第四章章末检测
高一化学-第四章 章末检测

第四章章末检测1.下列有关说法中正确的是()A. NH3与HCl气体或CO2气体均不能共存B. 铵盐溶液与NaOH溶液混合后均会有NH3逸出C. SiO2能溶解在NaOH溶液中, 但不能溶解在氨水中D. 硅、二氧化硅、硅酸、铵盐受热均很稳定2.下列说法正确的是()A. 二氧化硫可广泛用于食品的漂白B. 向某溶液中加入稀盐酸, 产生的气体通入澄清石灰水, 石灰水变浑浊, 该溶液一定是碳酸盐溶液C. Na2SO3和H2O2的反应为氧化还原反应D. 标准状况下, 6.72 L NO2与水充分反应转移的电子数目为0.1N A3.下图所示仪器可用于实验室制备少量无水FeCl3, 仪器连接顺序正确的是()A. a-b-c-d-e-f-g-hB. a-e-d-c-b-h-i-gC. a-d-e-c-b-h-i-gD. a-c-b-d-e-h-i-f4.丰富多彩的颜色变化增添了化学实验的魅力, 下列有关反应颜色变化的叙述中, 正确的是()①新制氯水久置后→浅黄绿色消失;②淀粉溶液遇单质碘→蓝色;③蔗糖中加入浓硫酸搅拌→白色;④SO2通入品红溶液中→红色褪去;⑤氨通入酚酞溶液中→红色。
A. ①②③④B. ②③④⑤C. ①②④⑤D. 全部5.关于氨的下列叙述中, 正确的是()A. 氨因为有刺激性气味, 因此不用来作制冷剂B. 氨具有还原性, 可以被氧化为NOC. 氨极易溶于水, 因此氨水比较稳定(不容易分解)D. 氨溶于水显弱碱性, 因此可使石蕊试液变为红色6.用浓氯化铵溶液处理过的舞台幕布不易着火。
其原因是()①幕布的着火点升高②幕布的质量增加③氯化铵分解吸收热量, 降低了温度④氯化铵分解产生的气体隔绝了空气A. ①②B. ③④C. ②③D. ②④7.实验室中某些气体的制取、收集及尾气处理装置如图所示(省略夹持和净化装置) 。
仅用此装置和表中提供的物质完成相关实验, 最合理的选项是()8.将X气体通入BaCl2溶液, 未见沉淀生成, 然后通入Y气体, 有沉淀生成, X、Y不可能是()9.从绿色化学的理念出发, 下列实验不宜用右图所示装置进行的是()A. 不同浓度的硝酸与铜反应B. 稀硫酸与纯碱或小苏打反应C. 铝与氢氧化钠溶液或盐酸反应D. H2O2在不同催化剂作用下分解10.下列说法正确的是()A. 浓硝酸在光照条件下变黄, 说明浓硝酸不稳定, 生成的有色产物能溶于浓硝酸B. 在KI-淀粉溶液中通入氯气, 溶液变蓝, 说明氯气能与淀粉发生显色反应C. 在某溶液中加入硝酸酸化的氯化钡溶液, 有白色沉淀生成, 说明溶液中含SD. 将铜片放入浓硫酸中, 无明显实验现象, 说明铜在冷的浓硫酸中发生钝化11.除去下列杂质(括号内是杂质) 所用试剂不正确的是()A. CO2(HCl): 用饱和NaHCO3溶液B. CO2(SO2): 用饱和酸性高锰酸钾溶液C. Cl2(HCl): 用饱和NaCl溶液D. SO2(HCl): 用饱和Na2SO3溶液12.下列陈述Ⅰ、Ⅱ正确并且有因果关系的是()13.下列物质之间的反应没有明显反应现象的是()A. 常温下, 铁放入浓硝酸中B. 用玻璃棒分别蘸取浓盐酸和浓氨水并相互靠近C. 二氧化硫通入品红溶液中D. 将氯化氢气体通入滴有酚酞的烧碱溶液中14.能正确表示下列反应的离子方程式的是()A. 将铜屑加入Fe3+溶液中: 2Fe3++Cu2Fe2++Cu2+B. 将磁性氧化铁溶于盐酸: Fe3O4+8H+3Fe3++4H2OC. 将氯化亚铁溶液和稀硝酸混合: Fe2++4H++NFe3++2H2O+NO↑D. 将铁粉加入稀硫酸中: 2Fe+6H+2Fe3++2H2↑15.甲、乙、丙、丁四种物质中, 甲、乙、丙均含有相同的某种元素, 它们之间具有如下转化关系: 甲乙丙。
第四章章末综合检测 新人教版必修3

第四章章末综合检测一、选择题(每小题4分,共60分)(2013·辽阳月考)下图为1995~2005年西辽河流域各土地利用类型数量的变化。
读图回答1~2题。
1.各土地类型中面积减少的有( )①未利用土地②建设用地③水域④草地⑤林地⑥耕地A.①③④B.②④⑥ C.①③⑥ D.④⑤⑥2.图中反映出,造成西辽河流域草地面积变化的主要原因是( )A.城市建设 B.过度放牧C.过度垦殖 D.退草还林(2013·吉林月考)东北某黑土丘陵区南北坡坡度相同其坡度小于东西坡,各坡向降水差异很小。
读下图完成3~4题。
3.两个年份该区域各坡向侵蚀沟密度( )A.西南坡大于东南坡 B.东南坡大于西北坡C.南北坡大于东西坡 D.西北坡大于东北坡4.侵蚀沟密度表现为南坡大于北坡的自然原因是A.南坡为夏季风迎风坡,风力侵蚀力大B.南坡为阳坡,积雪融化快,流水作用强C.北坡为冬季风迎风坡,降水侵蚀力大D.北坡为阴坡,昼夜温差大,冻融作用强(2013·漳州月考)某学校研究性学习小组的学生通过调查,记录了该地区农事活动的时间表。
分析表中信息,A.松嫩平原 B.黄淮海平原C.鄱阳湖平原D.准噶尔盆地的绿洲6.该地区发展农业生产的主要限制性因素可能是( )A.低温、冻害 B.地形、水源 C.旱涝、盐碱D.光照、风沙(2013·太原月考)推进城市化与工业化协调发展,拉动新一轮经济增长,促进广东率先实现现代化,是当前社会经济发展中的一项重大课题。
回答7~8题。
7.2001年广东省第二、三产业的生产总值占全省国内生产总值的比重约86%,城镇人口中全省总人口比重约为42%,这两个比重的差距如此之大说明广东城市化( ) A.明显滞后B.明显过快C.发展比较合理D.与经济的发展相适应8.一个地区城市化发展到高级阶段时表现的特点有( )①城镇人口的比重增长缓慢甚至停滞②城乡差别很小③第三产业成为国民经济的主导产业④非农业人口向农业人口转化A.①②③ B.②③④ C.①③④ D.①②④(2013·南阳月考)读“珠江三角洲区域示意图”,完成9~11题。
21-22版:章末检测试卷(四)(步步高)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
3.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是
√A.2x+y+5=0 或 2x+y-5=0
C.2x-y+5=0 或 2x-y-5=0
B.2x+y+ 5=0 或 2x+y- 5=0 D.2x-y+ 5=0 或 2x-y- 5=0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
12.已知直线 3x-y-4=0 与圆 x2+(y-2)2=25 交于 A,B 两点,P 为圆上异于 A,B 的动
点,则△ABP 的面积的最大值为
A.8
B.16
√C.32
D.64
解析 设与直线 3x-y-4=0 平行的直线 l 的方程为 3x-y+c=0.
当直线l与圆相切时,由圆心到直线距离等于半径,得c=12或c=-8.
