高频电子线路实验说明书
《高频电子线路》实验指导书(通信技术专业适用)word资料3页

《高频电子线路》实验指导书(通信技术专业适用)实验四 : LC 电容反馈式三点式振荡荡器一、实验目的与任务1.掌握LC 三点式震荡器电路的基本原理,掌握LC 电容反馈式三点式振荡电路设计及电参数计算。
2.掌握振荡回路Q 值对频率稳定度的影响。
3.掌握振荡器反馈系数不同时,静态工作电流I EQ 对振荡器起振及振幅的影响。
二、实验基本原理与要求利用电容三点式振荡器正反馈特性产生振荡电压,通过测量了解各参数对频率、幅度的影响。
三、实验设备 1.双踪示波器 2.频率计 3.万用表 4.实验板12 四、实验内容1. 设置静态工作点2. 振荡频率与振荡幅度的测试3. 当C 、C ′为不同数值时,改变I EQ (断开C T ,由数字万用表测出V E 值,根据4R V I EE4.频率稳定度的影响 五、实验步骤实验电路见图1。
实验前根据图1所示原理图在实验板上找到相应器件及插孔并了解其作用。
1.设置静态工作点(1)在实验板+12V 扦孔上接入+12V 直流电源(注意电源极性不能接反)并按C=120pf 、C ′=680pf 、C T =51Pf (实验板标为50Pf )、R L =110K 接入各元件其连线要尽量短)。
(2)OUT 端至地接入双踪示波器和频率计(以函数信号发生器代),分别打开电源开关,此时频率计应显示振荡频率,调节R P 使双踪示波器显示振荡波形最大时停止调节,断开C 、 C ′、C T 及R L ,用数字万用表测出V E (R 4上的电压),代入下式求得I E 值。
4R V I EE == (1) 设:R e =1KΩ 表12.振荡频率与震荡幅度的测试 实验条件: C=120pf 、C ′=680pf 、R=110K当电容C T 分别为C 9、C 10、C 11时,由频率计读出其相应的f 值及由双踪示波器读出V P-P (V P-P 为输出电压峰峰值)值,并填入表1中。
3.当C 、C ′为不同数值时,改变I EQ (断开C T ,由数字万用表测出V E 值,根据4R V I EE =计算)为表格2所示系列值,由双踪示波器读出V L 值(取R=110K Ω、C T =50Pf ),并填入表2中(读取V L 值时去掉万用表)。
高频电子线路实验指导书

实验一 LC 与晶体振荡器实验一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。
2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。
3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
4)、比较LC 与晶体振荡器的频率稳定度。
二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。
三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。
1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>F U——反馈系数,A U——放大器的增益,q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。
2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。
L1L1(a)、考毕兹振荡器(b)、交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。
C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。
(a )、克拉泼振荡器 (b )、交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L 1两端并联一个小电容C 4,调节C 4可改变振荡频率。
高频电子线路(通信电子线路)实验指导书

实验一 函数信号发生实验一、实验目的1)、了解单片集成函数信号发生器ICL8038的功能及特点。
2)、掌握ICL8038的应用方法。
二、实验预习要求参阅相关资料中有关ICL8038的内容介绍。
三、实验原理(一)、ICL8038内部框图介绍ICL8038是单片集成函数信号发生器,其内部框图如图2-1所示。
它由 恒流源I 2和I 1、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波电路等组成。
外接电容C 可由两个恒流源充电和放电,电压比较器A 、B 的阀值分别为总电 源电压(指U CC +U EE )的2/3 和1/3。
恒流源I 2和I 1的大 小可通过外接电阻调节,但 必须I 2>I 1。
当触发器的输出为低电平时,恒流源I 2断开 图2-1 ICL8038原理框图,恒流源I 1给C 充电,它的两端电压u C 随时间线性上升,当达到电源电压的确2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变外接电容E E为高电平,恒流源I 2接通,由于I 2>I 1(设I 2=2I 1),I 2将加到C 上进行反充电,相当于C 由一个净电流I 放电,C 两端的电压u C 又转为直线下降。
当它下降到电源电压的1/3时,电压比较器B 输出电压便发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I 2断开,I 1再给C 充电,……如此周而复始,产生振荡。
若调整电路,使I 2=2I 1,则触发器输出为方波,经反相缓冲器由引脚9输出方波信号。
C 上的电压u c ,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。
将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从引脚2输出。
1、ICL8038引脚功能图图2-2 ICL8038引脚图供电电压为单电源或双电源: 单电源10V ~30V 双电源±5V ~±15V2、实验电路原理图如图2-3 所示。
《高频电子线路》实验指导书

