订…………………………………………线……………………………………………………………………………装………………………………………订…………………………………………线……………………………………充电时,二极管的正向电阻 rD 较小,充电较快。

uo(t) 以接近 ui(t) 的上升速率升高。

放电时,因电阻 RL 比 rD 大得多(通常 RL5 ~ 10k),放电慢,故 uo(t) 的波动小,并保证基本上接近于 ui(t) 的幅值。

解调电路

解调电路

振幅调制有三种信号形式:
普通调幅信号(AM)、双边带信号(DSB)和单边带信 号(SSB)。
①不论哪种振幅调制信号,对于同步检波电路而言,都可实
现解调。 ②对于普通调幅信号来说,由于载波分量的存在,可以直接 采用非线性器件(二极管、三极管)实现相乘作用,得 到所需的解调电压,不必另加同步信号,这种检波电路
称为包络检波。
二极管包络检波电路有两种电路形式:二极管串联型和二 极管并联型。
二极管包络检波电路有两种电路形式:二 极管串联型和二极管并联型,如图5.31所示。下面主要 讨论二极管串联型包络检波电路。 图二极管串联型包络检波电路,是二极管VD 和低 通滤波器RLC相串接而构成的二极管包络检波电路。
(5―30)
VD RL1 C RL2 C2 R ′L Cc + u -
+ us -
减小交、直流负载电阻值差别的检波电路
2 同步检波电路
1.叠加型同步检波电路 2.MC1596模拟乘法器构成的同步检波
VD us ur (a) + 包络检波器 u us - + ur - - (b)
叠加型同步检波电路模型
鉴频 特性
三、相位鉴频器
模拟鉴相器 乘积型 叠加型
鉴相器
数字鉴相器 1、乘积型相位鉴频器
2、叠加型相位鉴频器
乘积型相位鉴频器
1. 乘积型鉴相器 模拟相乘器用来检出两个输入信号之间的相位差,并将相位 差变换为电压信号。 低通滤波器用于取出低频信号、滤除高频信号,从而得解调 输出电压uo (t)。
设输入信号为
0 π ( ) arctan(2Qe ) 由于 2 0 0 π ) 时 当失谐量很小,使 arctan(2Qe 0 6 π 2Qe ( ) ( 0 ) 2 0

高频实验五:振幅解调器(包络检波、同步检波)

高频实验五:振幅解调器(包络检波、同步检波)

实验5 振幅解调器(包络检波、同步检波)—、实验准备1.做本实验时应具备的知识点:●振幅解调●二极管包络检波●模拟乘法器实现同步检波2.做本实验时所用到的仪器:●③号实验板《调幅与功率放大器电路》●双踪示波器●万用表●直流稳压电源●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握用包络检波器实现AM波解调的方法。

了解滤波电容数值对AM波解调影响;3.理解包络检波器只能解调m≤100%的AM波,而不能解调m>100%的AM波以及DSB 波的概念;4.掌握用MC1496模拟乘法器组成的同步检波器来实现AM波和DSB波解调的方法;5.了解输出端的低通滤波器对AM波解调、DSB波解调的影响;6.理解同步检波器能解调各种AM波以及DSB波的概念。

三、实验内容1.用示波器观察包络检波器解调AM波、DSB波时的性能;2.用示波器观察同步检波器解调AM波、DSB波时的性能;3.用示波器观察普通调幅波(AM)解调中的对角切割失真和底部切割失真的现象。

四、基本原理振幅解调即是从振幅受调制的高频信号中提取原调制信号的过程,亦称为检波。

通常,振幅解调的方法有包络检波和同步检波两种。

1.二极管包络检波二极管包络检波器是包络检波器中最简单、最常用的一种电路。

它适合于解调信号电平较大(俗称大信号,通常要求峰一峰值为1.5V 以上)的AM 波。

它具有电路简单,检波线性好,易于实现等优点。

本实验电路主要包括二极管、RC 低通滤波器和低频放大部分,如图9-1所示。

图中,D21为检波管,C23、R20、C24构成低通滤波器,W21为二极管检波直流负载,W21用来调节直流负载大小,W22相串构成二极管检波交流负载,W22用来调节交流负载大小。

