阀门系数Cv值的确定
阀门系数Cv值的确定和意义

阀门系数Cv 值的确定和意义1. 概述:通常测定阀门的方法是阀门系数(Cv ),时,使用阀门系数确定阀门尺寸,该阀门可在工艺流体稳定的控制下,能够通过所需要的流量。
阀门制造商通常公布各种类型阀门的Cv 值,它是近似值,并能按照管线结构或阀座制造而变动上调10%。
如一个阀门不能正确计算Cv ,通常将削弱在两个方面之一的阀门性能:如果Cv 对所需要的工艺而言太小,则阀门本身或阀内的阀芯尺寸不够,会使工艺系统流量不够。
此外,因为阀门的节流会导致上游压力增加,并在阀门导致上游泵或其他上游设备损坏之前产生高的背压。
尺寸不够的Cv 也会产生阀内的较高阻力降,它将导致空穴现象或闪蒸。
如果Cv 计算值比系统需要的过高,通常选用一个大的超过尺寸的阀门。
显然,一个大尺寸阀门的造价、尺寸及重量是主要的缺点。
除此之外,如果阀门是节流操作,控制问题明显会发生。
通常闭合元件,如旋塞或阀盘,正位于阀座之外,它有可能产生高压力降和较快流速而产生气穴现象及闪蒸,或阀芯零件的磨损。
此外,如果闭合元件在阀座上闭合而操作器又不能够控制在该位置,它将被吸入到阀座。
这种现象被称为溶缸闭锁效应。
2. Cv 的定义 一个美国加仑(3.8L )的水在60°F (16℃)时流过阀门,在一分钟内产生1.0psi (0.07bar )的压力降。
3. Cv 值的计算方法 3.1 液体3.11 基本液体确定尺寸公式1) 当∆P <∆Pc=F L 2(P1-Pv):一般流动Cv=QPSg∆ 2) ∆P ≥∆Pc :阻塞流动 当Pv <0.5P1时∆Pc=F L 2(P1-Pv) 当Pv ≥0.5P1时 ∆Pc= F L 2[P-(0.96-0.28PcP 1)Pv ] Cv=QPcSg∆ 式中 Cv----阀门流动系数; Q------流量,gal/min ;Sg-----流体比重(流动温度时);∆P----压力降,psia∆Pc---阻塞压力降 psia F L -------压力恢复系数 见表1P1-------上游压力psiaPv--------液体的蒸气压(入口温度处)psiaPc--------液体临界压力psia 见表2 表1:典型F L系数表2 常用工艺流体的临界压力Pc3.12 参数来源1)实际压力降:定义为上游(入口)与下游(出口)之间的压力差。
阀门的性能指标计算公式

阀门的性能指标计算公式阀门作为流体控制的重要设备,在工业生产中起着至关重要的作用。
为了保证阀门的正常运行和流体控制的准确性,需要对阀门的性能指标进行严格的计算和评估。
本文将介绍阀门的性能指标计算公式,并对其进行详细解析。
一、阀门的流量系数(Cv值)计算公式。
阀门的流量系数(Cv值)是衡量阀门流量特性的重要指标。
它表示在单位压差下,阀门能够通过的流体流量。
Cv值的计算公式如下:Cv = Q / (SG sqrt(ΔP))。
其中,Cv为流量系数,Q为流体流量,SG为流体相对密度,ΔP为压差。
二、阀门的流量系数(Kv值)计算公式。
Kv值是国际上通用的流量系数,用于表示阀门在单位压差下的流体流量。
Kv 值的计算公式如下:Kv = Q / sqrt(ΔP)。
其中,Kv为流量系数,Q为流体流量,ΔP为压差。
三、阀门的流体流速计算公式。
阀门的流体流速是指单位时间内流体通过阀门的速度。
流体流速的计算公式如下:V = Q / (A 3600)。
其中,V为流体流速,Q为流体流量,A为阀门的有效截面积。
四、阀门的流体动能损失计算公式。
阀门在流体流动过程中会产生一定的动能损失,影响流体流速和流量。
动能损失的计算公式如下:ΔP = (V^2 / 2g) (K1 + K2)。
其中,ΔP为动能损失,V为流体流速,g为重力加速度,K1和K2为阀门的局部阻力系数。
五、阀门的流体阻力计算公式。
阀门在流体流动中会产生一定的阻力,影响流体流速和流量。