《高频电子线路》实验指导书南昌工学院人工智能学院前言本高频电子试验箱共包含十个标配实验单元模块和三个选配实验单元模块.其中标配模块包含有信号源模块、频率计模块、小信号选频放大模块、正弦波振荡及VCO模块、AM调制及检波模块、FM鉴频1模块、收音机模块、混频及变频模块、高频功放模块、综合实验模块。
选配模块包含有FM鉴频2、码型变换模块和谐振回路及滤波模块。
本实验系统的实验内容是根据高等教育出版社的《高频电子线路》一书而设计的。
本试验箱共设置了二十个重要实验和四个选做实验:其中有十五个单元实验,是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容;五个系统实验是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。
此外,还有选做实验,学生也可以根据我们所提供的单元电路自行设计系统实验。
本实验系统力求电路原理清楚,重点突出,实验内容丰富。
其电路设计构思新颖、技术先进、波形测量点选择准确,具有一定的代表性。
同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力已及动手能力。
由于编者水平有限,书中难免存在一些缺点和错误,希望广大读者批评指正。
编者实验注意事项1、本实验系统接通电源前,请确保电源插座接地良好。
2、每次安装实验模块之前,应确保主机箱右侧的交流开关处于断开状态。
为保险起见,建议拔下电源线后再安装实验模块。
3、安装实验模块时,模块右边的电源开关要拨置上方,将模块四角的螺孔和母板上的铜支柱对齐,然后用螺钉固定。
确保四个螺钉拧紧,以免造成实验模块与电源或者地接触不良。
经仔细检查后方可通电实验。
4、各实验模块上的电源开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。
5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。
6、各模块中的贴片可调电容是出厂前调试使用的。
出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。
《高频电子线路》实验指导书

弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE
是
否
原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷
高频电子线路实验指导书(电子科技大学中山学院)

高频电子线路实验指导书(电子科技大学中山学院)高频电子线路实验指导书高频电子线路实验指导书(初稿)宋景唯编2005 年10月电子科技大学中山学院电子工程系目录高频D型电子实验箱总体介绍 (2)实验一高频小信号调谐放大器 (5)实验二谐振功率放大器 (43)实验三正弦波振荡器 (15)实验四集电极调幅与大信号检波 (26)实验五环形混频器 (35)实验六变容二极管调频 (50)实验九小功率调频发射机的设计 (58)实验十调频接收机的设计 (62)高频电子线路简易调试说明书 (64)附实验原理图G1-G10…………………………………………………………….高频D型电子实验箱总体介绍一、概述本高频D型电子实验箱的实验内容及实验顺序是根据高等教育出版社出版的〈〈高频电子线路〉〉一书而设计的(作者为张肃文)。
在本实验箱中设置了十个实验,它们是:高频小信号调谐放大器实验、二极管开关混频器实验、高频谐振功率放大器实验、正弦波振荡器实验、集电极调幅及大信号检波实验、变容二极管调频实验、集成模拟乘法器应用实验、模拟锁相环应用实验、小功率调频发射机设计和调频接收机设计。
其中前八个实验是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容。
后两个实验是系统实验,是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。
本实验装置采用“积木式”结构,将高频实验所需的直流电源、频率计、低频信号源和高频信号源设计成一个公共平台。
它的具体实验模块以插卡形式插在主实验板上上,以便各学校根据自己的教学安排做任意扩展。
所有模块与公共平台之间连接采用香蕉头自锁紧插件。
模块之间采用带弹簧片式连接线,可靠性好,性能稳定,测试结果准确,可让学生自主实验,为开放实验室,提供良好的硬件基础。
另外,将发射模块和接收模块同时使用还可以完成收发系统实验。
使用前请仔细阅读主实验板上的使用注意事项。
二、主机介绍主机上提供实验所需而配备的专用开关电源,包括三路直流电源:+12V、+5V、-12V,共直流地;直流电源下方是频率计和高低频信号源。
高频电子线路实验箱说明书

