制氧工艺
工业制氧工艺流程

工业制氧工艺流程
《工业制氧工艺流程》
工业制氧是指通过各种工艺手段将空气中的氧气纯化提取出来,提供给各种工业生产和民生用途。
制氧工艺流程主要包括以下几个步骤:
1. 空气净化:空气中含有大量的杂质和水汽,需要通过净化设备将这些杂质和水汽去除,以保证提取出的氧气的纯度和质量。
2. 空压机压缩:将净化后的空气通过空压机进行高效率的压缩,提高空气的压力。
3. 冷却凝结:经过压缩的空气会升高温度,需要经过冷却凝结过程,将其中的水汽凝结成液体状态,然后通过分离器将水和空气分离。
4. 分子筛吸附:分子筛是一种特殊的吸附剂,可以吸附空气中的氮气和其他杂质气体,使得提取出的气体更纯净。
5. 减压放气:将经过分子筛吸附后的氧气进行减压,使得氧气得以从分子筛中释放出来。
6. 存储输送:最后,提取出的纯净氧气被储存起来,可以通过输送管道或者气瓶等方式提供给工业生产或者民生用途。
工业制氧工艺流程的优化和创新,可以提高制氧的效率和纯度,
降低制氧的成本,符合环保要求,适应各种不同的工业生产需求。
在未来,随着工业技术的不断进步,制氧工艺流程也会不断完善和提升。
工业上制取氧气的方法

工业上制取氧气的方法
工业上制取氧气的方法主要有以下几种:
1. 分离空气法:利用低温分离空气中的氮气和氧气。
首先通过压缩空气,然后将压缩空气经过冷却与液化处理,使氮气与氧气分离,最后通过精炼等工艺,得到高纯度的氧气。
2. 制氧机法:利用分子筛吸附原理,将空气中的氮气与其他杂质吸附下来,只保留氧气通过。
制氧机有压缩空气与吸附式、压力摆动吸附式、真空吸附式等类型,可以根据需要选择适合的制氧机型号。
3. 电解水法:通过电解水(H2O)分解水分子,将氢气(H2)与氧气(O2)分离,从而得到纯净的氧气。
这种方法需要使用电解槽,通过电流将水分子分解成氢氧,然后通过分离装置将氢气和氧气分离。
4. 化学反应法:将一定比例的氧化剂与还原剂反应,使氧化剂释放出氧气。
比如利用高温下的氧化铝(Al2O3)与还原剂反应,得到氧气。
这种方法适用于特殊工艺中,需要高温条件下制取氧气的场合。
需要根据具体的工业需求和条件选择合适的制取氧气的方法。
制氧厂工艺流程

制氧厂工艺流程
制氧厂是一种用于生产纯氧气的设备,通常用于工业生产和医疗用途。
制氧厂的工艺流程包括空气分离、压缩、冷却、分离和储存等多个步骤。
下面将详细介绍制氧厂的工艺流程。
1. 空气分离
制氧厂的工艺流程首先是空气分离。
空气中包含大量的氮气、氧气和其他杂质气体。
制氧厂通过空气分离技术将氧气从空气中分离出来。
这一步通常采用分子筛吸附技术或者膜分离技术。
通过这些技术,可以将氧气从空气中提取出来,得到高纯度的氧气。
2. 压缩
分离出的氧气需要经过压缩处理,将氧气压缩成液态或者高压气体。
这一步通常使用压缩机进行,压缩机可以将氧气压缩成需要的压力和温度。
3. 冷却
压缩后的氧气需要经过冷却处理,将氧气冷却成液态。
这一步
通常使用冷凝器进行,冷凝器可以将氧气冷却到需要的温度,使其
变成液态。
4. 分离
冷却后的氧气需要进行进一步的分离处理,将液态氧气中的杂
质气体去除。
这一步通常使用精馏塔或者其他分离设备进行,通过
这些设备可以将氧气中的杂质气体分离出来,得到高纯度的液态氧气。
5. 储存
最后一步是将分离出的氧气储存起来,以备后续使用。
储存通
常采用液氧储罐或者气体储罐进行,这些储罐可以将氧气储存起来,并在需要时将氧气输送到需要的地方。