显然,当 c=12 时,直线 l 与圆的切点到直线 3x-y-4=0 的距离(两条平行线间的距 离)最大且为 h=|12-2-4|=8, 又可得弦|AB|=8,所以△ABP 的面积的最大值为 S=12×8h=32.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
9.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1,则实数a的
值为
A.0
பைடு நூலகம்
B.1
C.±2
人教版高中数学选择性必修第一册-第4章 数列 章末测试卷(含解析)

第四章数列章末检测(原卷版)(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021年郑州模拟)已知数列1,3,5,7,…,2n-1,若35是这个数列的第n项,则n=()A.20B.21C.22D.232.已知3,a+2,b+4成等比数列,1,a+1,b+1成等差数列,则等差数列的公差为()A.4或-2B.-4或2C.4D.-43.用数学归纳法证明1+12+14+…+12n-1>12764(n∈N*)成立,某初始值至少应取()A.7B.8C.9D.104.公差不为0的等差数列{a n},其前23项和等于其前10项和,a8+a k=0,则正整数k =()A.24B.25C.26D.275.(2021年长春模拟)已知等比数列{a n}的各项均为正数,其前n项和为S n,若a2=2,S6-S4=6a4,则a5=()A.10B.16C.24D.326.设等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9=()A.54B.45C.36D.277.已知各项都为正数的等比数列{a n}中,a2a4=4,a1+a2+a3=14,则满足a n·a n+1·a n+2>19的最大正整数n的值为()A.3B.4C .5D .68.已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2021=()A .12021B .12022C .20202021D .20212022二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知n ∈N *,则下列表达式能作为数列0,1,0,1,0,1,0,1,…的通项公式的是()A .a n ,n 为奇数,,n 为偶数B .a n =1+(-1)n2C .a n =1+cos n π2D .a n =|sinn π2|10.(2022年宿迁期末)设等差数列{a n }前n 项和为S n ,公差d >0,若S 9=S 20,则下列结论中正确的有()A .S 30=0B .当n =15时,S n 取得最小值C .a 10+a 22>0D .当S n >0时,n 的最小值为2911.已知等比数列{a n }的公比为q ,满足a 1=1,q =2,则()A .数列{a 2n }是等比数列B C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列12.设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并满足条件a 1>1,a 2019a 2020>1,a 2019-1a 2020-1<0,下列结论正确的是()A .S 2019<S 2020B.a2019a2021-1<0C.T2020是数列{T n}中的最大值D.数列{T n}无最大值三、填空题:本题共4小题,每小题5分,共20分.13.若数列{a n}满足a1=1,a n+1=2a n(n∈N*),S n为{a n}的前n项和,则S8=________.14.(2022年北京一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列{a n},则a1=________,a n=________(注:三三数之余二是指此数被3除余2,例如“5”,五五数之余三是指此数被5除余3,例如“8”).15.(2021年淮北期末)已知数列{a n}的通项公式为a n=[lg n]([x]表示不超过x的最大整数),T n为数列{a n}的前n项和,若存在k∈N*满足T k=k,则k的值为__________.16.(2022年武汉模拟)对任一实数序列A=(a1,a2,a3,…),定义新序列△A=(a2-a1,a3-a2,a4-a3,…),它的第n项为a n+1-a n.假定序列△(△A)的所有项都是1,且a12=a22=0,则a2=________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2022年北京二模)已知数列{a n}的前n项和为S n,a1=1,________.是否存在正整数k(k>1),使得a1,a k,S k+2成等比数列?若存在,求出k的值;若不存在,说明理由.-2a n=0;②S n=S n-1+n(n≥2);③S n=n2这三个条件中任选一个,补充在上面从①a n+1问题中并作答.18.(12分)(2022年平顶山期末)在等差数列{a n}中,设前n项和为S n,已知a1=2,S4=26.(1)求{a n}的通项公式;}的前n项和T n.(2)令b n=1a n a n+1,求数列{b n19.(12分)设a>0,函数f(x)=ax=1,a n+1=f(a n),n∈N*.a+x,令a1(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式;(2)用数学归纳法证明你的结论.20.(12分)(2022年潍坊模拟)若数列{a n}的前n项和S n满足S n=2a n-λ(λ>0,n∈N*).(1)求证:数列{a n}为等比数列,并求a n;(2)若λ=4,b n n ,n 为奇数,2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .21.(12分)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和S n .22.(12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值;(2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.第四章数列章末检测(解析版)(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021年郑州模拟)已知数列1,3,5,7,…,2n -1,若35是这个数列的第n 项,则n =()A .20B .21C .22D .23【答案】D【解析】由2n -1=35=45,得2n -1=45,即2n =46,解得n =23.2.已知3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,则等差数列的公差为()A .4或-2B .-4或2C .4D .-4【答案】C【解析】∵3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,∴(a+2)2=3(b +4),2(a +1)=1+b +1=-2,4=4,=8.=-2,=-4时,a +2=0与3,a +2,b +4=4,=8时,等差数列的公差为(a +1)-1=a=4.3.用数学归纳法证明1+12+14+…+12n -1>12764(n ∈N *)成立,某初始值至少应取()A .7B .8C .9D .10【答案】B 【解析】1+12+14+…+12n -1=1-12n1-12>12764,整理得2n >128,解得n >7,所以初始值至少应取8.4.公差不为0的等差数列{a n },其前23项和等于其前10项和,a 8+a k =0,则正整数k =()A .24B .25C .26D .27【答案】C【解析】由题意设等差数列{a n }的公差为d ,d ≠0,∵其前23项和等于其前10项和,∴23a 1+23×222d =10a 1+10×92d ,变形可得13(a 1+16d )=0,∴a 17=a 1+16d =0.由等差数列的性质可得a 8+a 26=2a 17=0,∴k =26.5.(2021年长春模拟)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=()A .10B .16C .24D .32【答案】B【解析】设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4.因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,解得q =2,则a 5=2×23=16.6.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=()A .54B .45C .36D .27【答案】A【解析】∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6,∴S 9=9a 5=54.7.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为()A .3B .4C .5D .6【答案】B【解析】∵a 2a 4=4,a n >0,∴a 3=2,∴a 1+a 2=12,1+a 1q =12,1q 2=2,消去a 1,得1+q q2=6.