开关K21是为二极管检波交流负载的接入与断开而设置的,短路下方时为接入交流负载,全不接入为断开交流负载。

短路上方为接入后级低放。

调节W23可调整输出幅度。

图中,利用二极管的单向导电性使得电路的充放电时间常数不同(实际上,相差很大)来实现检波,所以RC 时间常数的选择很重要。

包络检波器

包络检波器

从调幅波中恢复调制信号的电路,也可称为幅度解调器。

与调制器一样,检波器必须使用非线性元件,因而通常含有二极管或非线性放大器。

检波器分为包络检波器和同步检波器。

前者的输出信号与输入信号包络成对应关系,主要用于标准调幅信号的解调。

后者实际上是一个模拟相乘器,为了得到解调作用,需要另外加入一个与输入信号的载波完全一致的振荡信号(相干信号)。

同步检波器主要用于单边带调幅信号的解调或残留边带调幅信号的解调。

包络检波器图1是典型的包络检波电路。

由中频或高频放大器来的标准调幅信号u a(t)加在L1C1回路两端。

经检波后在负载R L C上产生随u a(t)的包络而变化的电压u(t),其波形如图2所示。

这种检波器的输出u(t)与输入信号u a(t)的峰值成正比,所以又称峰值检波器。

包络检波器的工作原理可用图2的波形来说明。

在t1<t<t2时间内,输入信号瞬时值u a(t)大于输出电压u(t),二极管导通,电容C通过二极管正向电阻r i充电,u(t)增大;在t2<t<t3时间内,u a(t)小于u(t),二极管截止,C通过R L放电,因此u(t)下降;到t3以后,二极管又重新导电,这一过程照此重复不已。

只要R L C选择恰当,就可在负载R L C上得到与输入信号包络成对应关系的输出电压u(t)。

如果时间常数R L C 太大,放电速度就会放慢,当输入信号包络下降时,u(t)可能始终大于u a(t),造成所谓对角切割失真(图2)。

此外,检波器的输出通常通过电容、电阻耦合电路加到下一级放大器,如图1中虚线所示。

如果R g太小,则检波后的输出电压u(t)的底部即被切掉,产生所谓的底部切割失真。

同步检波器图3为同步检波器的框图。

模拟相乘器的一个输入为一单频调制的单边带调幅信号,即u s(t)=U m cos(ωc t+Ωm t),其中ωc为载波信号角频率,Ωm为调制信号角频率;另一输入是本机产生的相干信号,即u c(t)=U c cos ωc t,则乘法器的输出电压u0(t)与u S(t)和u c(t)的乘积成正比,即u0(t)=Kus*(t)uc(t)式中K为一比例常数。

am调制解调实验报告

am调制解调实验报告

am调制解调实验报告Am调制解调实验报告实验目的:通过实验学习Am调制解调原理及实验方法,掌握Am调制解调的基本原理和实验操作技能。

一、实验原理Am调制是指用载波的幅度来携带信息信号的一种调制方式。

在Am调制中,信息信号的幅度变化会导致载波的幅度发生相应的变化,从而实现信息信号的传输。

Am调制的数学表达式为:s(t) = (1 + m(t)) * Ac * cos(2πfct),其中s(t)为调制信号,m(t)为信息信号,Ac为载波幅度,fc为载波频率。