以上就是制氧厂的工艺流程,通过空气分离、压缩、冷却、分
离和储存等多个步骤,可以生产出高纯度的氧气,满足工业生产和
医疗用途的需求。
深冷制氧工艺流程

深冷制氧工艺流程
《深冷制氧工艺流程》
深冷制氧工艺是一种重要的工业生产方法,用于生产高纯度氧气。
该工艺使用液态空分装置分离大气中的氧气,并通过深度冷却的方法将其凝结成液态氧。
以下是深冷制氧工艺的主要流程:
1. 空气压缩:首先,大气中的空气会被抽入压缩机中进行压缩,以增加其压力和密度。
2. 空气预冷:接下来,压缩后的空气会通过空气预冷器,降低其温度以准备进入液态空分装置。
3. 分离空分装置:压缩冷却后的空气会进入液态空分装置,其中使用分子筛或冷凝剂分离空气中的氧气和其他成分,如氮气和稀有气体。
4. 高温合成气体净化:分离得到的高纯度氧气会通过高温合成气体净化,去除残留的杂质和水分。
5. 液氧凝结:经过净化的氧气会进入液态空氧凝结器,通过深度冷却的方法使其凝结成液态氧。
6. 分离收集:液态氧会被分离出来并收集储存,用于工业生产中的各种应用领域。
深冷制氧工艺流程通过高效分离和凝结空气中的氧气,实现了对高纯度氧气的生产。
该工艺广泛应用于化工、医疗和航天等领域,为各行各业提供了重要的工业气体资源。
vpsa制氧工艺流程

vpsa制氧工艺流程
VPSA制氧工艺流程:
1、氮气充气:先将一定流量的新鲜空气与加压的氮气混合,再通过过滤器将两者进行混合并去除杂质后进入VPSA装置中;
2、进入当量床活性炭:采用精制后的活性炭管,将上一步经过过滤的混合气体迅速进入机体进行精制活性炭的处理,去除活性气体的有毒性气体;
3、进入静压式离子交换器:将上一步处理过的空气通过静压式离子交换器处理,吸附氧气和湿气,并且将有害物质和有毒气体再去除;
4、进入内螺旋増压泵:将上一步再次处理过的气体通过内螺旋増压泵进行增压,使气体的压力达到要求的最佳制氧状态;
5、进气浓缩:气体进入装置的气浓缩腔内,通过机械压缩将空气进行浓缩,使气体的压力达到设定的要求;
6、制氧:将经过上述步骤处理过的带压空气进入制氧装置,使其在规定的条件下发生脱氧反应,同时有毒气体和臭味气体被除去,从而制氧成功。
氧气的工业制法

工业制氧的应用
03
工业制氧在钢铁行业的应用
炼钢过程
工业制氧在钢铁行业中主要用于 炼钢过程,提供高纯度氧气作为 氧化剂,加速铁矿石的氧化反应 ,提高炼钢效率。
切割和焊接
钢铁行业中的金属切割和焊接需 要高纯度氧气作为助燃剂,工业 制氧满足了这一需求,提高了切 割和焊接的质量和效率。
工业制氧在石油化工行业的应用
工业制氧的工艺流程
原料空气的采集
采集富含氧气的空气作为原料,如从高山、 深海等地区采集。
空气的净化
通过过滤、除湿、除尘等手段净化原料空气, 去除其中的杂质和有害物质。
空气的压缩
将净化后的空气进行压缩,提高其压力和流速。
空气的液化
将压缩后的空气进行液化,以便进行进一步的分离 。
气体的分离
利用物理或化学方法将氧气与其他气体分离。
技术成熟,生产成本低,产量大。
缺点
需要消耗大量能源,并产生大量副产品氮 气。
电解水法
原理
利用电解水产生氢气和氧气。
流程
将水通过直流电电解生成氢气 和氧气。
优点
纯度高,适用于高纯度氧气的 需求。
缺点
耗能大,生产成本高,产量相 对较小。
热解吸水法
01
02
03
04
原理
利用加热分解水产生氢气和氧 气。
流程