∵q >0,∴q =12,∴a 1=8,∴a n =8-1=24-n ,∴不等式a n a n +1a n +2>19化为29-3n >19,当n =4时,29-3×4=18>19,当n =5时,29-3×5=164<19,∴最大正整数n =4.8.已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2021=()A .12021B .12022C .20202021D .20212022【答案】D【解析】∵n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),∴(S n +1)[n (n +1)S n -1]=0.又∵S n >0,∴n (n +1)S n -1=0,∴S n =1n (n +1)=1n -1n +1,∴S 1+S 2+…+S 2021…20212022.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知n ∈N *,则下列表达式能作为数列0,1,0,1,0,1,0,1,…的通项公式的是()A .a n ,n 为奇数,,n 为偶数B .a n =1+(-1)n2C .a n =1+cos n π2D .a n =|sinn π2|【答案】ABC 【解析】检验知A ,B ,C 都是所给数列的通项公式.10.(2022年宿迁期末)设等差数列{a n }前n 项和为S n ,公差d >0,若S 9=S 20,则下列结论中正确的有()A .S 30=0B .当n =15时,S n 取得最小值C .a 10+a 22>0D .当S n >0时,n 的最小值为29【答案】BC 【解析】由S 9=S 20⇒9a 1+12×9×8d =20a 1+12×20×19d ⇒a 1+14d =0⇒a 15=0.因为d >0,所以有S 30=30a 1+12×30×29d =30·(-14d )+435d =15d >0,故A 不正确;因为d >0,所以该等差数列是单调递增数列,因为a 15=0,所以当n =15或n =14时,S n 取得最小值,故B 正确;因为d >0,所以该等差数列是单调递增数列,因为a 15=0,所以a 10+a 22=2a 16=2(a 15+d )=2d >0,故C 正确;因为d >0,n ∈N *,所以由S n =na 1+12n (n -1)d =n (-14d )+12n (n -1)d =12dn (n -29)>0,可得n >29,n ∈N *,因此n 的最小值为30,故D 不正确.故选BC .11.已知等比数列{a n }的公比为q ,满足a 1=1,q =2,则()A .数列{a 2n }是等比数列BC .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列【答案】AC【解析】等比数列{a n }中,由a 1=1,q =2,得a n =2n -1,∴a 2n =22n -1,∴数列{a 2n }是等比数列,故A B 不正确;∵log 2a n =n -1,故数列{log 2a n }是等差数列,故C 正确;数列{a n }中,S 10=1-2101-2=210-1,同理可得S 20=220-1,S 30=230-1,不成等比数列,故D 错误.12.设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并满足条件a 1>1,a 2019a 2020>1,a 2019-1a 2020-1<0,下列结论正确的是()A .S 2019<S 2020B .a 2019a 2021-1<0C .T 2020是数列{T n }中的最大值D .数列{T n }无最大值【答案】AB 【解析】若a 2019a 2020>1,则a 1q 2018×a 1q 2019=a 21q 4037>1.又由a 1>1,必有q >0,则数列{a n }各项均为正值.又由a 2019-1a 2020-1<0,即(a 2019-1)(a 2020-1)<0,则有2019<1,2020>1或2019>1,2020<1,又由a 1>1,必有0<q <1,2019>1,2020<1.有S 2020-S 2019=a 2020>0,即S 2019<S 2020,则A正确;有a 2020<1,则a 2019a 2021=a 22020<1,则B 2019>1,2020<1,则T 2019是数列{T n }中的最大值,C ,D 错误.三、填空题:本题共4小题,每小题5分,共20分.13.若数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为{a n }的前n 项和,则S 8=________.【答案】255【解析】由a 1=1,a n +1=2a n 知{a n }是以1为首项、2为公比的等比数列,所以S 8=a 1(1-q 8)1-q =1·(1-28)1-2=255.14.(2022年北京一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列{a n },则a 1=________,a n =________(注:三三数之余二是指此数被3除余2,例如“5”,五五数之余三是指此数被5除余3,例如“8”).【答案】815n -7【解析】被3除余2的正整数可表示为3x +2,被5除余3的正整数可表示为5y +3,其中x ,y ∈N *,∴数列{a n }为等差数列,公差为15,首项为8,∴a 1=8,a n =8+15(n -1)=15n -7.15.(2021年淮北期末)已知数列{a n }的通项公式为a n =[lg n ]([x ]表示不超过x 的最大整数),T n 为数列{a n }的前n 项和,若存在k ∈N *满足T k =k ,则k 的值为__________.【答案】108【解析】a n,1≤n <10,,10≤n <100,,10k ≤n <10k +1.当1≤k <10时,T k =0,显然不存在;当10≤k <100时,T k =k -9=k ,显然不存在;当100≤k <1000时,T k =99-9+(k -99)×2=k ,解得k =108.16.(2022年武汉模拟)对任一实数序列A =(a 1,a 2,a 3,…),定义新序列△A =(a 2-a 1,a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列△(△A )的所有项都是1,且a 12=a 22=0,则a 2=________.【答案】100【解析】令b n =a n +1-a n ,依题意知数列{b n }为等差数列,且公差为1,所以b n =b 1+(n -1)×1,a 1=a 1,a 2-a 1=b 1,a 3-a 2=b 2,…,a n -a n -1=b n -1,累加得a n =a 1+b 1+…+b n -1=a 1+(n -1)b 1+(n -1)(n -2)2.分别令n =12,n =22,得a 2-10a 1+55=0①,a 2-20a 1+210=0②,①×2-②,得a 2=100.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2022年北京二模)已知数列{a n }的前n 项和为S n ,a 1=1,________.是否存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列?若存在,求出k 的值;若不存在,说明理由.从①a n +1-2a n =0;②S n =S n -1+n (n ≥2);③S n =n 2这三个条件中任选一个,补充在上面问题中并作答.解:若选①a n +1-2a n =0,则a 2-2a 1=0,说明数列{a n }是首项为1,公比为2的等比数列,∴a 1=1,a k =2k -1,S k +2=1-2k +21-2=2k +2-1.若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(2k +2-1)=2k +2-1.左边为偶数,右边为奇数,即不存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列.若选②S n =S n -1+n (n ≥2),即S n -S n -1=n ⇒a n =n (n ≥2)且a 1=1也适合此式,∴{a n }是首项为1,公差为1的等差数列,∴a k =k ,S k +2=(k +2)(k +3)2.若a 1,a k ,S k +2成等比数列,则k 2=1×(k +2)(k +3)2⇒k 2-5k -6=0⇒k =6(k =-1舍去),即存在正整数k =6,使得a 1,a k ,S k +2成等比数列.若选③S n =n 2,∴a n =S n -S n -1=n 2-(n -1)2=2n -1(n ≥2),且a 1=1适合上式.若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(k +2)2⇒3k 2-8k -3=0⇒k ==-13舍去即存在正整数k =3,使得a 1,a k ,S k +2成等比数列.18.(12分)(2022年平顶山期末)在等差数列{a n }中,设前n 项和为S n ,已知a 1=2,S 4=26.