Am解调是指将Am调制信号还原成原始的信息信号的过程。

通常采用的Am解调方式有包络检波和同步检波两种。

二、实验仪器1. 信号发生器2. 调制解调器3. 示波器4. 电压表三、实验步骤1. 将信号发生器连接到调制解调器的输入端,调制解调器的输出端连接到示波器。

2. 调制发射端:将信号发生器的正弦波输出作为信息信号输入到调制解调器中,调制解调器的载波频率设置为一定值,调制深度为50%。

3. 示波器观察:用示波器观察调制后的信号波形,观察到载波频率不变,但幅度随着信息信号的变化而变化。

4. 解调接收端:将调制解调器的输出端连接到电压表,观察电压表的读数。

5. 调制深度变化:改变调制深度,观察电压表的读数变化。

四、实验结果通过实验观察,我们成功实现了Am调制和解调的过程。

在调制过程中,信息信号的幅度变化导致了载波的幅度变化,而在解调过程中,我们成功将调制信号还原成了原始的信息信号。

五、实验结论通过本次实验,我们深入了解了Am调制解调的原理和实验操作方法,掌握了Am调制解调的基本原理和实验操作技能,为我们今后的学习和工作打下了坚实的基础。

六、实验心得通过本次实验,我们不仅学习到了Am调制解调的原理和实验操作方法,更重要的是培养了我们的动手能力和实验操作技能。

这对我们今后的学习和工作都将有着重要的帮助和指导作用。

希望我们能够在今后的学习和工作中不断积累经验,提高自己的实验操作能力,为科学研究和技术创新做出更大的贡献。

通信原理硬件实验报告

通信原理硬件实验报告

通信原理硬件实验报告实验二抑制载波双边带的产生一.实验目的:1.了解抑制载波双边带(SC-DSB)调制器的基本原理。

2.测试SC-DSB 调制器的特性。

二.实验步骤:1.将TIMS 系统中的音频振荡器(Audio Oscillator)、主振荡器(Master Signals)、缓冲放大器(Buffer Amplifiers)和乘法器(Multiplier)按图连接。

2.用频率计来调整音频振荡器,使其输出为1kHz 作为调制信号,并调整缓冲放大器的K1,使其输出到乘法器的电压振幅为1V。

3.调整缓冲放大器的K2,使主振荡器输至乘法器的电压为1V 作为载波信号。

4.测量乘法器的输出电压,并绘制其波形。

见下图:5.调整音频振荡器的输出,重复步骤4。

见下图:6.将电压控制振荡器(VCO)模快和可调低通滤波器(Tuneable LPF)模块按图连接。

8.将可调低通滤波器的频率范围选择范围至“wide”状态,并将频率调整至最大,此时截至频率大约在12kHz 左右。

LPF 截止频率最大的时候输出:(频响)9.将可调低通滤波器的输出端连接至频率计,其读数除360 就为LPF 的3dB 截止频率。

10.降低可调LPF 的截止频率,使SC-DSB 信号刚好完全通过低通滤波器,记录此频率(fh=fc+F)。

11.再降低3dB 截止频率,至刚好只有单一频率的正弦波通过低通滤波器,记录频率(fl=fc-F)只通过单一频率的LPF 输出:12.变化音频振荡器输出为频率为800Hz、500Hz,重复步骤10、11。

OSC=500HZOSC=800HZ 的频响:三、思考题1、如何能使示波器上能清楚地观察到载波信号的变化?答:可以通过观察输出信号的频谱来观察载波的变化,另一方面,调制信号和载波信号的频率要相差大一些,可通过调整音频震荡器来完成。

2.用频率计直接读SC—DSB 信号,将会读出什么值。

答:围绕一个中心频率来回摆动的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十二包络检波及同步检波实验学院:光电与信息工程学院专业:电子信息工程姓名:学号:一、实验目的1.进一步了解调幅波的原理,掌握调幅波的解调方法。

2.掌握二极管峰值包络检波的原理。

3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。

4. 掌握用集成电路实现同步检波的方法。

二、实验内容1.完成普通调幅波的解调。

2.观察抑制载波的双边带调幅波的解调。

3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。

三、实验仪器1.高频实验箱 1台2.双踪示波器 1台3.频率特性测试仪(可选)1台四、实验原理及实验电路说明检波过程是一个解调过程,它与调制过程正好相反。

检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。

还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。

假如输入信号是高频等幅信号,则输出就是直流电压。

这是检波器的一种特殊情况,在测量仪器中应用比较多。

例如某些高频伏特计的探头,就是采用这种检波原理。

若输入信号是调幅波,则输出就是原调制信号。

这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。

从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图12-1所示(此图为单音频Ω调制的情况)。

检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。

常用的检波方法有包络检波和同步检波两种。

有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。

而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。

图12-1 检波器检波前后的频谱1.二极管包络检波的工作原理当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。