工业制氧的应急处理
事故预警
建立完善的事故预警系统, 及时发现和处理制氧过程 中的异常情况。
应急救援
组建专业的应急救援队伍, 配备必要的应急救援器材, 确保在发生事故时能够迅 速有效地进行救援。
事故报告
按照国家相关规定及时上 报事故情况,积极配合相 关部门进行事故调查和处 理。
制氧工艺流程

制氧工艺流程制氧是指通过物理或化学方法从空气中分离出纯氧的过程。
纯氧广泛应用于医疗、工业、冶金等领域,因此制氧工艺流程显得尤为重要。
下面将详细介绍制氧的工艺流程。
1. 空气的净化制氧的第一步是对空气进行净化。
空气中含有大量的杂质,如水蒸汽、二氧化碳、氮气等。
这些杂质会影响到制氧的质量和效率。
因此,需要通过过滤、冷凝、吸附等方法将空气中的杂质去除,以保证后续制氧过程的顺利进行。
2. 空气的压缩经过净化的空气需要进行压缩,将其压缩成液态或高压气体。
压缩空气可以提高氧气的浓度和密度,有利于后续的分离过程。
常见的压缩方法包括活塞式压缩机、螺杆式压缩机等。
3. 空气的分离压缩后的空气需要进行分离,将其中的氧气和氮气等成分分离出来。
常见的分离方法包括分子筛吸附法、冷凝法、膜分离法等。
这些方法可以根据气体的物理性质和化学性质进行选择,以实现高效的氧气分离。
4. 氧气的纯化分离出的氧气还需要进行进一步的纯化处理,以提高其纯度。
通常采用的方法包括液态分馏、压力摩尔吸附、膜分离等。
这些方法可以将氧气中的杂质去除,使其达到医用或工业用氧气的纯度标准。
5. 氧气的储存和输送经过纯化处理的氧气需要进行储存和输送。
通常采用的储存方式包括液氧储罐、气态储氧罐等。
而输送方式则包括管道输送、气瓶输送等。
这些方法可以保证氧气的安全储存和高效输送,满足不同领域的需求。
6. 氧气的利用最后一步是氧气的利用。
经过上述工艺流程处理的氧气可以广泛应用于医疗、工业、冶金等领域。
在医疗领域,氧气可用于治疗呼吸系统疾病;在工业领域,氧气可用于金属切割、焊接等工艺;在冶金领域,氧气可用于炼钢、炼铁等过程。
综上所述,制氧工艺流程包括空气的净化、压缩、分离、纯化、储存和输送以及利用等多个环节。
每个环节都至关重要,只有严格按照工艺流程进行操作,才能确保制氧的质量和效率。
制氧工艺的不断改进和创新,将有助于提高氧气的生产能力和质量,满足社会各个领域对氧气的需求。
制氧工艺流程

1.氧气和氮气的生产原料空气自吸入塔吸入,经空气过滤器除去灰尘及其它机械杂质。
空气经过滤后在离心式空压机中经压缩至0.52MPa左右,经空气冷却塔预冷,冷却水分段进入冷却塔内,下段为循环冷却水,上段为低温冷冻水。
空气经空气冷却塔冷却后降至约10℃,然后进入切换使用的分子筛吸附器,空气中的二氧化碳,碳氢化合物及残留的水蒸气被吸附。
分子筛吸附器为两只切换使用,其中一只工作时另一只再生,纯化器的切换周期为240分钟。
空气经净化后,分为两路:大部分空气在主换热器中与返流气体(纯氧、纯氮、污氮等)换热达到接近液化温度约-173℃进入下塔。
另一路空气在主换热器内被返流冷气体冷却至-105℃时抽出进入膨胀机膨胀制冷,然后入上塔参加精馏同时补充冷量损失。
在下塔中,空气被初步分离成氮和含氧38-40%的富氧液空(下塔底部),顶部生成的氮气在冷凝蒸发器中被冷凝为液氮,同时主冷的低压侧液氧被汽化。
部分液氮作为下塔回流液,另一部分液氮从下塔顶部引出,经过冷器中过冷后经节流送入上塔中部作回流液和粗氩塔Ⅰ冷凝器冷凝侧的冷源。