(1)求{a n }的通项公式;(2)令b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由已知得4×2+4×32d =26,解得d =3,所以a n =a 1+(n -1)d =2+3(n -1)=3n -1.(2)b n =1a n a n +1=1(3n -1)(3n +2)=所以T n…=16-13(3n +2)=n 6n +4.19.(12分)设a >0,函数f (x )=axa +x,令a 1=1,a n +1=f (a n ),n ∈N *.(1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式;(2)用数学归纳法证明你的结论.(1)解:∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a,a 3=f (a 2)=a 2+a ,a 4=f (a 3)=a3+a ,猜想a n =a(n -1)+a.(2)证明:①易知n =1时,猜想正确;②假设n =k 时,a k =a (k -1)+a成立,则a k +1=f (a k )=a ·a k a +a k =a ·a (k -1)+a a +a (k -1)+a=a (k -1)+a +1=a [(k +1)-1]+a ,∴n =k +1时成立.由①②知,对任何n ∈N *,都有a n =a (n -1)+a.20.(12分)(2022年潍坊模拟)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)求证:数列{a n }为等比数列,并求a n ;(2)若λ=4,b nn ,n 为奇数,2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .(1)证明:∵S n =2a n -λ,当n =1时,得a 1=λ.当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列,∴a n =λ·2n -1.(2)解:∵λ=4,∴a n =4·2n -1=2n +1,∴b nn +1,n 为奇数,+1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1=(22+24+…+22n )+(3+5+…+2n +1)=4-4n ·41-4+n (3+2n +1)2=4n +1-43+n (n +2),∴T 2n =4n +13+n 2+2n -43.21.(12分)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和S n .解:(1)设等比数列{a n }的公比为q .∵a n +1+a n =9·2n -1,∴a 2+a 1=9,a 3+a 2=18,∴q =a 3+a 2a 2+a 1=189=2.又∵2a 1+a 1=9,∴a 1=3,∴a n =3·2n -1,n ∈N *.(2)∵b n =na n =3n ·2n -1,∴13S n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1①,∴23S n =1×21+2×22+…+(n -1)×2n -1+n ×2n ②,①-②,得-13S n =1+21+22+…+2n -1-n ×2n =1-2n 1-2-n ×2n =(1-n )2n -1,∴S n =3(n -1)2n +3.22.(12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值;(2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.解:(1)由题意,得(1-a 2)2=a 1(1+a 3),∴(1-a 1q )2=a 1(1+a 1q 2).∵q =12,∴a 1=12,∴a n.1=λb 2,2=2λb 3,=λ(8+d ),+d =2λ(8+2d ),∴λ=12,d =8.(2)由(1)得b n =8n ,∴T n =4n (n +1),∴1T n =令C n =1T 1+1T 2+…+1T n =…∴18≤C n <14.∵S n =21-12=1,∴12S n =121∴14≤12S n <12,∴C n <12S n 即1T 1+1T 2+1T 3+…+1T n <12S n .。
人教版化学选修4:第四章章末综合检测

(时间:90分钟,满分:100分)一、单项选择题(本题包括11小题,每小题3分,共33分。
在每小题给出的四个选项中,只有一个选项符合题目要求)1.茫茫黑夜中,航标灯为航海员指明了方向。
航标灯的电源必须长效、稳定。
我国科技工作者研制出以铝合金、Pt-Fe合金网为电极材料的海水电池。
在这种电池中()①铝合金是阳极②铝合金是负极③海水是电解质溶液④铝合金电极发生还原反应A.②③B.②④C.①②D.①④解析:选A。
电池电极只称为正、负极,故①错。
其中活泼的一极为负极,即为铝合金,②对。
电极在海水中,故海水为电解质溶液,③对。
铝合金为负极,则发生氧化反应,故④错。
2.将等质量的A、B两份锌粉装入试管中,分别加入过量的稀硫酸,同时向装A的试管中加入少量CuSO4溶液。
如图表示产生氢气的体积V与时间t的关系,其中正确的是()解析:选D。
向A中滴加CuSO4溶液:Zn+CuSO4====Cu+ZnSO4,置换出的Cu附着在Zn上构成原电池,加快产生H2的速率。
A中的Zn有少量的与CuSO4反应,产生的H2体积较少。
3.下列各装置中,在铜电极上不.能产生气泡的是()解析:选B。
装置A和C中无外接电源,且符合构成原电池的条件,是原电池装置,铜作正极,放出H2;装置B是电镀池装置,铜作阳极,失去电子逐渐溶解,无气体生成;装置D是电解池装置,碳棒作阳极,OH-失电子生成O2,铜作阴极,H+得电子产生H2。
4.如图所示,铜片、锌片和石墨棒用导线连接后插入番茄里,电流表中有电流通过,则下列说法正确的是()A.锌片是负极B.两个铜片上都发生氧化反应C.石墨是阴极D.两个番茄都形成原电池解析:选A。
由于番茄汁显酸性,Zn和Cu的活泼性不同,且Zn能与H+反应,因此左侧为原电池,右侧为电解池。
在左侧,Zn作负极,Cu作正极,在右侧C作阳极,Cu作阴极,故A正确。
5.(2011·高考广东卷)某小组为研究电化学原理,设计如图装置。
高中化学选择性必修三 试卷讲义 第四章 章末测试(提升)(解析版)

第四章章末测试(提升)满分100分,考试用时75分钟一、选择题:本题共16小题,共44分。
第1~10小题,每小题2分;第11~16小题,每小题4分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.(2022·高二课时练习)豆腐是“养生人”挚爱之物,每100g豆腐中含有水89.30g、蛋白质4.70g、油脂1.30g、糖类2.80g。
下列有关糖类、油脂、蛋白质的叙述中正确的是A.纤维素、蔗糖、葡萄糖在一定条件下都可发生水解反应B.糖类和蛋白质都属于高分子C.某些物理因素和化学因素均能使蛋白质变性D.在酶催化淀粉水解反应中,温度越高淀粉水解速率越快【答案】C【解析】A.葡萄糖不能发生水解反应,错误;B.单糖、二糖均不是高分子,错误;C.某些物理因素如加热等、化学因素如加入强氧化剂等均能使蛋白质变性,正确;D.酶在高温下会发生变性而失去催化活性,在高温下,淀粉水解速率反而变小,错误。
故选C。
2.(2022·高二课时练习)关于糖类的下列说法错误的是A.从分子结构上看,糖类可定义为多羟基醛、多羟基酮和它们的脱水缩合物B.淀粉不能发生银镜反应,说明其分子中没有醛基H SO水浴加热,再加入银氨溶液,然后水浴加热未出现银镜,说明蔗糖一定C.向20%蔗糖溶液中加入稀24未水解D.纤维素是多糖,属于天然有机高分子,不溶于水和一般的有机溶剂【答案】C【解析】A.糖类为多羟基醛、多羟基酮和它们的脱水缩合物,A正确;B.淀粉不能发生银镜反应,可说明淀粉分子中没有醛基,B正确;C.蔗糖水解环境是酸性的,而银镜反应在碱性条件下进行,水解后没有加碱至溶液呈碱性再加银氨溶液,不能说明蔗糖未水解,C错误;D.1mol纤维素能水解出许多摩尔单糖,故为多糖,是天然有机高分子,不溶于水和一般的有机溶剂,D正确。
故选C。
3.(2022·高二课时练习)下列不涉及蛋白质变性的是A.用酒精(体积分数为75%)消毒B.用福尔马林浸泡动物标本C.在鸡蛋清溶液中加入醋酸铅溶液,有沉淀析出D.在鸡蛋清溶液中加入饱和硫酸钠溶液,有沉淀析出【答案】D【解析】A.体积分数为75%的酒精为医用酒精,可用于杀菌消毒,可使微生物蛋白质变性,A不符合题意;B.福尔马林可使蛋白质变性,用其浸泡动物标本,可防止标本腐烂,B不符合题意;C.重金属盐可使蛋白质变性,C不符合题意;D.向鸡蛋清溶液中加入饱和硫酸钠溶液,蛋白质发生盐析,蛋白质没有失去生理活性,D符合题意。
人教B版高中数学必修第二册课后习题 第4章 指数函数、对数函数与幂函数 第4章末测评卷

