2018大二轮高考总复习物理文档:第3讲 力与曲线运动 含答案
高考物理二轮总复习精品课件 第2部分 专题整合高频突破 第3讲 力与物体的曲线运动

小球弹力方向向下,故小球对杆的弹力方向向上,C正确。若v2=2b,
2
则F+mg=m ,解得F=a=mg,故D正确。
-23-
新题演练
1 2 3 4 5
怎样得高分
1.一只小船渡河,运动轨迹如图所示。水流速度各处相同且恒定不
变,方向平行于岸边;小船相对于静水分别做匀加速、匀减速、匀
x=v0t①
1
h=2gt2②
设圆弧轨道半径为 R,由机械能守恒定律得
1
mgR= 0 2 ③
2
联立①②③式,并代入题给条件得
R=0.25 m。④
-29-
新题演练
1 2 3 4 5
-30-
怎样得高分
(2)环由b处静止下滑过程中机械能守恒,设环下滑至c点的速度大小
为v,有
1
mgh=2mv2⑤
环在c点速度的水平分量为
解得 v2=
小滑块在 O 点做平抛运动,则
1 2
R=2gt ,x=v0t
解得 2R≤x≤2R。
-18-
命题热点一
命题热点二
命题热点三
(3)如图所示,设小滑块出发点为P1,离开点为P2,由题意要求O1P1、
O2P2与竖直方向的夹角相等,设为θ,若离开滑道时的速度为v,
2
则小滑块在 P2 处脱离滑道的条件是 mgcos θ=m
命题热点三
解析:在南北方向上,帆板静止,所以在此方向上帆船相对于帆板
向北以速度v运动;在东西方向上,帆船静止,帆板向西以速度v运动,
所以在此方向上帆船相对于帆板向东以速度v运动;以帆板为参考
2018年高考物理大二轮复习专题三力与物体的曲线运动第2讲万有引力与航天课件

G2-G1 T 时,放在地球赤道地面上的物体不再对 G2 G2-G1 G1 T 时,放在地球赤道地面上的物体不再对
解析 答案
技巧点拨
1. 由于地球上的物体随地球自转需要的向心力由万有引力的一个分力
提供,万有引力的另一个分力才是重力.
2.利用天体表面的重力加速度g和天体半径R.
gR2 3g Mm M M 由于 G R2 =mg,故天体质量 M= G ,天体密度 ρ= V =4 =4πGR. 3 π R 3 3.通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r. 4π2 Mm (1)由万有引力等于向心力,即 G r2 =m T2 r,得出中心天体质量 M=
极的过程中,经过赤道时测得某物体的重力是G1;在南极附近测得该物体的 重力为G2;已知地球自转的周期为 T,引力常数为G,假设地球可视为质量 分布均匀的球体,由此可知 3πG1 A.地球的密度为 2 GT G2-G1 3πG2 B. 地球的密度为 2 GT G2-G1
√
C.当地球的自转周期为 √ 地面有压力 D.当地球的自转周期为 地面有压力
解析 答案
图1
技巧点拨
1. 万有引力提供卫星做圆周运动的向心力,对于椭圆运动,应考虑开
普勒定律.
2 v2 4π Mm Mm 2 2.由 G r2 =m r =mω r=m T2 r=ma 和 G R2 =mg 两个关系分析卫星运
动规律.