下塔底部的富氧液空引出后经节流降温送入上塔做为回流液参与上塔精馏。
氧气从上塔底部引出,并在主换热器中与原料空气复热后出冷箱进入氧气压缩机加压后送往用户。
污氮气从上塔上部引出,并在过冷器及主换热器中复热后送出分馏塔外,大部分作为分子筛的再生气体(用量约21000/h)。
小部分进入水冷塔中作为冷源冷却循环水。
氮气从上塔顶部引出,在过冷器及主换热器中复热后出冷箱,经氮气压缩机加压后送往用户。
产品液氧从主冷中排出送入液氧贮槽保存。
从液氧贮槽中排出的液氧,用液氧泵加压后的进入汽化器,蒸发成氧气然后进入氧气管网送用户。
2、氩气的生产精液氩是采用低温全精馏法制取的。
从上塔相应部位抽出氩馏分气体约18000m3/h,含量为8~10%(体积),含氮量小于0.06%(体积)。
氩馏分直接从粗氩塔Ⅱ的底部导入,粗氩塔Ⅱ上部采用粗氩塔Ⅰ底部排出的粗液氩作为回流液,作为回流液的粗液氩经液氩泵加压后直接进入粗氩塔Ⅱ上部。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、PSA工艺:加压吸附(0.2~0.6MPa)、常压解吸。投资小、设备简单,但能耗高,适用于小规模制氧的场合。
2、VPSA工艺:常压或略高于常压(0~50KPa)下吸附,抽真空解吸。设备相对复杂,但效率高、能耗低,适用于制氧规模较大的场合。 表1、PSA和VPSA制氧装置主要参数比较
工艺流程
适宜规模 m3/h
图1、变压吸附气体分离基本原理示意图
氩气和氧气的沸点接近,两者很难分离,一起在气相得到富集。因此变压吸附制氧装置通常只能获得浓度为90%~95%的氧气(氧的极限浓度为95.6%,其余为氩气) ,与深冷空分装置的浓度99.5%以上的氧气相比,又称富氧。
★ 变压吸附空分制氧装置工艺简述
从上述原理可知,变压吸附空分制氧装置的吸附床必须至少包含两个操作步骤:吸附和解吸。因此,当只有一个吸附床时,产品氧气的获得是间断的。为了连续获 得产品气,通常在制氧装置中一般都设置两个以上的吸附床,并且从节能降耗和操作平稳的角度出发,另外设置一些必要的辅助步骤。
费用高。
占地面积大,厂房和基础要求高,工程造价高。 安装周期长,技术难度大,安装费用高。
占地面积小,厂房无特殊要求,造价低。 安装周期短,安装费用低。
中小型制氧电耗高,约为0.5~1.0KW/Nm3
制氧电耗低,约为0.32~0.35KW/Nm3
设备受压力容器规范控制。可造成碳氢化合物局部聚集,存在 操作压力低,不受压力容器规范控制,不会造成碳氢化合
≤-40℃。
电耗主要是在空压机上,PSA制氧(氮)系统中的那几个阀门的可靠性很让人头疼,毛病容易出在电磁换项阀上。
已有 2 人评分
财富
收起理
zjy_007
+ 10
积极参
ssunxinhong
总评分: 财富 + 20 查看全部评分
海川+宝宝秀+原源
+ 10
积极参
点评回复 附件详情给作者献花
zjy_007 (372201号)
■ 深冷空分制氧工艺与变压吸附制氧工艺的比较
类别 项目 分离原理 装置主 要特点 工艺特点
操作特点
维护特点
土建及 安装特点 制氧成本
安全性
深冷空分制氧装置
变压吸附制氧装置
将空气液化,根据氧和氮沸点不同达到分离
加压吸附,抽真空解吸,利用氧氮吸附能力不同达到分离
工艺流程复杂,设备较多,包括空气压缩系统,空气预冷系统 工艺流程简单,设备少,包括鼓风机、真空泵和吸附塔等
爆炸的可能性。