第四章测评一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y=x 53的图象大致是( )2.已知f(x)=a-x(a>0且a≠1),且f(-2)>f(-3),则实数a的取值范围是( )A.(0,+∞)B.(1,+∞)C.(-∞,1)D.(0,1)3.若函数f(x)=1+3-x的反函数为g(x),则g(10)=( )A.2B.-2C.3D.-14.函数f(x)=lo g12(2x-x2)的单调递减区间为( )A.(0,2)B.(-∞,1]C.[1,2)D.(0,1]5.函数f(x)=a x-2+3(a>0且a≠1)的图象恒过定点P,点P 又在幂函数g(x)的图象上,则g(3)的值为( ) A.4B.8C.9D.166.10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式v=v 0·ln Mm 计算火箭的最大速度v(单位:m/s),其中v 0(单位:m/s)是喷流相对速度大小,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,Mm 称为“总质比”.若某型火箭的喷流相对速度大小为1 000 m/s,当总质比为625时,该型火箭的最大速度约为( )(附:lg e≈0.434,lg 2≈0.301) A.5 790 m/s B.6 219 m/s C.6 442 m/s D.6 689 m/s7.设a=log 32,b=ln 2,c=5-12,则( ) A.a<b<c B.b<c<a C.c<a<bD.c<b<a8.若对于任意-1)2的取值范围是( ) A.(-∞,13)B.(-∞,13]C.(-∞,1)D.(-∞,1]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知a>0,b>0,2a+b=1,则( ) A.log 0.5a+log 0.5b 的最大值为3 B.4a +2b 的最小值为2√2 C.a ∈(0,12)D.a 2+b 2的最小值为1410.设a,b,c 都是正数,且4a =6b =9c ,则下列结论正确的是( ) A.ab+bc=2ac B.ab+bc=ac C.4b ·9b =4a ·9c D.1c=2b−1a11.已知函数f(x)={2x -4,x ≥0,-x 2-4x +1,x <0,则关于x 的方程[f(x)]2-3f(x)+2=0的解可以为( ) A.-4B.0C.-2D.log 2612.关于函数f(x)=|ln|2-x||,下列描述正确的有 ( )A.f(x)在区间(1,2)内单调递增B.y=f(x)的图象关于直线x=2对称C.若x 1≠x 2,f(x 1)=f(x 2),则x 1+x 2=4D.f(x)有且仅有两个零点三、填空题:本题共4小题,每小题5分,共20分.13.方程log 3(3x-1)=log 3(x-1)+log 3(3+x)的解为x= . 14.函数y=12x,-3≤x≤1的值域是 .15.若log a 23<1,则实数a 的取值范围是 .16.已知函数f(x)={lnx ,x >0,e x +1,x ≤0,且函数g(恰有两个不同的零点,则实数m 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)计算题: (1)√2-1-(-9.6)0+√(√2-e )44−(827)23+(32)-2.(2)lg 4+2lg 5+log 45·log 514.+a).18.(12分)已知函数f(x)=log2(12x(1)若函数f(x)是R上的奇函数,求实数a的值;(2)若函数f(x)的定义域是R,求实数a的取值范围;(3)若函数f(x)在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.19.(12分)已知函数f(x)=lg(10x-1).(1)求函数f(x)的定义域和值域;(2)设函数g(x)=f(x)-lg(10x+1),若关于x的不等式g(x)<t恒成立,求实数t的取值范围.20.(12分)在刚刷完漆的室内放置空气净化器,净化过程中有害气体含量P(单位:mg/L)与时间t(单位:h)的关系为:P=P0e-kt,其中P0,k是正常数,如果在前5 h消除了10%的有害气体,那么(1)10 h后还剩百分之几的有害气体?(2)有害气体减少50%需要花多少时间?(精确到1 h)(参考数据:ln2≈0.693 1,ln 0.9≈-0.105 4)21.(12分)已知a>0且a≠1,函数f(x)=log a2.1-x(1)求f(x)的定义域及其零点;(2)设g(x+3,当a>1时,若对任意x1∈(-∞,-1],存在x2∈[3,4],使得f(x1)≤g(的取值范围.22.(12分)给出下面两个条件:①函数f(x)的图象与直线y=-1只有一个交点;②函数f(x)的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数f(x)的解析式确定.已知二次函数f(x)=ax2+bx+c满足f(x+1)-f(x)=2x-1,且. (1)求f(x)的解析式;,27],2f(log3的取值范围.(2)若对任意x∈[19参考答案第四章测评1.B 函数y=x 53=√x53的定义域为R,且此函数在定义域上是增函数,故排除选项A,C;当0<x<1时,x 53<x,所以x∈(0,1)时,函数y=x53图象要在函数y=x图象的下方,排除选项D.故选B.2.D3.B 令y=1+3-x,得x=-log3(y-1),∴g(x)=-log3(x-1)(x>1),∴g(10)=-2.4.D 记u(x)=2x-x2=-(x-1)2+1,u(x)的图象为抛物线,对称轴为x=1,且开口向下,令u(x)>0,解得x∈(0,2),①当x∈(0,1]时,u(x)单调递增,f(x)=lo g12u(x)单调递减,即原函数的单调递减区间为(0,1];②当x∈[1,2)时,u(x)单调递减,f(x)=lo g12u(x)单调递增,即原函数的单调递增区间为[1,2).故选D.5.C ∵f(x)=a x-2+3,令x-2=0,得x=2,∴f(2)=a0+3=4,∴f(x)的图象恒过点(2,4).设g(x)=x a,把P(2,4)代入得2a=4,∴a=2,∴g(x)=x2,∴g(3)=32=9.故选C.6.C 由题得v=v 0·ln Mm =1000×ln625=1000×4lg5lge=1000×4×(1-lg2)lge≈6442m/s.故选C.7.C a=log 32=1log 23,b=ln2=1log 2e,而log 23>log 2e>1,所以a<b,c=5-12=√5,而√5>2=log 24>log 23,所以c<a,综上c<a<b.故选C. 8.C ∵2-1)2x<1(-1<12x=(12)x对于任意x ∈(-∞,-1]恒成立.∵-1<2,解得m<1.∴实数m 的取值范围是(-∞,1).故选C.9.BC a>0,b>0,2a+b=1⇒ab≤18,则log 0.5a+log 0.5b=log 0.5ab≥3,当且仅当a=14,b=12时,等号成立,故A 错误;4a +2b =22a +2b ≥2√2,当且仅当a=14,b=12时,等号成立,故B 正确;a>0,b>0,2a+b=1⇒b=1-2a>0⇒0<a<12,故C 正确;a 2+b 2=a 2+(1-2a)2=5a 2-4a+1,0<a<12,则当a=25时,有最小值为15,故D 错误.10.ACD 设4a =6b =9c =t,t>1,则a=log 4t,b=log 6t,c=log 9t,所以b c+ba=log 6t log 9t+log 6t log 4t =lgt lg6lgt lg9+lgt lg6lgt lg4=lg9lg6+lg4lg6=lg9+lg4lg6=lg (9×4)lg6=lg62lg6=2,即b c+ba=2,所以1c+1a=2b,所以1c=2b−1a,故D 正确;由b c+ba=2,所以ab+bc=2ac,故A正确,B 错误;因为4a ·9c =4a ·4a =(4a )2,4b ·9b =(4×9)b =(62)b =(6b )2.又4a =6b =9c ,所以(4a )2=(6b )2,即4b ·9b =4a ·9c ,故C 正确.故选ACD. 11.AD [f(x)]2-3f(x)+2=0,[f(x)-1][f(x)-2]=0,得f(x)=1或f(x)=2,当x≥0时,2x -4=1或2x -4=2,解得x=log 25或x=log 26;当x<0时,-x 2-4x+1=1或-x 2-4x+1=2,解得x=-4或x=-2±√3.故在选项中方程的解可以为AD.故选AD.12.ABD 根据图象变换作出函数f(x)的大致图象,如图,由图象知f(x)在区间(1,2)内单调递增,故A 正确;函数图象关于直线x=2对称,故B 正确;令f(x 1)=f(x 2)=k,则直线y=k 与函数f(x)图象相交可能是4个交点,如图.如果最左边两个交点横坐标分别是x 1,x 2,则x 1+x 2=4不成立,故C 错误;f(x)的图象与x 轴仅有两个公共点,即函数仅有两个零点,故D 正确.故选ABD. 13.214.[12,8] 因为指数函数y=12x在区间[-3,1]上单调递减,所以当x=-3时,函数有最大值为12-3=8;当x=1时,函数有最小值为12.所以函数y 的值域为[12,8].15.0,23∪(1,+∞) 当a>1时,不等式为log a 23<log a a,∴a>23,即a>1;当0<a<1时,不等式为log a 23<log a a,∴a<23,即0<a<23.综上所述,实数a 的取值范围是0,23∪(1,+∞).16.(1,2] 由g(,即函数g(与函数y=f(x)图象交点的横坐标.