3. 灵活应用同步卫星的特点,注意同步卫星和地球赤道上物体的运动
解析
答案
宁本溪市联合模拟 )如图1所示,A为置于地
球赤道上的物体, B 为绕地球做椭圆轨道运行的卫星, C 为绕地球做圆周运动的卫星,P为B、C两卫星轨道的交点, 已知A、B、C绕地心运动的周期相同,相对地心,下列说 法中错误的是 A.卫星C的运行速度大于物体A的速度 B.物体A和卫星C具有相同大小的加速度 √ C.卫星B运动轨迹的半长轴与卫星C运动轨迹的半径相同 D.卫星B在P点的加速度大小与卫星C在该点的加速度大小相等
专题2.3 力与曲线运动(解析版)

第二部分核心主干专题突破专题2.3 力与曲线运动目录【突破高考题型】 (1)题型一曲线运动、运动的合成与分解 (1)题型二平抛(类平抛)运动的规律 (4)题型三圆周运动 (7)类型1水平面内圆周运动的临界问题 (7)类型2竖直平面内圆周运动的轻绳模型 (8)类型3竖直平面内圆周运动的轻杆模型 (9)【专题突破练】 (11)【突破高考题型】题型一曲线运动、运动的合成与分解1.曲线运动的理解(1)曲线运动是变速运动,速度方向沿切线方向。
(2)合力方向与轨迹的关系:物体做曲线运动的轨迹一定夹在速度方向与合力方向之间,合力的方向指向曲线的“凹”侧。
2.运动的合成与分解(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成。
(2)根据合外力与合初速度的方向关系判断合运动的性质。
(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵循平行四边形定则。
【例1】(2022·学军中学适应考)2021年10月29日,华南师大附中校运会开幕式隆重举行,各班进行入场式表演时,无人机从地面开始起飞,在空中进行跟踪拍摄。
若无人机在水平和竖直方向运动的速度随时间变化关系图像如图所示,则无人机()A.在0~t1的时间内,运动轨迹为曲线B.在t1~t2的时间内,运动轨迹为直线C.在t1~t2的时间内,速度均匀变化D.在t3时刻的加速度方向竖直向上【答案】C【解析】在0~t1的时间内,无人机沿x方向和y方向均做初速度为零的匀加速直线运动,其合运动仍是直线运动,A错误;在t1~t2的时间内,无人机的加速度沿y轴负向,但初速度为t1时刻的末速度,方向不是沿y轴方向,初速度和加速度不共线,因此运动轨迹应是曲线,B错误;在t1~t2的时间内,无人机加速度沿y轴负向,且为定值,因此其速度均匀变化,C正确;在t3时刻,无人机有x轴负方向和y轴正方向的加速度分量,合加速度方向不是竖直向上,D错误。
【例2】.(2022·成都诊断)质量为m的物体P置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑轻质定滑轮分别连接着P与小车,P与滑轮间的细绳平行于斜面,小车以速率v水平向右做匀速直线运动。
新课标2018届高考物理二轮复习专题一力与运动能力训练3力与物体的曲线运动

专题能力训练3 力与物体的曲线运动(时间:45分钟满分:100分)一、选择题(本题共7小题,每小题8分,共56分。
在每小题给出的四个选项中,1~4题只有一个选项符合题目要求,5~7题有多个选项符合题目要求。
全部选对的得8分,选对但不全的得4分,有选错的得0分)1.如图所示,小船过河时,船头偏向上游与水流方向成α角,船相对于静水的速度为v,其航线恰好垂直于河岸。
现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施可行的是()A.减小α角,增大船速vB.增大α角,增大船速vC.减小α角,保持船速v不变D.增大α角,保持船速v不变2.(2017·广东广州调研)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()A.小球通过最高点时的最小速度v min=B.小球通过最高点时的最小速度v min=C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力3.(2017·辽宁铁岭联考)飞机由俯冲到拉起时,飞行员处于超重状态,此时座椅对飞行员的支持力大于飞行员所受的重力,这种现象叫过荷。