流体阻力的计算公式如下:ΔP = f (L / D) (ρ V^2 / 2)。
其中,ΔP为流体阻力,f为摩擦阻力系数,L为阀门管道长度,D为管道直径,ρ为流体密度,V为流体流速。
六、阀门的流体压降计算公式。
阀门在流体流动中会产生一定的压降,影响流体流速和流量。
压降的计算公式如下:ΔP = f (L / D) (V^2 / 2)。
其中,ΔP为流体压降,f为摩擦阻力系数,L为阀门管道长度,D为管道直径,V为流体流速。
阀门系数Cv值确定

阀门系数Cv 值的确定概述:通常测定阀门的方法是阀门系数(Cv ),时,使用阀门系数确定阀门尺寸,该阀门可在工艺流体稳定的控制下,能够通过所需要的流量。
阀门制造商通常公布各种类型阀门的Cv 值,它是近似值,并能按照管线结构或阀座制造而变动上调10%。
如一个阀门不能正确计算Cv ,通常将削弱在两个方面之一的阀门性能:如果Cv 对所需要的工艺而言太小,则阀门本身或阀内的阀芯尺寸不够,会使工艺系统流量不够。
此外,因为阀门的节流会导致上游压力增加,并在阀门导致上游泵或其他上游设备损坏之前产生高的背压。
尺寸不够的Cv 也会产生阀内的较高阻力降,它将导致空穴现象或闪蒸。
如果Cv 计算值比系统需要的过高,通常选用一个大的超过尺寸的阀门。
显然,一个大尺寸阀门的造价、尺寸及重量是主要的缺点。
除此之外,如果阀门是节流操作,控制问题明显会发生。
通常闭合元件,如旋塞或阀盘,正位于阀座之外,它有可能产生高压力降和较快流速而产生气穴现象及闪蒸,或阀芯零件的磨损。
此外,如果闭合元件在阀座上闭合而操作器又不能够控制在该位置,它将被吸入到阀座。
这种现象被称为溶缸闭锁效应。
1. Cv 的定义 一个美国加仑(3.8L )的水在60°F (16℃)时流过阀门,在一分钟内产生1.0psi (0.07bar )的压力降。
2. Cv 值的计算方法3.1 液体3.11 基本液体确定尺寸公式1) 当∆P <∆Pc=F L 2(P1-Pv):一般流动Cv=QPSg∆ 2) ∆P ≥∆Pc :阻塞流动 当Pv <0.5P1时∆Pc=F L 2(P1-Pv) 当Pv ≥0.5P1时 ∆Pc= F L 2[P-(0.96-0.28PcP 1)Pv ] Cv=QPcSg∆ 式中 Cv----阀门流动系数; Q------流量,gal/min ;Sg-----流体比重(流动温度时);∆P----压力降,psia∆Pc---阻塞压力降 psia F L -------压力恢复系数 见表1P1-------上游压力psiaPv--------液体的蒸气压(入口温度处)psiaPc--------液体临界压力psia 见表2 表1:典型F L系数表2 常用工艺流体的临界压力Pc3.12 参数来源1)实际压力降:定义为上游(入口)与下游(出口)之间的压力差。
cv值 阀门 用法

cv值阀门用法
阀门的CV值是指阀门的流量系数,用于表示阀门在特定工况下的流量能力。
CV值是指在给定的压差下,阀门能够通过的液体或气体的体积流量。
CV值越大,表示阀门的流量能力越大。
阀门CV值的计算公式为:CV = Q / (ΔP√ρ),其中,CV表示流量系数,Q 表示通过阀门的体积流量,ΔP表示压差,ρ表示流体的密度。
阀门CV值常用于选择和设计阀门,帮助确定所需的阀门尺寸和类型,以满足特定的流量要求。
国内一般用KV表示流量系数,CV=。
阀门CV值的大小取决于阀门的大小、设计和材料。
阀门的大小通常指的是通道的直径,而阀门的设计和材料决定了内部流线和轮廓,这直接影响了其流量特性。
通常来说,较小的阀门CV值意味着阀门的流量范围较小,可以用在较小的管道中。
较大的CV值意味着阀门的流量范围较大,适用于更大的管道和更高的流量。
在实际应用中,选择正确的阀门CV值对于阀门的正常运行非常重要。
如果选择错误,可能会导致流量扭曲和阀门过早损坏,这将会产生额外的维护费用和产品损失等问题。