目录目录 (1)实验1 单调谐回路谐振放大器 (2)实验2 双调谐回路谐振放大器 (8)实验3 电容三点式LC振荡器 (14)实验4 石英晶体振荡器 (21)实验5 晶体三极管混频实验 (24)实验6 集成乘法器混频器实验 (28)实验7 中频放大器 (32)实验8 集成乘法器幅度调制电路 (36)实验9 振幅解调器(包络检波、同步检波) (46)实验10 高频功率放大与发射实验 (56)实验11 变容二极管调频器 (67)实验12 斜率鉴频与相位鉴频器 (71)实验13 锁相、频率合成与频率调制 (76)实验14 脉冲计数式鉴频器 (85)实验15 自动增益控制(AGC) (89)实验16 调幅发送部分联试实验 (93)实验17 调幅接收部分联试实验 (94)实验18 调幅发射与接收完整系统的联调 (95)实验19 调频发射与接收完整系统的联调 (99)实验20 高频电路开发实验(选配) (101)实验21 电调谐调频发射机模块使用和开发说明 (109)实验22 电调谐调频接收模块使用和开发说明 (116)附录 (135)实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
高频电子线路实验指导书

高频电子线路实验箱简介THCGP-1型仪器介绍●信号源:本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下:1)高频信号源输出频率范围:0.4MHz~45MHz(连续可调);频率稳定度:10E–4;输出波形:正弦波;输出幅度:1Vp-p 输出阻抗:75Ω。
2)低频信号源:输出频率范围:0.2kHz~20 kHz(连续可调);频率稳定度:10E–4;输出波形:正弦波、方波、三角波;输出幅度:5Vp-p;输出阻抗:100Ω。
信号源面板如图所示使用时,首先按下“POWER”按钮,电源指示灯亮。
高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500kHz、1MHz档。
按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED亮,当三灯齐亮时,即为1MHz档。
旋转高频频率调节旋钮可以改变输出高频信号的频率。
另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度。
音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档。
按频率档位选择可在两个档位间切换,并且相应的指示灯亮。
调节音频信号频率调节旋钮可以改变信号的频率。
分别改变三种波形的幅度调节旋钮可以调节输出的幅度。
本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计显示输出频率。
调频波的音频信号为正弦波,载波为信号源内的高频信号。
改变“FM频偏”旋钮调节输出的调频信号的调制指数。
按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率。
调节“AM调幅度”可以改变调幅波的幅度。
面板下方为5个射频线插座。
“RF1”和“RF2”插孔为400kHz ——45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电子线路实验
说明书
实验要求(电信111班)
l.实验前必须充分预习,完成指定的预习任务。
预习要求如下:
1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。
2)完成各实验“预习要求”中指定的内容。
3)熟悉实验任务。
4)复习实验中所用各仪器的使用方法及注意事项。
2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。
3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。
4.高频电路实验注意:
1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。
2)由于高频电路频率较高,分布参数及相互感应的影响较大。
因此在接线时连接线要尽可能短。
接地点必须接触良好。
以减少干扰。
3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。
5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。
找出原因、排除故障,经指导教师同意再继续实验。
6.实验过程中需要改接线时,应关断电源后才能拆、接线。
7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。
所记录的实验结果经指导教师审阅签字后再拆除实验线路。
8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。
9.实验后每个同学必须按要求独立完成实验报告。
实验一调谐放大器
一、实验目的
1、熟悉电子元器件和高频电路实验箱。
2、熟悉谐振回路的幅频特性分析一通频带与选择性。
3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4、熟悉和了解放大器的动态范围及其测试方法。
二、实验仪器
1、双踪示波器
2、扫频仪
3、高频信号发生器
4、毫伏表
5、万用表
6、实验板1
三、预习要求
1、复习谐振回路的工作原理。
2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。
3、实验电路中,若电感量L=1uh,回路总电容C=220pf (分布电容包括在内),计算回路中心频率 f 0 。
图1-1 单调谐回路谐振放大器原理图
四、实验内容及步骤
(一)单调谐回路谐振放大器
1、实验电路见图1-1
(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。
(2).接线后仔细检查,确认无误后接通电源。
2. 静态测量
实验电路中选Re=1K
测量各静态工作点,计算并填表1.l
表1.1
*VB,VE是三极管的基极和发射极对地电压。
3. 动态研究
⑴ .测放大器的动态范围Vi~V0(在谐振点)
选R=l0K,R0=lK。
把高频信号发生器接到电路输入端,电路输出端按毫伏表,选择正常放大区的输入电压Vi,调节频率f使其为10.7MHZ,调节CT使回路谐振,使输出电压幅度为最大。
此时调节Vi由0.02伏变到0.8伏,逐点记录V。
电压,并填入表l.2。
Vi的各点测量值可根据(各自)实测情况来确定。
表1.2
(2). 当Re分别为500Ω、2K时,重复上述过程,将结果填入表l.2。
在同一坐标纸上画出
IC不同时的动态范围曲线,并进行比较和分析。
(3). 用扫频仪调回路谐振曲线。
仍选R=10K,Re=1K。
将扫频仪射频输出送入电路输入。