物的局部聚集
二、变压吸附空分制氧工艺原理 ★ 变压吸附空气分离制氧原理
空气中的主要组份是氮和氧,通过选择对氮和氧具有不同吸附选择性的吸附剂,设计适当的工艺过程,使氮和氧分离制得氧气。
氮和氧都具有四极矩,但氮的四极矩(0.31Å)比氧的(0.10 Å)大得多,因此氮气在沸石分子筛上的吸附能力比氧气强(氮与分子筛表面离子的作用力强,如图1所示)。因此,当空气在加压状态下通过装有沸石分子 筛吸附剂的吸附床时,氮气被分子筛吸附,氧气因吸附较少,在气相中得到富集并流出吸附床,使氧气和氮气分离获得氧气。当分子筛吸附氮气至接近饱和后,停 止通空气并降低吸附床的压力,分子筛吸附的氮气可以解吸出来,分子筛得到再生并重复利用。两个以上的吸附床轮流切换工作,便可连续生产出氧气。
每个吸附床一般都要经历吸附、顺向放压、抽空或减压再生、冲洗置换和均压升压等步骤,周期性地重复操作。在同一时间,各个吸附床则分别处于不同的操作步 骤,在计算机的控制下定时切换,使几个吸附床协同操作,在时间步伐上则相互错开,使变压吸附装置能够平稳运行,连续获得产品气。
根据解吸方法的不同,变压吸附制氧又分为两种工艺(参见表1):
,空气纯化系统,膨胀机组,换热系统和精馏塔等。
-160~-190℃低温下操作
常温操作
启动时间长,一般在15~40小时,必须连续运转,不能间断运 启动时间短,一般≤30min,可连续运行,也可间断运行。
行,短暂停机,恢复工况时间长。
设备结构复杂,加工精度高,维修保养技术难度大,维护保养 设备结构简单,维护保养技术难度低,维护保养费用低。
已有 1 人评分
财富
收起理
novabow
总评分: 财富 + 6 查看全部评分
+6
积极参
0点 当月幸运
-52 点 收到鲜花
0朵 注册时间
2009-4-1 在线时间
1019 小时 最后登录
2015-3-2 收听TA 发消息
点评回复 附件详情给作者献花
评分 举报给版主 举报给超版(有奖)
7楼 发表于 2010-1-31 21:40 |只看该作者 一般的吸附剂在90%左右。。。 北大的能到93% 进口的能到95%
吸附压力 KPa
解吸压力 KPa
氧气纯度 %
制氧电耗 KWh/m3
PSA
≤200
200~600
大气压
80~93
0.7~2
VPSA
100~10000
0~50
-45~-80
80~95
0.3~0.5
氧气收率 %
30~45 46~68
对于实际的分离过程,还必须考虑空气中的其它微量组份。二氧化碳和水份在通常的吸附剂上的吸附能力一般要比氮和氧都大得多,可在吸附床 内填加合适的吸附剂(或利用制氧吸附剂自身)使其被吸附清除。制氧装置所需的吸附塔数目取决于制氧规模、吸附剂性能和工艺设计思路,多塔 操作时运行平稳性相对更好一些,但设备投资较高。目前的趋势是:使用高效制氧吸附剂、尽量减少吸附塔数量并采用短操作周期,以提高装置的 效率并尽可能节约投资。
85 主题
0 听众
620 积分
海川高中1年级
升级 6.67%
帖子 609
魅力 601 点
财富 3720 点
威望 1点
贡献点
评分 举报给版主 举报给超版(有奖)
6楼 发表于 2010-1-28 20:56 |只看该作者
◇ 制氧流程
◇ 工艺说明