因此,在选择阀门CV值时,需要以实际工程需求为
基础,同时兼顾预算和可用材料。
最好根据系统的驱动力和压降来选择合适的CV值,并对阀门的流量特性进行充分测试和评估,以确保其可以正常运行并发挥最佳效果。
总之,阀门CV值是阀门中最重要的流量指标之一。
正确选择和评估阀门的CV值可以提高阀门系统的效率和可靠性,减少成本和维护问题,并确保在整个系统中流体的稳定和一致性,为工程项目提供必要的保障。
阀门流量系数Cv

阀门流量系数Cv/Kv
流量系数即:C值(欧美标准称为Cv值,国际标准称为:KV值)是阀门、调节阀等工业阀门的重要工艺参数和技术指标。
正确计算和选择CV值是保障管道流量控制系统正常工作的重要步骤。
释义
编辑
是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。
即阀门的最大流通能力。
流量系数值越大说明流体流过阀门时的压力损失越小。
阀门的CV值须通过测试和计算确定。
阀门开度
阀门/调节阀流量系数(CV值)与开度是两个不同的概念,CV值名称起源于西方的工业流程控制领域对于阀门流量系数的定义。
在中国通常称为:KV值,KV表示的是阀门的流通能力,其定义是:当调节阀全开时,阀门前、后两端的压差ΔP为100KPa,流体重度r为1gf/cm3(即常温水)时,每小时流经调节阀的流量数,以m3/h或t/h计。
(例如一台Kv=50的调节阀,则表示当阀两端压差为100KPa时,每小时的水量为50m3/h。
)
阀门开度是指阀门在调节的时候,阀芯(或阀板)改变流道节流面积时阀芯(或阀板)运动的位置,通常用百分比表示,关闭状态为0%,全开为100%。
阀门系数Cv值的确定

阀门系数Cv 值的确定概述:通常测定阀门的方法是阀门系数(Cv ),时,使用阀门系数确定阀门尺寸,该阀门可在工艺流体稳定的控制下,能够通过所需要的流量。
阀门制造商通常公布各种类型阀门的Cv 值,它是近似值,并能按照管线结构或阀座制造而变动上调10%。
如一个阀门不能正确计算Cv ,通常将削弱在两个方面之一的阀门性能:如果Cv 对所需要的工艺而言太小,则阀门本身或阀内的阀芯尺寸不够,会使工艺系统流量不够。
此外,因为阀门的节流会导致上游压力增加,并在阀门导致上游泵或其他上游设备损坏之前产生高的背压。
尺寸不够的Cv 也会产生阀内的较高阻力降,它将导致空穴现象或闪蒸。
如果Cv 计算值比系统需要的过高,通常选用一个大的超过尺寸的阀门。
显然,一个大尺寸阀门的造价、尺寸及重量是主要的缺点。
除此之外,如果阀门是节流操作,控制问题明显会发生。
通常闭合元件,如旋塞或阀盘,正位于阀座之外,它有可能产生高压力降和较快流速而产生气穴现象及闪蒸,或阀芯零件的磨损。
此外,如果闭合元件在阀座上闭合而操作器又不能够控制在该位置,它将被吸入到阀座。
这种现象被称为溶缸闭锁效应。
1. Cv 的定义 一个美国加仑(3.8L )的水在60°F (16℃)时流过阀门,在一分钟内产生1.0psi (0.07bar )的压力降。
2. Cv 值的计算方法3.1 液体3.11 基本液体确定尺寸公式1) 当∆P <∆Pc=F L 2(P1-Pv):一般流动Cv=QPSg∆ 2) ∆P ≥∆Pc :阻塞流动 当Pv <0.5P1时∆Pc=F L 2(P1-Pv)当Pv ≥0.5P1时∆Pc= F L 2[P-(0.96-0.28PcP 1)Pv ] Cv=QPcSg∆ 式中 Cv----阀门流动系数; Q------流量,gal/min ;Sg-----流体比重(流动温度时);∆P----压力降,psia∆Pc---阻塞压力降 psia F L -------压力恢复系数 见表1P1-------上游压力psiaPv--------液体的蒸气压(入口温度处)psiaPc--------液体临界压力psia 见表2 表1:典型F L系数表2 常用工艺流体的临界压力Pc3.12 参数来源1)实际压力降:定义为上游(入口)与下游(出口)之间的压力差。