当x≤0时,f(x)=e x +1单调递增,其值域为(1,2];当x>0时,f(x)=ln 与函数y=f(x)图象有2个交点,即函数g(的取值范围是(1,2]. 17.解(1)原式=√2+1-1+e-√2−23×23+49=e.(2)原式=lg4+lg25+log 45·(-log 54)=lg4×25-lg5lg4×lg4lg5=lg102-1=2-1=1.18.解(1)若函数f(x)是R 上的奇函数,则f(0)=0,即log 2(120+a)=0,解得a=0.当a=0时,f(x)=-x=-f(-x),在R 上为奇函数,所以a=0为所求. (2)若函数f(x)的定义域是R,则12x +a>0恒成立,即a>-12x 恒成立,由于-12x ∈(-∞,0),故只要a≥0即可,即实数a 的取值范围为[0,+∞).(3)由题意,知函数f(x)在[0,1]上单调递减,故f(x)在区间[0,1]上的最大值是f(0)=log 2(1+a),最小值是f(1)=log 2(12+a).由题意,得log 2(1+a)-log 2(12+a)≥2,所以{1+a >0,a +12>0,a +1≥4a +2,解得-12<a≤-13, 故实数a 的取值范围为(-12,-13].19.解(1)∵10x -1>0,∴10x >100,则x>0,∴f(x)的定义域为(0,+∞).又10x -1>0,∴f(x)的值域为R.(2)g(x)=f(x)-lg(10x+1)=lg(10x-1)-lg(10x+1)=lg (10x -110x +1)=lg (1-210x +1).∵10x >0,∴10x +1>1,∴0<210x +1<2,∴-2<-210x +1<0,∴-1<1-210x +1<1.又1-210x +1>0,∴0<1-210x +1<1.∴lg (1-210x +1)<0,∴g(x)的值域为(-∞,0).∵关于x 的不等式g(x)<t 恒成立,∴t≥0,即t 的取值范围是[0,+∞). 20.解(1)根据题意得P=P 0e -5k =P 0(1-10%),则e -5k =90%,故当t=10时,P=P 0e -10k =P 0(e -5k )2=P 0(90%)2=P 081%,故10个小时后还剩81%的有害气体. (2)根据题意得P 0e -kt=P 050%,即(e -5k)15t =12,即0.915t =0.5,故t=5log 0.90.5=5-ln2ln0.9≈33,故有害气体减少50%需要花33小时.21.解(1)由题意知,21-x>0,1-x>0,解得x<1,所以函数f(x)的定义域为(-∞,1).令f(x)=0,得21-x=1,解得x=-1,故函数f(x)的零点为-1.(2)若对于任意x 1∈(-∞,-1],存在x 2∈[3,4],使得f(x 1)≤g(≥-1.即m ∈[-1,+∞).22.解(1)因为二次函数f(x)=ax 2+bx+c 满足f(x+1)-f(x)=2x-1,f(x+1)-f(x)=a(x+1)2+b(x+1)+c-ax 2-bx-c=2ax+a+b=2x-1,所以{2a =2,a +b =-1,解得{a =1,b =-2,所以f(x)=x 2-2x+c.选①,因为函数f(x)的图象与直线y=-1只有一个交点,所以f(1)=1-2+c=-1,解得c=0,所以f(x)的解析式为f(x)=x 2-2x.选②,设x 1,x 2是函数f(x)的两个零点,则|x 1-x 2|=2,且Δ=4-4c>0,可得c<1.由题可知x 1+x 2=2,x 1x 2=c,所以|x 1-x 2|=√(x 1+x 2)2-4x 1x 2=√4-4c =2,解得c=0,所以f(x)的解析式为f(sx)=x 2-2x.(2)由2f(log3≤-2f(log3x).当x∈1,27时,log3x∈[-2,3].令h=log3x,9,27],2f(log3≤-2f(h)在h∈[-2,3]上恒则h∈[-2,3],所以对任意x∈[19成立,所以m≤[-2f(h)]min.当h=-2时,取最小值,则-2f(-2)=-16,所以实数m的取值范围为(-∞,-16].。
第四章 数列 章末检测试卷一(第四章)(含解析)高中数学人教A版选择性必修第二册

章末检测试卷一(第四章)[时间:120分钟分值:150分]一、单项选择题(本题共8小题,每小题5分,共40分)1.已知数列1,3,5,7,…,2n―1,则35是这个数列的第( )A.20项B.21项C.22项D.23项2.设等差数列{a n}的前n项和为S n,若a4=8,S3=18,则S5等于( )A.34B.35C.36D.383.已知等比数列{a n}的各项均为正数,若log3a1+log3a2+…+log3a12=12,则a6a7等于( )A.1B.3C.6D.94.等差数列{a n}的前n项和为S n.若a1011+a1012+a1013+a1014=8,则S2024等于( )A.8096B.4048C.4046D.20245.已知圆O的半径为5,|OP|=3,过点P的2024条弦的长度组成一个等差数列{a n},圆O的最短弦长为a1,最长弦长为a2024,则其公差为( )A.12 023B.22 023C.31 011D.15056.已知等差数列{a n}的前n项和为S n,若a6+a7>0,a6+a8<0,则S n最大时n的值为( )A.4B.5C.6D.77.已知数列{a n}中的项都是整数,且满足a n+1={a n2,a n为偶数,3a n+1,a n为奇数,若a8=1,a1的所有可能取值构成集合M,则M中的元素的个数是( )A.7B.6C.5D.48.若数列{a n}的前n项和为S n,b n=S nn,则称数列{b n}是数列{a n}的“均值数列”.已知数列{b n}是数列{a n}的“均值数列”且通项公式为b n=n,设数列{1a n a n+1}的前n项和为T n,若T n<12m2-m-1对一切n∈N*恒成立,则实数m的取值范围为( )A.(-1,3)B.[-1,3]C.(-∞,-1)∪(3,+∞)D.(-∞,-1]∪[3,+∞)二、多项选择题(本题共3小题,每小题6分,共18分.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知数列{a n }的通项公式为a n =(n +2)·(67)n,则下列说法正确的是( )A.a 1是数列{a n }的最小项B.a 4是数列{a n }的最大项C.a 5是数列{a n }的最大项D.当n ≥5时,数列{a n }为递减数列10.设d ,S n 分别为等差数列{a n }的公差与前n 项和,若S 10=S 20,则下列说法中正确的是( )A.当n =15时,S n 取最大值B.当n =30时,S n =0C.当d >0时,a 10+a 22>0D.当d <0时,|a 10|>|a 22|11.已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n=3n +39n +3,则使得a n b n 为整数的正整数n的值为( )A.2 B.3C.4D.14三、填空题(本题共3小题,每小题5分,共15分)12.已知数列{a n }的前n 项和为S n ,a 1=1,a n +a n +1=4×3n -1,则S 2 024= .13.在等差数列{a n }中,前m (m 为奇数)项和为135,其中偶数项之和为63,且a m -a 1=14,则a 100的值为 .14.已知函数f (x )=(x +1)3+1,正项等比数列{a n }满足a 1 013=110,则2 025Σk =1f (lg a k )= . 四、解答题(本题共5小题,共77分)15.(13分)在数列{a n }中,a 1=1,a n +1=3a n .(1)求{a n }的通项公式;(6分)(2)数列{b n }是等差数列,S n 为{b n }的前n 项和,若b 1=a 1+a 2+a 3,b 3=a 3,求S n .(7分)16.(15分)已知等差数列{a n }中,a 5-a 2=6,且a 1,a 6,a 21依次成等比数列.(1)求数列{a n }的通项公式;(6分)(2)设b n =1a n a n +1,数列{b n }的前n 项和为S n ,若S n =335,求n 的值.(9分)17.(15分)在数列{a n }中,前n 项和S n =1+ka n (k ≠0,k ≠1).(1)证明:数列{a n }为等比数列;(5分)(2)求数列{a n }的通项公式;(4分)(3)当k =-1时,求a 21+a 22+…+a 2n .(6分)18.(17分)某公司计划今年年初用196万元引进一条永磁电机生产线,第一年需要安装、人工等费用24万元,从第二年起,包括人工、维修等费用每年所需费用比上一年增加8万元,该生产线每年年产值保持在100万元.(1)引进该生产线几年后总盈利最大,最大是多少万元?(8分)(2)引进该生产线几年后平均盈利最多,最多是多少万元?(9分)19.(17分)在如图所示的三角形数阵中,第n 行有n 个数,a ij 表示第i 行第j 个数,例如,a 43表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m 为公差的等差数列,从第三行起每一行的数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 41=12a 32+2,a 22a 21=m .(1)求m 及a 53;(7分)(2)记T n =a 11+a 22+a 33+…+a nn ,求T n .