如上述流程图所示:制氧系统主要由空气压缩机、空气冷却器,空气缓冲罐、切换阀、吸附器和氧气平衡罐组成。原料空 气经吸入口过滤器除掉灰尘颗粒后,被空气压缩机增压至3~4barg而进入其中一只吸附器内。吸附器内装填吸附剂,其 水分、二氧化碳、及少量其它气体组分在吸附器入口处被装填于底部的活性氧化铝所吸附,随后氮气被装填于活性氧化 铝上部的沸石分子筛所吸附。而氧气(包括氩气)为非吸附组分从吸附器顶部出口处作为产品气排至氧气平衡罐。当该 附器吸附到一定程度,其中的吸附剂将达到饱和状态,此时通过切换阀放空,已吸附的水分、二氧化碳、氮气及少量其它 气体组分排至大气,吸附剂得到再生。 PSA的每个吸附器都交替执行以下步骤: ---吸附---解吸---冲压 上述三个基本的工艺步骤由PLC和切换阀系统来实现自动控制。
PSA的原理可参考下图,分子筛换个型号就是制氧机了(“快气”变为氧气)。
工作原理:
2075 点 财富
4607 点 威望
3点 贡献点
0点 当月幸运
68 点 收到鲜花
15 朵 注册时间
-1 在线时间
2563 小时 最后登录
2015-3-26 收听TA 发消息
首先原料空气经压缩机压缩至0.7MPa左右,再经高效除油器除去大部分油、水、尘埃后,进入冷冻式干燥机,使压缩空 气的压力露点降至2℃左右,除去大量的水分,再进入除油过滤器,使残油含量至≤0.01PPM,后进入二个填装吸附剂的 变压吸附分离系统,即HSN型制氮机组。在A塔工作时,洁净的压缩空气由吸附塔底端IA阀进入,此时阀OA、RB同时打 开,其余阀门全部关闭,气流经空气扩散器扩散以后,均匀进入吸附塔A,进行氧氮吸附分离,然后从出口端OA流出氮 气,A塔工作同时B塔则进行解吸,解吸排放的富氧空气由RB排出,通过消声器排放到大气中,56s以后,IA、OA、RB同 时关闭,阀M1、M2打开,开始均压,均压3s钟后,阀M1、M2关闭,阀IB、OB、RA同时打开,此时则为B塔工作、A塔解吸 状态。产氮过程约1分钟,之后经无压和减压(至常压),脱除所吸附的杂质组分(主要为氧气),完成吸附剂的再生。二个 吸附塔交替循环操作,连接送入原料空气,连续生产纯度≥99.9%的氮气,氮气输出压力为0.7MPa(可调),氮气压力露
■ 变压吸附制氧技术特点--与深冷制氧技术相比 l 工艺流程简单,不需要复杂的预处理装置; l 产品氧气纯度可达95%,氮气含量小于1%,其余为氩气; l 制氧规模10000m3/h以下时,制氧电耗更低、投资更小; l 装置运行自动化程度高,开停车方便快捷; l 装置运行独立性强,安全性高; l 装置操作简单,操作弹性大(部分负荷性优越,负荷转换速度快); l 装置运行和维护费用低; l 土建工程费用低,占地少。
微信群大全 ylrt6X2r2Bz9
pzhmotor (422829号)
185 主题
6 听众
2141 积分
海川大学一年
马达
升级 14.1%
帖子 3405
魅力
点评回复 附件详情给作者献花 评分 举报给版主 举报给超版(有奖) 5楼
发表于 2010-1-25 12:15 |只看该作者
本帖最后由 pzhmotor 于 2010-1-25 12:16 编辑
一、空气分离制氧的主要工艺及其比较 氧气在工业生产和日常生活中有广泛的用途,空气中含有21%(体积浓度)的氧气,是最廉价的制氧原料,因此氧气一般都通过空气分离制取。
■ 空气分离制氧主要工艺 1.深冷分离工艺: 传统制氧技术,氧气纯度高、产品种类多,适用于大规模制氧。 2.变压吸附工艺(PSA): 新兴技术,投资小、能耗低,适用于氧气纯度不太高、中小规模应用场合。 3.膜分离工艺: 尚不成熟,基本未得到工业应用。