Cv值 Cv值的定义

Cv值Cv值的定义:Cv值表示的是元件对液体的流通能力;即:流量系数。
对于阀门来讲,国外一般称为Cv值,国内一般称为Kv值。
Cv值的测定:被测元件全开,元件两端压差△p.=1bf/in(1lbf/in=6.89kPa),温度为60℉(15.5℃)的水,通过元件的流量为qv,单位为USgas/min (USgas/min=3.785L/min),则流通能力Cv值为Cv值的计算公式:Cv=qv*[ρ*△p0/(ρ0*△p)]^0.5式中:Cv:流通能力,USgas/minqv:实测水的流量,USgas/minρ:实测水的密度,g/cm;ρ0:60℉下水的密度,ρ0=1g/cm;△p.=p1-p2。
p1和p2是被测元件上下游的压力差,lbf/in。
Kv值的定义:Kv值是表示气体流量特性的一个参数和表示方法。
Kv值的测定:被测元件全开,元件两端压差△p.==0.1MPa,流体密度ρ=1g/cm 时;通过元件的流量为qv(m/h),则流通能力Kv值为Kv值的计算:Kv=qv*[ρ*△p0/(ρ0*△p)]^0.5式中:Kv:流通能力,m/h;ρ:实测流体密度,g/cm;△p.=p1-p2。
p1和p2是被测元件上下游的压力差,MPa。
Kv值与Cv值之间的关系:Cv=1.167Kv科技名词定义中文名称:闪蒸英文名称:flash distillation其他名称:扩容蒸发定义:水在一定压力下加热到一定温度,然后注入下级压力较低的容器中,突然扩容使部分水汽化为蒸汽的过程。
多个这样的过程组成的系统称“多级闪蒸(multi-stage flash distillation)所属学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)本内容由全国科学技术名词审定委员会审定公布目录编辑本段简介闪蒸就是高压的饱和水进入比较低压的容器中后由于压力的突然降低使这些饱和水变成一部分的容器压力下的饱和水蒸气和饱和水。
编辑本段现象:物质的沸点是随压力增大而升高,而压力越低,沸点就越低。
cv值计算——精选推荐

为平衡阀的阀门系数。
它的定义是:当平衡阀前后差压为1bar(约1kgf/cm2)时,流经平衡阀的流量值(m3/h液体 (英制)(公制)Cv=Q21P P G-Cv=1.17Q21P P G-=Q2P G△……(1) =1.17QPG△……(1') 式中Q=最大流量gpm(美加仑/分)Q=最大流量 m 3/hG=比重(水=1)G=比重(水=1)P 1=进口压力 Psia(最大流量时) P 1=进口压力 kgf/cm 2(最大流量时) P 2=出口压力Psia(最大流量时)P 2=出口压力kgf/cm 2(最大流量时)P=P 1-P 2 注:上述公式只适用于流体流动呈紊流状态,或雷诺数大的场合,流体接近层流或雷诺数较小的场合,上述公式必须进行粘度修正。
粘度修正要按粘度修正曲线(雷诺数R 的实测系数值)进行修正。
表示调节阀流量系数的其它符号及定义C ——工程单位制(MKS 制)的流量系数,在我国长期使用。
其定义为温度5-40℃的水,在1kgf/cm 2(0.1MPa)压降下,一小时流过调节阀的立方米数.Kv ——国际单位制(SI 制)的流量系数,其定义为:温度5-40℃的水,在105Pa 压降下,每小时流过调节阀的立方米数。
注:1.C 、Cv 、Kv 之间的关系为:Cv=1.17CKv=1.01C2、我国调节阀流量系数将由C 系数变为Kv 系数。
3、IEC 推荐公式中的符号C 是作为各种运算单位的流量系数的通用符号,不同运算单位计算出的流量系数,用公式中的数字常数Ni 来区别。
因此,勿与我国长期使用的C 值混淆。