过荷过大会造成飞行员四肢沉重,大脑缺血,暂时失明,甚至昏厥。
受过专门训练的空军飞行员最多可承受9倍重力的影响。
g取10 m/s2,则当飞机在竖直平面上沿圆弧轨道俯冲、拉起的速度为100 m/s时,圆弧轨道的最小半径为()A.100 mB.111 mC.125 mD.250 m4.如图所示,在足够长的斜面上A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上的水平距离为x1。
若将此球改用2v0水平速度抛出,落到斜面上的水平距离为x2,则x1∶x2为() A.1∶1 B.1∶2C.1∶3D.1∶45.如图所示,一人用力跨过定滑轮拉一玩具小车,已知小车的质量为m,水平面对小车的阻力恒为F f。
2018版高考物理二轮江苏专版教师用书:第一部分 专题三 力与曲线运动一抛体运动和圆周运动 含解析 精品

专题三 力与曲线运动(一)——抛体运动和圆周运动考点1| 运动的合成与分解 难度:中档 题型:选择题、计算题(对应学生用书第12页)1.(2018·江苏高考)如图3-1所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为( )【导学号:17214187】图3-1A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定【解题关键】 甲、乙两同学实际的速度是静水中的游速与水流速度的合速度,设游速为v ,水速为v 0,根据速度合成可知:甲游到A 点的速度为v +v 0,游回的速度为v -v 0;乙来回的速度都为v 2-v 20.明确了各自的合速度后,再用匀速直线运动规律求出时间进行比较.C [设游速为v ,水速为v 0,OA =OB =l ,则甲整个过程所用时间:t 甲=l v +v 0+l v -v 0=2v l v 2-v 20, 乙为了沿OB 运动,速度合成如图:则乙整个过程所用时间:t 乙=l v 2-v 20×2=2l v 2-v 20v 2-v 20,因为v >v 2-v 20 所以t 甲>t 乙,选项C 正确,选项A 、B 、D 错误.]运动合成与分解的解题思路(1)明确合运动或分运动的运动性质. (2)明确是在哪两个方向上的合成与分解.(3)找出各个方向上已知的物理量(速度、位移、加速度).(4)运用力与速度的关系或矢量运算法则进行分析求解.●考向1 小船渡河问题1.(多选)(2018·无锡期中)如图3-2所示,甲、乙两船在同条河流中同时开始渡河,M、N分别是甲、乙两船的出发点,两船头与河岸均成α角,甲船船头恰好对准N点的正对岸P点,经过一段时间乙船恰好到达P点,划船速度大小相同.若两船相遇,不影响各自的航行,下列判断正确的是()【导学号:17214188】图3-2A.甲船能到达对岸P点B.两船渡河时间一定相等C.两船可能不相遇D.两船一定相遇在NP的中点BD[乙船垂直河岸到达正对岸,说明水流方向向右;甲船参与了两个分运动,沿着船头指向的匀速运动,随着水流方向的匀速运动,故不可能到达对岸P点,故A错误;小船过河的速度为船本身的速度垂直河岸方向的分速度,故小船过河的速度v y=v sin α,故小船过河的时间:t1=dv y=dv sin α,故甲、乙两船到达对岸的时间相同,故B正确;以流动的水为参考系,相遇点在两个船速度方向射线的交点上;又由于乙船沿着NP方向运动,故相遇点在NP的中点上,故C错误,D正确.]2.(2018·南通一模)小船横渡一条两岸平行的河流,水流速度与河岸平行,船相对于水的速度大小不变,船头始终垂直指向河岸,小船的运动轨迹如图3-3中虚线所示.则小船在此过程中()图3-3A.做匀变速运动B.越接近河岸,水流速度越大C.所受合外力方向平行于河岸D.渡河的时间随水流速度变化而改变C[从轨迹曲线的弯曲形状上可以知道,小船先具有向下游的加速度,后具有向上游的加速度,故加速度是变化的,由于水流是先加速后减速,即越接近河岸水流速度越小,故A、B错误;因小船先具有向下游的加速度,后具有向上游的加速度,那么所受合外力方向平行于河岸,故C正确;由于船身方向垂直于河岸,无论水流速度是否变化,这种渡河方式耗时最短,故D错误.]