二极管包络检波实验,实验二,高频电子线路实验报告,南京理工大学紫金学院
高频包络检波,同步检波实验报告

高频实验报告————振幅解调器(包络检波,同步检波)姓名:王少阳学号:2班级:2013级电子一班一、二极管包络检波:(一)AM波的解调1、m=30%的AM波解调上面是8TP03的输出,下面是10TP02的输出2、m=100%的AM波解调上面是8TP03的输出,下面是10TP02出的输出3、m>100%的AM波解调上面是8TP03的输出,下面是10TP02出的输出4、对角线切割失真上面是8TP03的输出,下面是10TP02出的输出5、底部切割失真波形上面是8TP03的输出,下面是10TP02出的输出(二)DSB波的解调上面为8TP03的输出,下面为10TP02的输出上面为8TP02的输出,下面为10TP02的输出二:集成电路(乘法器)构成的同步检波器1、DSB波的解调2、SSB波的解调实验报告要求:1、输入的调幅波AM波DSB m=30% m=100% m>100%包络检波能正确调解能正确调解不能正确调解不能正确调解同步检波能正确调解能正确调解能正确调解能正确调解2、1、产生对角切割失真的原因是滤波时间常数RC选得过大,以致滤波电容的放电速率跟不上包络变化速率所造成。
2、底部切割失真是由于检波器的低频交流负载与直流负载电阻不同而引起的,通常检波被输出的低频电压经耦合电路[图7(a)中的R1C1]再送至低频放大器中去由于C1数值很大,(约为10微法)它的两端降有直流电压为载波幅度的平均值Uco若R1<R时,该电压大部分落在R两端上,以致在音频包络负半波时,输入电压可能低于R两端的直流电压,于是二极管截止,输出信号不再随输入信号包络的下降而改变,产生如图7-b的底边切割失真,要避免此失真,应满足式m<R1/(R1+R);式中:R为直流电阻,交流电阻R-=R//R1。
不失真条件可写为m<R-/Ro。
3、1、同步检波不存在门限效应,而包络检波在一定情况下会存在门限效应;2、同步检波在接收端需要加一个与载波同频同相的波,其对时序的要求比较严格,而包络检波则不需要加;结论与体会:通过这次的实验,我进一步了解了解调的的工作原理,掌握了包络检波和同步检波的方法,并研究了已调波与调制信号,载波以及解调波之间的关系这次的实验,其中有的波形并不太容易调制出现,费了很大的力气,但最终还是成功了,这次的实验,不仅仅收获了知识,将知识应用于实践,更锻炼我们的耐心,很有收获!。
高频电子线路实验报告

实验一 高频小信号放大器1.1 实验目的1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、 熟悉谐振回路的调谐方法及测试方法。
3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。
MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。
波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,f(KHz)65 75 165 265 365 465 1065 1665 2265 2865 3465 4065U0 (mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。
,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。
实验四LC正弦波振荡电路实验,高频电子线路,南京理工大学紫金学院实验报告

高频实验报告实验名称:LC正弦波振荡电路实验姓名:学号:班级:通信时间:2014.01南京理工大学紫金学院电光系一、 实验目的1.进一步学习掌握正弦波振荡电路的相关理论。
2.掌握电容三点式LC 振荡电路的基本原理,熟悉其各元件功能;熟悉静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响。
3.熟悉LC 振荡器频率稳定度,加深对LC 振荡器频率稳定度的理解。
二、实验基本原理与电路1. LC 振荡电路的基本原理LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器是指振荡回路是由LC元件组成的。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。
普通电容三点式振荡器的振荡频率不仅与谐振回路的LC 元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。
当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。
为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图2-1和2-2所示。
串联改进型电容三点式振荡电路——克拉泼电路振荡频率为:图2-1克拉泼振荡电路C LCC L图2-2西勒振荡电路∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 选C C >>1,C C >>2时,C C -∑~,振荡频率0ω可近似写成LC10≈ω这就使0ω几乎与o C 和i C 值无关,提高了频率稳定度。
二极管包络检波实验,实验二,高频电子线路实验报告,南京理工大学紫金学院