粘度修正液体粘度大于100SSU(赛波特秒),或者大于20CST(厘斯),计算所要求的Cv 值应按下列次序进行粘度修正。
1、不考虑粘度影响,用公式(1)或(1')求出Cv 。
2、用公式(A)和(B)或者用公式(A')和(B'),求出系数R 。
3、从粘度修正曲线上,求出系数R 相对应的Cv 的修正系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阀门系数
Cv 值的确定
概述:
通常测定阀门的方法是阀门系数(Cv ),时,使用阀门系数确定阀门尺寸,该阀门可在工艺流体稳定的控制下,能够通过所需要的流量。
阀门制造商通常公布各种类型阀门的Cv 值,它是近似值,并能按照管线结构或阀座制造而变动上调10%。
如一个阀门不能正确计算Cv ,通常将削弱在两个方面之一的阀门性能:如果Cv 对所需要的工艺而言太小,则阀门本身或阀内的阀芯尺寸不够,会使工艺系统流量不够。
此外,因为阀门的节流会导致上游压力增加,并在阀门导致上游泵或其他上游设备损坏之前产生高的背压。
尺寸不够的Cv 也会产生阀内的较高阻力降,它将导致空穴现象或闪蒸。
如果Cv 计算值比系统需要的过高,通常选用一个大的超过尺寸的阀门。
显然,一个大尺寸阀门的造价、尺寸及重量是主要的缺点。
除此之外,如果阀门是节流操作,控制问题明显会发生。
通常闭合元件,如旋塞或阀盘,正位于阀座之外,它有可能产生高压力降和较快流速而产生气穴现象及闪蒸,或阀芯零件的磨损。
此外,如果闭合元件在阀座上闭合而操作器又不能够控制在该位置,它将被吸入到阀座。
这种现象被称为溶缸闭锁效应。
1. Cv 的定义 一个美国加仑(3.8L )的水在60°F (16℃)时流过阀门,在一分钟内产生1.0psi (0.07bar )的压力降。
2. Cv 值的计算方法
3.1 液体
3.11 基本液体确定尺寸公式
1) 当∆P <∆Pc=F L 2(P1-Pv):一般流动
Cv=Q
P
Sg
∆ 2) ∆P ≥∆Pc :阻塞流动 当Pv <0.5P1时
∆Pc=F L 2(P1-Pv) 当Pv ≥0.5P1时 ∆Pc= F L 2[P-(0.96-0.28
Pc
P 1
)Pv ] Cv=Q
Pc
Sg
∆ 式中 Cv----阀门流动系数; Q------流量,gal/min ;
Sg-----流体比重(流动温度时);
∆P----压力降,psia
∆Pc---阻塞压力降 psia F L -------压力恢复系数 见表1
P1-------上游压力psia
Pv--------液体的蒸气压(入口温度处)psia
Pc--------液体临界压力psia 见表2 表1:典型F L系数
表2 常用工艺流体的临界压力Pc
3.12 参数来源
1)实际压力降:定义为上游(入口)与下游(出口)之间的压力差。
∆P=P1-P2
式中∆P------实际压力降,psia
P1------上游压力(阀门入口处),psia
P2------下游压力(阀门出口处),psia
2)确定比重:
流体比重Sg值应该使用操作温度和比重数据参考表确定。
3)流量Q:每分钟流过阀门的流量数(加仑),单位:gal/min
4) 阻塞压力降∆Pc:假定如果压力降增加,则流量将按比例增加。
但是存在一个点,此处进一步增加压力降将不改变阀门流率,这就是通常所称的阻塞流量。
∆Pc用来表示发生阻塞流率的理论点。
4)压力恢复系数F L:调节阀节流处由P1直接下降到P2,见图示中需线所示。
但实际上,压力变化曲线如图中实线所示,存在差压力恢复的情况。
不同结构的阀,压力恢复的情况不同。
阻力越小的阀,恢复越厉害,越偏离原推导公式的压力曲线,原公式计算的结果与实际误差越大。
因此,引入一个表示阀压力恢复程度的系数F L来对原公式进行修正。
图1 阀内压力恢复
3.13 Kv与Cv值的换算