(10分)答案精析1.D [已知数列1,3,5,7,…,2n ―1,则该数列的通项公式为a n =2n ―1,若2n ―1=35=45,即2n -1=45,解得n =23,则35是这个数列的第23项.]2.B [因为{a n }是等差数列,设其公差为d ,因为S 3=a 1+a 2+a 3=3a 2=18,则a 2=6,所以2d =a 4-a 2=2,则d =1,所以a 5=9,S 5=S 3+a 4+a 5=18+8+9=35.]3.D [因为等比数列{a n }的各项均为正数,且log 3a 1+log 3a 2+…+log 3a 12=12,即log 3(a 1·a 2·…·a 12)=12,所以a 1·a 2·…·a 12=312,所以(a 6a 7)6=312,所以a 6a 7=32=9.]4.B [由等差数列的性质可得a 1 011+a 1 012+a 1 013+a 1 014=2(a 1 012+a 1 013)=8,所以a 1 012+a 1 013=4,所以S 2 024=2 024(a 1+a 2 024)2=2 024(a 1 012+a 1 013)2=4 048,故B 正确.]5.B [由题意,知最长弦长为直径,即a 2 024=10,最短弦长和最长弦长垂直,由弦长公式得a 1=252―32=8,所以d =a 2 024―a 12 024―1=22 023.]6.C [∵等差数列{a n }的前n 项和为S n ,a 6+a 7>0,a 6+a 8<0,∴a 6+a 8=2a 7<0,∴a 6>0,a 7<0,∴S n 最大时n 的值为6.]7.B [a n +1={a n2,a n 为偶数,3a n +1,a n 为奇数,若a 8=1,可得a 7=2,a 6=4,所以a 5=8或a 5=1.①若a 5=8,则a 4=16,a 3=32或a 3=5,当a 3=32时,a 2=64,a 1=128或a 1=21;当a 3=5时,a 2=10,a 1=20或a 1=3; ②若a 5=1,则a 4=2,a 3=4,a 2=8或a 2=1,当a 2=8时,a 1=16;当a 2=1时,a 1=2,故当a 8=1时,a 1的所有可能的取值集合M ={2,3,16,20,21,128},即集合M 中含有6个元素.]8.D [由题意,得数列{a n }的前n 项和为S n ,由“均值数列”的定义可得S nn =n ,所以S n =n 2,当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,a 1=1也满足a n =2n -1,所以a n =2n -1,所以1a n a n +1=1(2n ―1)(2n +1)=12(12n ―1―12n +1),所以T n =12(1―13+13―15+…+12n ―1―12n +1)=12(1―12n +1)<12,又T n <12m 2-m -1对一切n ∈N *恒成立,所以12m 2-m -1≥12,整理得m 2-2m -3≥0,解得m ≤-1或m ≥3.即实数m 的取值范围为(-∞,-1]∪[3,+∞).]9.BCD [假设第n 项为{a n }的最大项,则{a n ≥a n―1,a n ≥a n +1,即{(n +2)·(67)n≥(n +1)·(67)n―1,(n +2)·(67)n≥(n +3)·(67)n +1,所以{n ≤5,n ≥4,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574,故B ,C 正确;当n ≥5时,数列{a n }为递减数列,故A 错误,D 正确.]10.BC [因为S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得a 1=-292d.所以S n =-292dn +n (n ―1)2d =d 2n 2-15nd =d 2[(n -15)2-225].对于选项A ,因为d 的正负不确定,S n 不一定有最大值,故A 错误;对于选项B ,S 30=30a 1+30×292d =30×(―292d )+15×29d =0,故B 正确;对于选项C ,a 10+a 22=2a 16=2(a 1+15d )=2(―292d +15d )=d >0,故C 正确;对于选项D ,a 10=a 1+9d =-292d +182d =-112d ,a 22=a 1+21d =-292d +422d =132d ,因为d <0,所以|a 10|=-112d ,|a 22|=-132d ,|a 10|<|a 22|,故D 错误.]11.ACD [由题意可得S 2n―1T 2n―1=(2n ―1)(a 1+a 2n―1)2(2n ―1)(b 1+b 2n―1)2=(2n ―1)a n (2n ―1)b n =a n b n ,则a n b n =S 2n―1T 2n―1=3(2n ―1)+39(2n ―1)+3=3n +18n +1=3+15n +1,由于a nb n 为整数,则n +1为15的正约数,则n +1的可能取值有3,5,15,因此,正整数n 的可能取值有2,4,14.]12.32 024―12解析 根据题意,可得a 1+a 2=4×30=4,a 3+a 4=4×32,…,a 2 023+a 2 024=4×32 022,所以S 2 024=4×30+4×32+…+4×32 022=4×(30+32+…+32 022)=4×1―(32)1 0121―32=32 024―12.13.101解析 ∵在前m 项中偶数项之和为S 偶=63,∴奇数项之和为S 奇=135-63=72,设等差数列{a n }的公差为d ,则S 奇-S 偶=2a 1+(m ―1)d2=72-63=9.又a m =a 1+d (m -1),∴a 1+a m2=9,∵a m -a 1=14,∴a 1=2,a m =16.∵m (a 1+a m )2=135,∴m =15,∴d =a m ―a 1m ―1=1,∴a 100=a 1+99d =101.14.2 025解析 函数f (x )=(x +1)3+1的图象可看成由y =x 3的图象向左平移1个单位长度,再向上平移1个单位长度得到,因为y =x 3的对称中心为(0,0),所以f (x )=(x +1)3+1的对称中心为(-1,1),所以f (x )+f (-2-x )=2,因为正项等比数列{a n }满足a 1 013=110,所以a 1·a 2 025=a 2·a 2 024=…=a 21 013=1100,所以lg a 1+lg a 2 025=lg a 2+lg a 2 024=...=2lg a 1 013=-2,所以f (lg a 1)+f (lg a 2 025)=f (lg a 2)+f (lg a 2 024)= (2)2 025Σk =1f (lg a k )=f (lg a 1)+f (lg a 2)+f (lg a 3)+…+f (lg a 2 025),①2 025Σk =1f (lg a k )=f (lg a 2 025)+f (lg a 2 024)+f (lg a 2 023)+…+f (lg a 1),②则①②相加得22 025Σk =1f (lg a k )=[f (lg a 1)+f (lg a 2 025)]+[f (lg a 2)+f (lg a 2 024)]+…+[f (lg a 2 025)+f (lg a 1)]=2 025×2,所以2 025Σk =1f (lg a k )=2 025.15.解 (1)因为a 1=1,a n +1=3a n ,所以数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1.(2)由(1)得,b 1=a 1+a 2+a 3=1+3+9=13,b 3=9,则b 3-b 1=2d =-4,解得d =-2,所以S n =13n +n (n ―1)2×(-2)=-n 2+14n.16.解 (1)设数列{a n }的公差为d ,因为a 5-a 2=6,所以3d =6,解得d =2.因为a 1,a 6,a 21依次成等比数列,所以a 26=a 1a 21,即(a 1+5×2)2=a 1(a 1+20×2),解得a 1=5,所以a n =2n +3.(2)由(1)知b n =1a n a n +1=1(2n +3)(2n +5),所以b n =12(12n +3―12n +5),所以S n =12[(15―17)+(17―19)+…+(12n +3―12n +5)]=n5(2n +5),由n5(2n +5)=335,得n =15.17.(1)证明 因为S n =1+ka n ,①S n -1=1+ka n -1(n ≥2),②由①-②,得S n -S n -1=ka n -ka n -1(n ≥2),所以a n =kk ―1a n -1.当n =1时,S 1=a 1=1+ka 1,所以a 1=11―k .所以{a n }是首项为11―k ,公比为kk ―1的等比数列.(2)解 因为a 1=11―k ,q =kk ―1,所以a n =11―k ·(k k ―1)n―1=-k n―1(k ―1)n .(3)解 因为在数列{a n }中,a 1=11―k ,公比q =kk ―1,所以数列{a 2n }是首项为(1k ―1)2,公比为(k k ―1)2的等比数列.当k =-1时,等比数列{a 2n }的首项为14,公比为14,所以a 21+a 22+…+a 2n=14×[1―(14)n ]1―14=13×[1―(14)n ].18.