高频实验报告实验名称:二极管包络检波实验姓名:学号:班级:通信时间:2013.12南京理工大学紫金学院电光系一、 实验目的1.加深对二极管大信号包络检波工作原理的理解。
2.掌握用二极管大信号包络检波器实现普通调幅波(AM )解调的方法。
了解滤波电容数值对AM 波解调影响。
3.了解电路参数对普通调幅波(AM )解调影响。
图4-1是二极管大信号包络检波电路,图4-2表明了大信号检波的工作原理。
输入信号)(t u i 为正并超过C 和1R 上的)(0t u 时,二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。
当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充电并通过L R 放电,)(0t u 随放电而下降。
充电时,二极管的正向电阻D r 较小,充电较快,)(0t u 以接近)(t u i 上升的速率升高。
放电时,因电阻L R 比D r 大的多(通常Ω=k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。
如果)(t u i 是高频等幅波,则)(0t u 是大小为0U 的直流电压(忽略了少量的高频成分),这正是带有滤波电容的整流电路。
当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将随之近似成比例地升高或降低。
当输入信号为调幅波时,检波器输出电压)(0t u 就随着调幅波的包络线而变化,从而获得调制信号,完成检波作用,由于输出电压)(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。
2.二极管大信号包络检波效率检波效率又称电压传输系数,用d η表示。
它是检波器的主要性能指标之一,用来描述检波器将高频调幅波转换为低频电压的能力。
d η定义为:cma mcm a m d U m U U m U ΩΩ==)()(调幅波包线变化的幅度检出的音频电压幅度η当检波器输入为高频等幅波时,输出平均电压0U ,则d η定义为cmcm d U UU U 00)()(==检波电压的幅值整出的直流电压η这两个定义是一致的,对于同一个检波器,它们的值是相同的。
二极管包络检波实验报告

一、实验设计方案2.实验原理、试验流程或装置示意图实验原理:图6-1是二极管大信号包络检波电路 图6-2表明了大信号检波的工作原理。
输入信号)(U i(t)为正并超过C和LR上的)( U0(t)时二极管导通信号通过二极管向C充电 此时)( U0(t)随充电电压上升而升高。
当)( (U i(t)下降且小于)(0tu时二极管反向截止此时停止向C充电并通过LR放电)( U0(t)随放电而下降。
充电时二极管的正向电阻Dr较小充电较快)( U0(t)以近)(U i(t)上升的速率升高。
放电时 因电阻LR比Dr大得多通常kRL10~5放故)( U0(t)的波动小并保证基本上接近于)( (U i(t)的幅值。
如果)((U i(t)是高频等幅波且LR很大则)( U0(t)几乎是大小为U0的直流电压 这正是带有滤波电容的半波整流电路。
当输入信号)( (U i(t)的幅度增大或减少时 检波器输出电压)( U0(t)也将随之近似成比例地升高或降低。
当输入信号为调幅波时检波器输出电压)( U0(t)就随着调幅波的包络线而变化从而获得调制信号完成检波作用由于输出电压)( U0(t)的大小与输入电压的峰值接近相等故把这种检波器称为峰值包络检波器。
30实验设备及材料二、实验报告1.实验现象与结果试验得到输入的波形及数据如下输出的波形如下2.对实验现象、实验结果的分析及结论检波输出可能产生三种失真:第一由于检波二极管伏安特性弯曲引起的非线性失真;第二是由于滤波电容放电慢引起的惰性失真;第三是由于输出耦合电容上所充的直流电压引起的负峰值失真,其中第一种失真主要存在于小信号检波中并且是小信号检波器中不可避免的失真。
对于大信号检波器这种失真影像不大,主要是后两种失真。
(1)惰性失真(对角失真)(2)、割底失真三.实验总结1.本次试验成败及原因分析惰性失真(对角线切割失真)断开J1、J3 连接J2 由IN1端加入普通调幅波 AM 分别调节集成乘法器幅度调制实验电路板上产生的普通调幅波 AM 的调幅系数m a、调制信号频率Ω、二极管大信号包络检波实验电路上电位器RW1 在TP2点观测图6-3所示惰性失真波形图。
高频电子线路实验指导书1