●考向2绳的牵连运动问题3.(2018·南通模拟)如图3-4所示,细绳一端固定在天花板上的O点,另一端穿过一张CD光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为()【导学号:17214189】图3-4A.v sin θB.v cos θC.v tan θD.v cot θA[由题意可知,线与光盘交点参与两个运动,一是沿着线的方向运动,二是沿着垂直线的方向运动,则合运动的速度大小=v sin θ;而沿线方向为v,由数学三角函数关系,则有:v线的速度大小,即为小球上升的速度大小,故A正确,B、C、D错误.]4.(2018·南通模拟)如图3-5所示,长为L的轻直棒一端可绕固定轴O转动,另一端固定一质量为m的小球,小球搁在水平升降台上,升降平台以速度v匀速上升,下列说法正确的是()【导学号:17214180】图3-5A .小球做匀速圆周运动B .当棒与竖直方向的夹角为α时,小球的速度为v cos αC .棒的角速度逐渐增大D .当棒与竖直方向的夹角为α时,棒的角速度为v L sin αD [小球受重力、平台的弹力和杆的作用力,因为升降平台以速度v 匀速上升,平台的弹力和杆的作用力变化,即小球受到的合力大小变化,小球做的不是匀速圆周运动,故A 错误;小球的实际运动即合运动方向是垂直于棒指向左上方,如图所示,合速度v实=vsin αωL ,沿竖直向上方向上的速度分量等于v ,即ωL sin α=v ,所以ω=vL sin α,平台向上运动,夹角增大,角速度减小,故B 、C 错误,D 正确.]考点2| 抛体运动的运动规律 难度:中档 题型:选择题 五年5考(对应学生用书第13页)2.(多选)(2018·江苏高考T 6)如图3-6所示,相距l 的两小球A 、B 位于同一高度h (l 、h 均为定值).将A 向B 水平抛出的同时,B 自由下落.A 、B 与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则( )【导学号:17214181】图3-6A.A、B在第一次落地前能否相碰,取决于A的初速度B.A、B在第一次落地前若不碰,此后就不会相碰C.A、B不可能运动到最高处相碰D.A、B一定能相碰【解题关键】由落体运动;B为自由落体运动,A、B竖直方向的运动相同,二者与地面碰撞前运动时间t1相同,且t1=2hg,若第一次落地前相碰,只要满足A运动时间t=lv<t1,即v>lt1,所以选项A正确;因为A、B在竖直方向的运动同步,始终处于同一高度,且A与地面相碰后水平速度不变,所以A一定会经过B所在的竖直线与B相碰.碰撞位置由A球的初速度决定,故选项B、C 错误,选项D正确.]3.(2018·江苏高考T2)有A、B两小球,B的质量为A的两倍.现将它们以相同速率沿同一方向抛出,不计空气阻力.图3-7中①为A的运动轨迹,则B的运动轨迹是()【导学号:17214182】图3-7A.①B.②C.③D.④【解题关键】解此题应注意以下两点:(1)不计空气阻力,两小球均做抛体运动.(2)两球以相同速率沿同一方向抛出,说明两球均做斜抛运动且初速度相同.A[不计空气阻力的情况下,两球沿同一方向以相同速率抛出,其运动轨迹是相同的,选项A正确.]4.(多选)(2018·江苏高考T7)如图3-8所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球()图3-8A.做直线运动B.做曲线运动C.速率先减小后增大D.速率先增大后减小【解题关键】解此题应注意以下三点:(1)小球受重力和电场力作用.(2)根据初速度与合力间夹角判断小球运动轨迹.(3)根据运动的合成与分解思想,判断小球速率大小的变化规律.BC[小球运动时受重力和电场力的作用,合力F方向与初速度v0方向不在一条直线上,小球做曲线运动,选项A错误,选项B正确.将初速度v0分解为垂直于F方向的v1和沿F方向的v2,根据运动与力的关系,v1的大小不变,v2先减小后反向增大,因此小球的速率先减小后增大,选项C正确,选项D 错误.]5.