解 (1)设引进设备n 年后总盈利为f (n )万元,设除去设备引进费用,第n 年的成本为a n ,构成一等差数列,前n 年成本之和为[24n +n (n ―1)2×8]万元,所以f (n )=100n -[24n +4n (n -1)+196]=-4n 2+80n -196=-4(n ―10)2+204,n ∈N *,所以当n =10时,f (n )max =204(万元),即引进生产线10年后总盈利最大,为204万元.(2)设n 年后平均盈利为g (n )万元,则g (n )=f (n )n=-4n -196n +80,n ∈N *,因为g (n )=-4(n +49n)+80,当n ∈N *时,n +49n ≥2n·49n=14,当且仅当n =49n ,即n =7时取等号,故当n =7时,g(n)max=g(7)=24(万元),即引进生产线7年后平均盈利最多,为24万元.19.解 (1)由已知得a31=a11+(3-1)×m=2m+2,a32=a31×m=(2m+2)×m=2m2+2m,a41=a11+(4-1)×m=3m+2,a32+2,∵a41=12(2m2+2m)+2,∴3m+2=12即m2-2m=0.又m>0,∴m=2,∴a51=a11+4×2=10,∴a53=a51×22=40.(2)由(1)得a n1=a11+(n-1)×2=2n.当n≥3时,a nn=a n1·2n-1=n·2n.(*)又a21=a11+2=4,a22=ma21=2×4=8.a11=2,a22=8符合(*)式,∴a nn=n·2n.∵T n=a11+a22+a33+…+a nn,∴T n=1×21+2×22+3×23+4×24+…+n·2n,①2T n=1×22+2×23+3×24+…+(n-1)·2n+n·2n+1,②由①-②得,-T n=21+22+23+24+…+2n-n·2n+1-n·2n+1=2×(1―2n)1―2=2n+1-2-n·2n+1=(1-n)·2n+1-2,∴T n=(n-1)·2n+1+2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章地表形态的塑造
主备:刘秀云 【学习目标】
通过训练巩固第三四学习的知识点。
【重点难点】
1、各种地貌的举例和岩石圈物质循环过程
2、了解褶皱的概念、成因,认识褶皱山的形成和基本形态。
3、背斜、向斜对地貌的影响及判断。
4、断层的概念、主要断层地貌、断块山地及其主要特点
【知识点梳理】
一、选择题(每小题4分,共60分)
1.下列关于内、外力作用的叙述,正确的是 ( ) A .内力作用的能量主要来自太阳辐射能
B .内力作用的主要表现是地壳运动、岩浆活动、固结成岩等
C .外力作用使地表变得趋于平缓
D .外力作用强度较小,速度缓慢,内力作用激烈而迅速 地质作用包括内力作用和外力作用,对地表形态会产生重大影响。
读“黄土高原”和“狮身人面像”图,完成2~3题。
2.“千沟万壑、支离破碎”是黄土高原现今地表形态的典型写照,其成因主要是( ) A .风力侵蚀 B .风化作用 C .流水侵蚀 D .冰川侵蚀 3.矗立在尼罗河畔的埃及狮身人面像缺损严重,其主要原因可能是 ( ) A .雨水侵蚀和溶蚀作用B .风化和风蚀作用 C .喀斯特作用 D .海蚀作用
构造 实践意义
原因或依据
背斜 石油、天然气埋藏区 岩层封闭,常有“储油构造”,易于储油、储气
隧洞的良好选址
天然拱形,结构稳定,不易储水 顶部地带适宜建采石场
裂隙发育,岩石破碎
向斜 地下水储藏区,常有“自流井”分布 底部低凹,易汇集水,承受静水压力 断层
泉水、湖泊分布地;河谷发育 岩隙水沿着断层线出露;岩石破碎,
易被侵蚀为洼地,利于地表水汇集 铁路、公路、桥梁、水库等的回避处
岩层不稳定,容易诱发断层活动,破坏工程;水库水易渗漏
当地时间2010年8月28日凌晨,印度尼西亚苏门答腊岛的锡纳朋火山在沉寂了400年后突然喷发。
读“锡纳朋火山与大松巴哇火山在印度尼西亚国内的位置分布图“,回答4~6题。
4.下面的“地壳物质循环示意图”中,能代表锡纳朋火山活动的地质过程及形成的岩石的数字或字母分别是()
A.⑦a B.③b C.②c D.①d
5.引起锡纳朋火山持续喷发的板块及该处的板块边界类型分别是
()
A.亚欧板块与太平洋板块生长边界
B.亚欧板块与印度洋板块消亡边界
C.印度洋板块与太平洋板块生长边界
D.亚欧板块与太平洋板块消亡边界
6.根据图丙中大松巴哇火山爆发后的火山灰厚度分布情况,可推测大松巴哇火山爆发期间的盛行风是( ) A.西北风B.东南风
C.西南风D.东北风
下图为“某地某水平面的岩层分布图”,读图回答7~9题。
7.图中丁处的地质构造为
A.褶皱B.背斜C.向斜D.断层
8.关于图中的叙述,正确的是
A.甲处为良好的储油构造
B.甲处有利于储存地下水
C.修一条南北向隧道选址丁处
D.图中岩层为岩浆岩
9.若该地地表甲为谷地,丁为山岭,其成因是() A.地壳运动所致B.内力作用所致
C.岩浆活动所致D.外力作用所致
读图甲和图乙,完成10~11题。
10.图甲中,形成该河谷的地质作用依次是() A.流水作用、冰川作用B.流水作用、风化作用
C.冰川作用、流水作用D.风化作用、冰川作用
11.图乙中,E、F示意的河谷形态分别出现在河流的() A.①、③B.②、③C.①、④D.②、④
读“四地水系图”,回答12~13题。
12.图中反映地势中间高四周低的是() A.①B.②C.③D.④
13.四地以流水堆积作用为主的是() A.①B.②C.③D.④
读图,据此回答14~15题。
14.在a、c两处最有可能形成的河流堆积地貌是
()
A.洪(冲)积扇、河漫滩平原
B.洪(积)积扇、三角洲
C.河漫滩平原、三角洲
D.三角洲、河漫滩平原
15.a区建于河流上游地势较低处,b、c、d区建于河流中下游
地势较高处,其原因是()
A.a区位于河流上游地势较高的平坦之处,利于人类定居
B.b、c、d区位于河流中下游地势较高处,减少河流洪水的威胁
C.b、c、d区位于河流中下游地势较高处,容易获取淡水资源
D.a区位于河流上流地势较平坦处,有利于引用河流淡水
二、综合题(共40分)
16.读下图回答问题。
(16分)
(1)图中A、B、C构成了岩石的相互转化过程,其中属于岩浆岩的
是________(填字母)。
(2)图中的①②③④构成的水循环类型是
()
A.陆地内循环B.海洋循环
C.海陆间循环D.地壳循环
(3)其中表示蒸发环节的是________,表示水汽输送环节的是
________,表示地表径流环节的是________,目前人类最易施加影响的环节是________。
(填数字)
(4)如果在该地区的甲、乙、丙三地钻井,有可能在________地找到石油、天然气。
17.读“我国北方某山区地图”,回答下列问题。
(24分)
(1)在沿A-E线进行地质调查时,发现岩层的形成年代是A、
E两处最晚,其次是B、D两处,C处最早,由此判断该处的
褶曲类型为_
(2)试解释该处褶曲与凉水河河谷两者间的成因关系。
(3)丙村所在的地形部位是__________,凉水河的流向是
__________。
(4)图中虚线是当地规划在三个村庄之间修建公路的设计路
线,请比较乙村—甲村、乙村—丙村两条路线的不同特点及
这样修建的原因。
18\读我国亚热带某地区地质图,回答问题。
(1)图中所示地质构造为判断根据是。
(2)甲、乙、丙三个村中村可成为旅游区,理由是。
(3)在村不可能找到化石,理由是。
19、读“地质剖面图”,回答问题。
(1)图中A处为构造。
(2)图中C处为斜构造,B处为斜构造。
(3)图中C处形成山谷的原因是。
(4)图中B、C两构造中,利于储存石油的是构造,利于储存地下水的是构造。
20、读下列一组地貌示意图(图9),并回答下列问题。
(10分)
(1)写出各图所表示的地貌名称:A________,B________,C________。
(2)简述以上各种地貌的主要成因:A是__________形成的;B、是________ 形成的;C是________形成的。
(3)图A所示的地貌一般出现在___________地区,这里作为农业区的优势是___________________________________________________。
(4)图B所表示的地貌分布在____________________。
(5)图C所表示的地貌是___________地区的基本地表形态。
答案
1.C 2.C 3.B4.B 5.B 6.B7.C8.A9.D10.C11.D12.B13.D14.A 15.B
16.(1)A(2)C(3)①②④④(4)丙
17.(1)背斜该处地层显示为中心岩层较老、两翼岩层较新(2)该处的褶曲类型为背斜,由于背斜顶部受张力作用,容易被侵蚀而形成谷地。
(3)山谷自东向西
(4)乙村到甲村的道路比较平直,乙村到丙村的道路比较弯曲。
原因是乙村到甲村的地
势平坦,乙村到丙村的地势起伏大,公路大部分路段呈“之”字型弯曲,沿等高线修建,可减小公路的坡度。
18\综合题(1)向斜中心岩层新,两翼岩层老(2)丙石灰岩容易形成喀斯特地貌(3)甲化石只存在于沉积岩中,而甲村为岩浆岩
19、(1)断层(2)背向(3)背斜顶部岩石因受张力易被外力侵蚀,发育成为谷地
(4)C (5)A
20.(1)三角洲冲积扇新月形沙丘
(2)流水堆积作用流水堆积作用风力堆积作用
(3)大河入海口地势平坦,土层深厚,土壤肥沃,灌溉水源便利
(4)山前(5)沙漠。