高频电子线路实验指导书南京理工大学紫金学院二〇一一年十二月目录1. JH5007A+新型高频电子电路实验系统介绍 (3)2. 实验一小信号调谐放大器实验 (7)3. 实验二 LC、晶体正弦波振荡电路实验 (12)4. 实验三集成乘法器幅度调制实验 (17)5. 实验四二极管包络检波实验 (25)1. JH5007A+新型高频电子电路实验系统介绍一、电路组成及模块配置1、JH5007/A+新型高频电子电路综合实验系统由3个仪表模块、11块实验功能模块、高频与低频连接电缆、电源模块及机箱等组成。
原理性实验模块可根据用户需求任意选用与扩充(参见下部示意图)。
2、标配实验功能模块:模块A1 集成乘法器调幅实验模块A3 调幅信号同步解调实验模块A4 二极管包络检波电路实验模块A5 LC、晶体正弦波振荡电路实验模块A6 变容二极管调频实验模块A7 电容耦合相位鉴频实验模块A8 晶体三极管混频电路实验模块A9 小信号调谐放大器实验模块A10高频功率放大器实验模块A17集成锁相环测试及调频实验模块A18集成锁相环鉴频实验3、本新型高频电子电路综合实验系统可为教学提供的主要实验内容如下:实验一小信号调谐放大器实验(A9+A5)实验二 LC、晶体正弦波振荡电路实验(A5+频率计)实验三集成乘法器幅度调制实验(低频源+高频源+A1)实验四二极管包络检波实验(低频源+高频源+A1+A4)二、概述JH5007/A+新型高频电子电路综合实验系统内均配置了低频信号源模块、高频信号源模块和精密数字频率计模块,统称为“仪表模块”。
其中低频信号源模块可产生方波、正弦波和三角波等函数波形,信号频率及各波形的输出幅度均可独立调节,主要用于在各类调制/解调实验中产生发端原始调制信号。
频率范围按不同应用分为两档,第一档为10Hz~1.5KHz;第二档为10KHz~700KHz。
高频信号源模块可分多档粗调选择频率范围,每一档内又可进行连续细调。
高频电子线路课程设计实验报告

高频电子线路课程设计报告班级姓名指导教师日期前言:课程设计是电子技术课程的实践性教学环节,是对学生学习电子技术的综合性训练,该训练通过学生独立进行某一课题的设计、安装和调试来完成。
学生通过动脑、动手解决若干个实际问题,巩固和运用在高频电子线路课程中所学的理论知识和实验技能,基本掌握常用电子电路的一般设计方法,提高设计能力和实验技能,为以后从事电子电路设计、研制电子产品打下基础。
本文设计了包括选频网络的设计、超外差技术的应用和三点式振荡器在内的基础设计以及振幅调制与解调电路的设计。
选频网络应用非常广泛,可以用作放大器的负载,具有阻抗变换、频率选择和滤波的功能;超外差技术是指利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预定的频率的电路,主要指混频电路;三点式振荡器用于产生稳定的高频振荡波,在通信领域应用广泛;振幅调制解调都属于频谱的线性搬移电路,是通信系统及其它电子线路的重要部件。
在设计过程中查阅了大量相关资料,对所要设计的内容进行了初步系统的了解,并与老师和同学进行了充分的讨论与交流,最终通过独立思考,完成了对题目的设计。
实验过程及报告的完成中存在的不足,希望老师给予纠正。
目录摘要 (4)设计内容 (5)设计要求 (5)一、基础设计 (6)1、选频网络的设计 (6)2、超外差技术的设计 (9)3、三点式振荡器的设计 (11)二、综合设计:调幅解调电路的设计 (15)1、调幅电路的设计: (15)2、解调电路的设计 (20)结束语 (26)参考文献: (26)心得体会 (27)高频电子线路课程设计摘要本次课程设计主要任务是完成选频网络的设计、超外差技术的应用、三点式振荡器的设计这三个基础设计以及调幅解调电路的综合设计。
其中采用LC并联谐振回路实现谐振频率为8.2MHz,通频带为600KHZ的选频网络;对超外差技术原理进行了学习并针对其主要应用收音机进行详细的说明;对三点式振荡器的构造原则和主要类型进行简明扼要地介绍,采用电容串联改进型电容三点式振荡电路完成一定振荡频率的振荡器的设计;充分了解了调幅解调的原理并进行详细说明,在此基础上设计幅度调制和解调电路。
变容二极管调频实验报告(高频电子线路实验报告)