国内的流量系数是用Kv表示,其定义为:当调节阀全开,阀两端压差∆P为100KPa,流体重度r为1gf/cm3(即常温)时,每小时流经调节阀的流量数,以m3/h或t/h计。
由于Kv与Cv定义不同,试验所测得的数值不同,它们之间的换算关系:
Cv=1.167Kv
3.2 气体
基本气体确定尺寸公式 1)
1
P P
∆<0.5 F L 2:一般流动 Q=1360Cv
2
2
11P P GgT P +•
∆ Cv=2
12
11360
P P P GgT Q
+•∆ 2)
1
P P
∆≥0.5 F L 2:阻塞流动
Q=1178Cv
1
21GgT P • FL 1
Cv=
•1
1
21178P GgT Q
F L 式中:Q--------气体流,scfh
Cv-------确定阀门尺寸系数
Gg-------比重或气体与标准状态下空气的比值
T1-------绝对上游温度(°R=°F+460) P1-------上游压力 psia P2-------下游压力 psia
F L --------压力恢复系数 见表1
3.3 公式计算步骤
第一步:根据已知条件查参数:F L 、Pc 第二步:决定流动状态。
液体:(1)判别Pv 是大于还是小于0.5P1; (2)由(1)采用相应的∆Pc 公式:
(3)∆P <∆Pc 为一般流动:∆P ≥∆Pc 为阻塞流动。
气体:
1P P ∆<0.5F L 2为一般流动,1
P P
∆≥0.5F L 2为阻塞流动。
第三步:根据流动状态采用相应Cv 值计算公式
3. 计算实例题 例1 下列操作条件用英制单位给出:
液体 氨
临界压力 1638.2psia 温度 20°F
上游压力,P1 149.7psia 下游压力,P2 64psia
流率,Q 850gal/min 蒸气压力,Pv 45.6psia 比重,Sg 0.65 选用高压阀门,流闭型
第一步:查表得F L =0.8, Pc=1636psia 第二步: 0.5P1=74.85>Pv
∴∆Pc=F L 2(P1-Pv)=66.6 ∆P=P1-P2=149.7-64=85.7 ∆P >∆Pc,为阻塞流动。
第三步:采用阻塞流动公式 Cv=Q
Pc Sg
∆=8506
.6665.0=83.9 例2 下列操作条件用英制单位给出:
气体 空气 温度 68°F 气体重度,Gg 1
上游温度,P1 1314.7psia 下游温度,P2 1000psia 流率,Q 2000000scfh 选用单座阀,流开型。
第一步:查表F L =0.9
第二步:
1P P ∆=121P P P -=7
.13141000
7.1314-=0.23<0.5F L 2=0.5*0.92=0.4,为一般流动。
第三步:采用一般流动Cv 值计算公式 Q=1360Cv
2
211P P GgT P +•∆ Cv=
21211360
P P P GgT Q
+•∆ =()1000
7.13142
10007.131446068*113602000000+•-+• =56 例3 在例2基础上,改P2=99.7psia
1P P ∆=7
.13147
.997.1314-=≥ ∴为阻塞流动。
采用公式为:
Q=1178Cv
1
21GgT P • FL 1
Cv=
FL P GgT Q
1121178•=9
.0*7.1314)46068(*1*211782000000+• =46.6
4. 结语
合理选择阀门,必须正确选择阀门尺寸,如果阀门尺寸太小,则通过阀门的最大流量会受到限制并且将影响系统的功能。
如果阀门尺寸过大,用户必须承受安装较大阀门的附加费用。
其他的主要缺点是整个流动控制是在行程的前一半完成,意味着位置的很小变化将产生大的流量变化。
此外因为调节发生在行程的前半部,当调节元件操作接近阀座时流量控制是很困难的。
当产生希望的流动特性和最大流量输出时,节流阀的理想状态是使用全范围行程。
因此,我们必须正确计算阀门系数Cv 值。