大信号检波原理电路如图12-2(a)所示。

检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器C充电,由于二极管的正向导通电阻很小,所以充电电流i D很大,使电容器上的电压V C很快就接近高频电压的峰值。

充电电流的方向如图12-2(a)图中所示。

V ii V C图12-2(a)(b)tt 1t 2t 3这个电压建立后通过信号源电路,又反向地加到二极管D 的两端。

这时二极管导通与否,由电容器C 上的电压V C 和输入信号电压V i 共同决定.当高频信号的瞬时值小于V C 时,二极管处于反向偏置,管子截止,电容器就会通过负载电阻R 放电。

由于放电时间常数RC 远大于调频电压的周期,故放电很慢。

当电容器上的电压下降不多时,调频信号第二个正半周的电压又超过二极管上的负压,使二极管又导通。

如图12-2(b )中的tl 至t2的时间为二极管导通的时间,在此时间内又对电容器充电,电容器的电压又迅速接近第二个高频电压的最大值。

在图12-2(b )中的t2至t3时间为二极管截止的时间,在此时间内电容器又通过负载电阻R 放电。

这样不断地循环反复,就得到图12-2(b )中电压c v 的波形。

因此只要充电很快,即充电时间常数R d ·C 很小(R d 为二极管导通时的内阻):而放电时间常数足够慢,即放电时问常数R·C 很大,满足R d ·C<<RC ,就可使输出电压c v 的幅度接近于输入电压i v 的幅度,即传输系数接近l 。

另外,由于正向导电时间很短,放电时间常数又远大于高频电压周期(放电时c v 的基本不变),所以输出电压c v 的起伏是很小的,可看成与高频调幅波包络基本一致。

而高频调幅波的包络又与原调制信号的形状相同,故输出电压c v 就是原来的调制信号,达到了解调的目的。

本实验电路如图12-3所示,主要由二极管D 及RC 低通滤波器组成,利用二极管的单向导电特性和检波负载RC 的充放电过程实现检波,所以RC 时间常数的选择很重要。

RC 时间常数过大,则会产生对角切割失真又称惰性失真。

RC 常数太小,高频分量会滤不干净。

综合考虑要求满足下式:aam m RC 2max1-<<Ω其中:m 为调幅系数,m ax Ω为调制信号最高角频率。

当检波器的直流负载电阻R 与交流音频负载电阻R Ω不相等,而且调幅度a m 又相当大时会产生负峰切割失真(又称底边切割失真),为了保证不产生负峰切割失真应满足RR m a Ω<。

TH4TH5TP1TP2图12-3 峰值包络检波(465KHz)2.同步检波(1)同步检波原理同步检波器用于对载波被抑止的双边带或单边带信号进行解调。

它的特点是必须外加一个频率和相位都与被抑止的载波相同的电压。

同步检波器的名称由此而来。

外加载波信号电压加入同步检波器可以有两种方式:本地载波(a)υυ(b)图12-4 同步检波器方框图一种是将它与接收信号在检波器中相乘,经低通滤波器后检出原调制信号,如图12-4(a)所示;另一种是将它与接收信号相加,经包络检波器后取出原调制信号,如图12-4(b)所示。

本实验选用乘积型检波器。

设输入的已调波为载波分量被抑止的双边带信号υ1,即ttVv111coscosωΩ=本地载波电压)cos(ϕω+=tVv本地载波的角频率ω0准确的等于输入信号载波的角频率ω1,即ω1=ω0,但二者的相位可能不同;这里φ表示它们的相位差。

这时相乘输出(假定相乘器传输系数为1)ϕωϕωϕϕωω+Ω-++Ω++Ω=+Ω=t V V t V V t V V t t t V V v )2cos[(41])2cos[(41cos cos 21)cos()cos (cos 1011010121012 低通滤波器滤除2ω1附近的频率分量后,就得到频率为Ω的低频信号t V V v Ω=Ωcos cos 2101ϕ由上式可见,低频信号的输出幅度与cos φ成反比。