(多选)(2018·江苏高考T2)如图3-9所示,A、B两小球从相同高度同时水平抛出,经过时间t在空中相遇.若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为()【导学号:17214183】图3-9A .tB .22tC .t 2D .t 4C [设A 、B 两小球分别以速度v A 、v B 水平抛出时,经过时间t 相遇,则根据平抛运动在水平方向做匀速直线运动有 v A t +v B t =d ①(d 为两小球间的水平距离)设当A 、B 两小球速度都变为原来的2倍时,经过时间t ′相遇,则2v A t ′+2v B t ′=d ②联立①②解得t ′=t 2选项C 正确.]6.(多选)(2018·江苏高考T 6)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图3-10所示的装置进行实验.小锤打击弹性金属片,A 球水平抛出,同时B 球被松开,自由下落.关于该实验,下列说法中正确的是( )【导学号:17214184】图3-10A .两球的质量应相等B .两球应同时落地C .应改变装置的高度,多次实验D .实验也能说明A 球在水平方向上做匀速直线运动BC[根据平抛运动和自由落体运动的规律解题.小锤打击弹性金属片后,A 球做平抛运动,B球做自由落体运动.A球在竖直方向上的运动情况与B球相同,做自由落体运动,因此两球同时落地.实验时,需A、B两球从同一高度开始运动,对质量没有要求,但两球的初始高度及击打力度应该有变化,实验时要进行3~5次得出结论.本实验不能说明A球在水平方向上的运动性质,故选项B、C正确,选项A、D错误.]7.(多选)(2018·江苏高考T7)如图3-11所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同.空气阻力不计,则()【导学号:17214185】图3-11A.B的加速度比A的大B.B的飞行时间比A的长C.B在最高点的速度比A在最高点的大D.B在落地时的速度比A在落地时的大CD[在同一位置抛出的两小球,不计空气阻力,在运动过程中的加速度等于重力加速度,故A、B的加速度相等,选项A错误;根据h=12gt2,两球运动的最大高度相同,故两球飞行的时间相等,选项B错误;由于B的射程大,根据水平方向匀速运动的规律x=v t,故B在最高点的速度比A的大,选项C 正确;根据竖直方向自由落体运动,A、B落地时在竖直方向的速度相等,B 的水平速度大,速度合成后B在落地时的速度比A的大,选项D正确.]处理平抛(类平抛)运动的四条注意事项(1)处理平抛运动(或类平抛运动)时,一般将运动沿初速度方向和垂直于初速度方向进行分解,先按分运动规律列式,再用运动的合成求合运动.(2)对于在斜面上平抛又落到斜面上的问题,其竖直位移与水平位移之比等于斜面倾角的正切值.(3)若平抛的物体垂直打在斜面上,则物体打在斜面上瞬间,其水平速度与竖直速度之比等于斜面倾角的正切值.(4)做平抛运动的物体,其位移方向与速度方向一定不同.●考向1斜抛运动问题5.(2018·徐州二模)体育课进行定点投篮训练,某次训练中,篮球在空中运动轨迹如图3-12中虚线所示,下列所做的调整肯定不能使球落入篮筐的是()图3-12A.保持球抛出方向不变,增加球出手时的速度B.保持球抛出方向不变,减小球出手时的速度C.增加球出手时的速度,减小球速度方向与水平方向的夹角D.增加球出手时的速度,增大球速度方向与水平方向的夹角B[设抛出的初速度为v,与水平方向的夹角为θ,则水平初速度v x=v cos θ;保持球抛出方向不变,增加球出手时的速度,水平分速度增大,运动时间变大,水平位移增大,可能落入篮筐,A错误;保持球抛出方向不变,减小球出手时的速度,水平分速度变小,运动时间变短,水平位移减小,一定不能落入篮筐,B正确;增加球出手时的速度,减小球速度方向与水平方向的夹角,水平分速度变大,有可能使得篮球落入球筐,C错误;增加球出手时的速度,增大球速度方向与水平方向的夹角,运动时间增大,水平方向分速度可能增加,篮球运动时间变长,有可能使得篮球落入球筐,D错误.]●考向2平抛运动规律的基本应用6.