变容二极管调频实验一、实验目的1、掌握变容二极管调频电路的原理。
2、了解调频调制特性及测量方法。
3、观察寄生调幅现象,了解其产生及消除的方法。
二、实验内容1、测试变容二极管的静态调制特性。
2、观察调频波波形。
3、观察调制信号振幅时对频偏的影响。
4、观察寄生调幅现象。
三、实验仪器1、信号源模块1块2、频率计模块1块3、 3 号板1块4、双踪示波器1台5、万用表1块6、频偏仪(选用)1台四、实验原理及电路1、变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。
其频率的变化量与调制信号成线性关系。
常用变容二极管实现调频。
变容二极管调频电路如图1所示。
从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。
C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。
本电路中使用的是飞利浦公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V的区间内,变容二极管的容值可由35P到8P左右的变化。
电压和容值成反比,也就是TP6的电平越高,振荡频率越高。
图2表示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。
在(a )中,U 0是加到二极管的直流电压,当u =U 0时,电容值为C 0。
u Ω是调制电压,当u Ω为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当u Ω为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。
在图(b )中,对应于静止状态,变容二极管的电容为C 0,此时振荡频率为f 0。
因为LCf π21=,所以电容小时,振荡频率高,而电容大时,振荡频率低。
从图(a )中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LCf π21=,f 和C 的关系也是非线性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频实验报告
实验名称:二极管包络检波实验
姓名:
学号:
班级:通信
时间:2013.12
南京理工大学紫金学院电光系
一、 实验目的
1.加深对二极管大信号包络检波工作原理的理解。
2.掌握用二极管大信号包络检波器实现普通调幅波(AM )解调的方法。
了解滤波电容数值对AM 波解调影响。
3.了解电路参数对普通调幅波(AM )解调影响。
图4-1是二极管大信号包络检波电路,图4-2表明了大信号检波的工作原理。
输入信号)(t u i 为正并超过C 和1R 上的)(0t u 时,二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。
当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充电并通过L R 放电,)(0t u 随放电而下降。
充电时,二极管的正向电阻D r 较小,充电较快,)(0t u 以接近)(t u i 上升的速率升高。
放电时,因电阻L R 比D r 大的多(通常Ω=k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。
如果)(t u i 是高频等幅波,则)(0t u 是大小为0U 的直流电压(忽略了少量的高频成分),这正是带有滤波电容的整流电路。
当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将随之近似成比例地升高或降低。
当输入信号为调幅波时,检波器输出电压)(0t u 就随着调幅波的包络线
而变化,从而获得调制信号,完成检波作用,由于输出电压)(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。
2.二极管大信号包络检波效率
检波效率又称电压传输系数,用d η表示。
它是检波器的主要性能指标之一,用来描述检波器将高频调幅波转换为低频电压的能力。
d η定义为:
cm
a m
cm a m d U m U U m U ΩΩ==
)()(调幅波包线变化的幅度检出的音频电压幅度η
当检波器输入为高频等幅波时,输出平均电压0U ,则d η定义为
cm
cm d U U
U U 00)()(==
检波电压的幅值整出的直流电压η
这两个定义是一致的,对于同一个检波器,它们的值是相同的。
由于检波原理分析可知,二极管包络检波器当C R L 很大而D r 很小时,输出低频电压振幅只略小于调幅波包络振幅,故d η略小于1,实际上d η在80%左右。
并且R 足够大时,
d η为常数,即检波器输出电压的平均值与输入高频电压的振幅成线性关系,所
以又把二极管峰值包络检波称为线性检波。
检波效率与电路参数L R 、C 、0r 以及信号大小有关。
它很难用一个简单关系式表达,所以简单的理论计算还不如根据经验估算可靠。
如要更精确一些,则可查图表并配以必要实测数据得到。
3.二极管大信号包络检波器输入电阻
输入电阻是检波器的另一个重要的性能指标。
对于高频输入信号源来说,检波器相当于一个负载,此负载就是检波器的等效输入电阻in R 。
d
L in R
R η2~-
上式说明,大信号输入电阻in R 等于负载电阻的一半再除以d η。
例如
Ω=k R L 1.5,当d η=0.8,时,则Ω=⨯=
k R in 2.38
.021
.5。
由此数据可知,一般大信号检波比小信号检波输入电阻大。
3.二极管大信号包络检波器检波失真
检波输出可能产生对角切割失真:是由于滤波电容放电慢引起的失真,也可称为惰性失真。
(1) 对角切割失真。
如图4-3电路所示。
t
u
u i
u 0
图4-3 对角线失真原理图
避免对角线失真的条件是
a
a
L m m CR 2
1-<
Ω
上式表明a m 或Ω大,则包络线变化快、L CR 放电慢,这些都促成发生放电失真。
1. 实验电路
二极管大信号包络检波实验电路如图4-4所示。
图4-4 二极管大信号包络检波实验电路
三、实验内容
1.普通调幅波(AM )的检波。
cm
a m
cm a m d U m U U m U ΩΩ==
)()(调幅波包线变化的幅度检出的音频电压幅度η=360mv/600mv=60%
2. 对角切割失真观测与防止。
表4-1 避免对角切割失真测试表:
负载
Ωma
(R1+R2+RW1)第一次 2.513kHZ 0.3 3.693KΩ
第二次 4.032kHZ 0.3 6.371KΩ
第三次 1.502kHZ 0.3 2.915KΩ注:C1:0.01uF R1:510
四、实验总结与体会
通过此次二极管包络检波实验,让我加深了对二极管大信号包络检波工作原理的理解。