当φ=0时,低频信号电压最大,随着相位差φ加大,输出电压减弱。

因此,在理想情况下,除本地载波与输入信号载波的角频率必须相等外,希望二者的相位也相同。

此时,乘积检波称为“同步检波”。

(2)实验电路说明实验电路如图12-5(见本实验后)所示,采用MC1496集成电路构成解调器,载波信号从J8经C 12,W 4,W 3,U 3,C 14加在8、10脚之间,调幅信号V AM 从J11经C 20加在1、4脚之间,相乘后信号由12脚输出,经低通滤波器、同相放大器输出。

五、实验步骤一、二极管包络检波1. 解调全载波调幅信号 (1)m<30%的调幅波检波从J2处输入455KHZ 、峰-峰值V p-p =0.5V~1V 、 m<30%的已调波。

将开关S1的1拨上(2拨下),S2的2拨上(1拨下),将示波器接入TH5处,观察输出波形. (2)加大调制信号幅度,使m=100%,观察记录检波输出波形.2. 观察对角切割失真保持以上输出,将开关S1的2拨上(1拨下),检波负载电阻由2.2K Ω变为51K Ω,在TH5处用示波器观察波形并记录,与上述波形进行比较。

3. 观察底部切割失真将开关S2的1拨上(2拨下),S1同步骤2不变,在TH5处观察波形,记录并与正常解调波形进行比较。

二、集成电路(乘法器)构成解调器4.解调全载波信号按调幅实验中实验内容获得调制度分别为30%,100%及>100%的调幅波。

将它们依次加至解调器调制信号输入端J11,并在解调器的载波输入端J8加上与调幅信号相同的载波信号,分别记录解调输出波形,并与调制信号相比。

5.解调抑制载波的双边带调幅信号按调幅实验中实验内容的条件获得抑制载波调幅波,加至图12-3的调制信号输入端J11,观察记录解调输出波形,并与调制信号相比较。

六、实验结果1.解调全载波调幅信号(1)m<30%的调幅波检波M为调幅系数,电路中的RC是固定的,我们需要满足m<RL’/R,所以m<30%是比较合适的值,得到的波形是没有失真的波形。

输出波形如下:(2)m=100%的调幅波检波而当m=100%就明显有些偏大了,所以得到的波形图有略微的失真。

输出波形如下:2、对角切割失真当电路中RC选得过大,也就是C通过R的放电速度过慢时,电容器上的端电压不能紧跟输入调幅波嗯幅度下降而及时放电,这样,输出电压将跟不上调幅波的包络变化而产生失真。

输出波形如下:3、底部切割失真当检波电路输入单频调制的调幅信号时,调幅系数m比较大,因检波电路的直流负载电阻与交流负载电阻数值相差较大,使得输出的低频电压U在负峰值附近被削。

输出波形如下:七、实验思考题1.观察对角切割失真和底部切割失真现象并分析产生原因。

答:对角切割失真:本实验电路如图12-3所示,主要由二极管D及RC低通滤波器组成,利用二极管的单向导电特性和检波负载RC的充放电过程实现检波,所以RC时间常数的选择很重要。

RC时间常数过大,则会产生对角切割失真又称惰性失真。

底部切割失真:m又相当检波器的直流负载电阻R与交流音频负载电阻RΩ不相等,而且调幅度a当大时会产生负峰切割失真(又称底边切割失真),2.从工作频率上限、检波线性以及电路复杂性三个方面比较二极管包络检波和同步检波。

答:有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。

而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。

包络检波适用范围小,只适用于AM波解调,并且会因参数选择不当产生各种失真(底部切割失真、对角切割失真等),但解调电路较简单。

同步检波适用范围广,AM波,DSB,SSB信号均可适用,并且检波效率高,检波线性好,乘法器输出电压中,不存在载波分量Wc,工作稳定等优点,但解调电路相对较复杂。

综上所述,同步检波的工作频率上限比较大、检波线性好;但是电路复杂性来看,二极管包络检波电路会比较简单。

67R 27S S B图12-5 同步检波。

相关文档
最新文档