(2018·盐城二模)小孩站在岸边向湖面抛石子,三次的轨迹如图3-13所示,最高点在同一水平线上,忽略空气阻力的影响,下列说法正确的是()【导学号:17214186】图3-13A.沿轨迹3运动的石子落水时速度最小B.沿轨迹3运动的石子在空中运动时间最长C.沿轨迹1运动的石子加速度最大D.三个石子在最高点时速度相等A[设任一石子初速度大小为v0,初速度的竖直分量为v y,水平分量为v x,初速度与水平方向的夹角为α,上升的最大高度为h,运动时间为t,落水速度大小为v.取竖直向上方向为正方向,石子竖直方向上做匀减速直线运动,加速度为a=-g,由0-v2y=-2gh,得:v y=2gh,h相同,v y相同,则三个石子初速度的竖直分量相同.由速度的分解知:v y=v0sin α,由于α不同,所以v0不同,沿路径1抛出时的石子的初速度最大,沿轨迹3落水的石子速度最小;由运动学公式有:h=12g⎝⎛⎭⎪⎫t22,则得:t=22hg,则知三个石子运动的时间相等;根据机械能守恒定律得知,三个石子落水时的速率不等,沿路径1抛出时的石子的初速度最大,沿轨迹3落水的石子速率最小,故A正确,B、D错误.因小球在空中时只受重力,故三个石子的加速度相同,故C错误.]7.(多选)(2018·扬州模拟)如图3-14所示,在水平地面附近,小球A以水平初速度v0瞄准另一小球B射出.在A球射出的同时,B球由静止开始下落,两球刚好在落地时相碰.不计空气阻力,则两球在下落过程中()【导学号:17214187】图3-14A.以B球为参考系,A球做匀速运动B.在相同时间内,A、B球的速度变化量相等C .两球的动能都随离地的竖直高度均匀变化D .若仅增大A 球的初速度,两球不会相碰ABC [因为平抛运动在竖直方向上做自由落体运动,在相同时刻A 与B 在同一高度上,平抛运动在水平方向上做匀速直线运动,可知以B 球为参考系,A 球做匀速直线运动,故A 正确.A 、B 两球的加速度均为g ,方向竖直向下,则相同时间内,两球速度变化量相等,故B 正确.对A ,根据动能定理得,mgh =12m v 2-12m v 20,小球的动能E k =12m v 2=mgh +12m v 20,与高度成线性关系;对B ,根据动能定理得,E k =12m v 2=mgh ,与高度成正比,可知两球的动能都随竖直高度均匀变化,故C 正确.由于A 球竖直方向上的运动规律与B 球相同,增大初速度,当A 球运动到B 球所在竖直线时,还未落地,由于两球始终在同一高度,可知两球仍然会相碰,故D 错误.]●考向3 平抛斜面问题8.(2018·海门模拟)如图3-15所示,虚线MN 是竖直面内的斜线,两个小球分别从MN 上的A 、B 两点水平抛出,过一段时间再次经过虚线MN ,则下列说法错误的是( )【导学号:17214188】图3-15A .两球经过虚线MN 时的速度大小可能相同B .两球经过虚线MN 时的速度方向一定相同C .两球可能同时经过虚线MN 上的同一位置D .A 处抛出的球从抛出到经过虚线MN 所用时间一定比B 处抛出的球从抛出到经过虚线MN 所用时间长D [两球再次经过虚线MN 时,根据tan θ=12gt 2v 0t =gt 2v 0得:t =2v 0tan θg ,此时小球的竖直分速度v y =gt =2v 0tan θ,根据平行四边形定则知,速度大小为:v=v20+v2y=v01+4tan2θ,若两球初速度相等,则两球经过MN时的速度大小相等,故A正确.根据平行四边形定则知,tan α=v yv0=2tan θ,可知两球经过虚线位置时速度方向相同,故B正确.若初速度大小不同,两球可能经过虚线上的同一位置,故C正确.根据t=2v0tan θg知,若初速度相等,则两球到达虚线MN的时间相同,故D错误.]●考向4平抛中的临界问题9.(2018·苏锡常二模)乒乓发球机的简化模型示意图如图3-16所示.发球机的机头相当于一个长l=20 cm的空心圆柱(内径比乒乓球的直径略大),水平固定在球台边缘O点上方H=45 cm处,可绕C轴在水平面内转动,从而改变球的落点.球台长为L=3 m,位于球台中央的球网高h=25 cm,出球口离盛球容器底部的高度H0=50 cm,不考虑乒乓球的旋转、空气阻力和发球机轨道对球的阻力.已知一只乒乓球的质量约为3 g.(取重力加速度g=10 m/s2)图3-16(1)若发球机的机头不转动,且出球点在O点正上方,当发球机发出的球能过网且落在球台上,求发球机出球的速度大小范围;(2)若发球机机头以ω=5 rad/s按俯视图所示方向转动,且出球时乒乓球相对机头的速度为9 m/s.求出球点转到O点正上方时所发出球的最后落点位置,结果用xOy坐标系中的坐标值表示;(3)在题(2)问情景下,若发球机每分钟发出30只球,求发球机因发球而消耗的平均功率.【导学号:17214189】【解析】(1)根据H-h=12gt21得:t1=2(H-h)g=2×(0.45-0.25)10s=0.2 s则发球机出球的最小速度为:v 1=L 2t 1=320.2m/s =7.5 m/s 根据H =12gt 22得:t 2=2Hg =2×0.4510s =0.3 s 则发球机出球的最大速度为:v 2=L t 2=30.3m/s =10 m/s 发球机出球的速度大小范围为:7.5 m/s <v <10 m/s .(2)机头转动的线速度为:v 3=lω=0.2×5 m/s =1 m/s根据平行四边形定则知,球发出后的速度为:v =v 23+v 24=1+81 m/s =82m/s球发出后做平抛运动,在xOy 坐标系中,纵坐标为:y =v 3t 2=1×0.3 m =0.3 m ,横坐标为:x =v 4t 2=9×0.3 m =2.7 m最后落点位置坐标为(2.7 m ,0.3 m).(3)每个乒乓球的机械能为: E =mgH 0+12m v 2=3×10-3×10×0.5 J +12×3×10-3×82 J =0.138 J发球机因发球而消耗的平均功率为:P =W t =30E t =0.138×3060W =0.189 W . 【答案】 (1)7.5 m/s <v <10 m/s (2)(2.7 m ,0.3 m)(3)0.189 W考点3| 圆周运动的基本规律 难度:中档 题型:选择题 五年2考(对应学生用书第15页)8.(2018·江苏高考T 2)如图3-17所示,“旋转秋千”中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()【导学号:17214180】图3-17A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C .悬挂A 、B 的缆绳与竖直方向的夹角相等D .悬挂A 的缆绳所受的拉力比悬挂B 的小【解题关键】 解此题注意以下两点:(1)“旋转秋千”同轴转动,两座椅角速度相同.(2)座椅到转轴的水平距离为圆周运动的半径.D [A 、B 绕竖直轴匀速转动的角速度相等,即ωA =ωB ,但r A <r B ,根据v =ωr 得,A 的速度比B 的小,选项A 错误;根据a =ω2r得,A 的向心加速度比B 的小,选项B 错误;A 、B 做圆周运动时的受力情况如图所示,根据F 向=mω2r 及tan θ=F 向mg =ω2r g 知,悬挂A 的缆绳与竖直方向的夹角小,选项C 错误;由图知mg T =cos θ,即T =mgcos θ,所以悬挂A 的缆绳受到的拉力小,选项D 正确.]9.(2018·江苏高考T 5)如图3-18所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上.物块质量为M ,到小环的距离为L ,其两侧面与夹子间的最大静摩擦力均为F .小环和物块以速度v 向右匀速运动,小环碰到杆上的钉子P 后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为g .下列说法正确的是( )【导学号:17214181】图3-18A .物块向右匀速运动时,绳中的张力等于2FB .小环碰到钉子P 时,绳中的张力大于2FC.物块上升的最大高度为2v2 gD.速度v不能超过(2F-Mg)LMD[物块受到的摩擦力小于最大静摩擦力,即Mg<2F.A错:物块向右匀速运动时,物块处于平衡状态,绳子中的张力T=Mg≤2F.B错:小环碰到钉子时,物块做圆周运动,根据牛顿第二定律和向心力公式有:T-Mg=M v2L,T=Mg+M v2L,所以绳子中的张力与2F大小关系不确定.C错:若物块做圆周运动到达的高度低于P点,根据动能定理有-Mgh=0-12M v2则最大高度h=v2 2g若物块做圆周运动到达的高度高于P点,则根据动能定理有-Mgh=12M v′2-12M v2则最大高度h<v2 2g.D对:环碰到钉子后,物块做圆周运动,在最低点,物块与夹子间的静摩擦力达到最大值,由牛顿第二定律知:2F-Mg=M v2 L故最大速度v=(2F-Mg)LM.]1.水平面内圆周运动临界问题(1)水平面内做圆周运动的物体其向心力可能由弹力、摩擦力等力提供,常涉及绳的张紧与松弛、接触面分离等临界状态.(2)常见临界条件:绳的临界:张力F T=0;接触面滑动的临界:F=f;接触面分离的临界:F N=0.2.竖直平面内圆周运动的分析方法(1)对于竖直平面内的圆周运动要注意区分“轻绳模型”和“轻杆模型”,明确两种模型过最高点时的临界条件.(2)解决竖直平面内的圆周运动的基本思路是“两点一过程”.“两点”即最高点和最低点,在最高点和最低点对物体进行受力分析,确定向心力,根据牛顿第二定律列方程;“一过程”即从最高点到最低点,往往由动能定理将这两点联系起来.●考向1水平面内的圆周运动10.(多选)(2018·无锡一模)如图3-19所示,粗糙水平圆盘上,质量相等的A、B 两物块叠放在一起,随圆盘一起做匀速圆周运动,设物体间最大静摩擦力与滑动摩擦力相等,下列说法正确的是()【导学号:17214182】图3-19A.B的向心力是A的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A有沿半径向外滑动的趋势,B有沿半径向内滑动的趋势D.增大圆盘转速,发现A、B一起相对圆盘滑动,则A、B之间的动摩擦因数μA大于B与盘之间的动摩擦因数μBBD[A、B两物体一起做匀速圆周运动,质量相等,角速度相等,转动的半径相等,可知A、B的向心力相等,故A错误.对A分析,有:f A=mrω2,对A、B整体分析,f B=2m·rω2,可知盘对B的摩擦力是B对A的摩擦力的2倍,故B正确.A所受的摩擦力方向指向圆心,可知A有沿半径向外滑动的趋势,B受到盘的摩擦力指向圆心,有沿半径向外滑动的趋势,故C错误.增大圆盘转速,发现A、B一起相对圆盘滑动,则B与圆盘之间达到最大静摩擦力时,A与B之间还未达到最大静摩擦力,根据牛顿第二定律知,A、B之间的动摩擦因数μA大于B与盘之间的动摩擦因数μB,故D正确.] 11.(多选)(2018·南京四模)如图3-20所示,光滑的轻杆OA可绕竖直轴OO′旋转,且OA与OO′轴间夹角θ始终保持不变,质量为m的小球套在OA杆上,可在杆适当位置处随杆做水平面内的匀速圆周运动,下列说法正确的有()图3-20A.小球在任何两位置随杆在水平面内做匀速圆周运动的加速度大小都相等B.杆的转速越大,小球随杆做水平面内匀速圆周运动的位置越高C.小球在某一位置随杆在水平面内匀速转动,只要受到微小的扰动,就会远离该位置D.小球在某一位置随杆在水平面内匀速转动,若杆转速突然增大,由于杆对球的弹力垂直于杆,杆不会对小球做功AC[根据牛顿第二定律得:mgtan θ=ma,解得:a=gtan θ,可知小球在任何位置随杆在水平面内做匀速圆周运动的加速度大小都相等,故A正确.根据牛顿第二定律得:mgtan θ=mr(2πn)2,转速增大,由于合力大小不变,则r减小,即小球随杆在水平面内做匀速圆周运动的位置越低,故B错误.小球在某一位置随杆在水平面内匀速转动,只要受到微小的扰动,速度增大或减小,根据mgtan θ=mv2r知,合力大小不变,则r增大或减小,即远离该位置,故C正确.小球在某一位置随杆在水平面内匀速转动,若杆转速突然增大,由B选项知,小球随杆在水平面内做匀速圆周运动的位置越低,做圆周运动的半径减小,则线速度变小,根据动能定理知,重力做正功,动能减小,则杆对球的弹力做负功,故D错误.]●考向2 竖直平面的圆周运动12.(2018·南通模拟)如图3-21甲所示,一长为l 的轻绳,一端穿在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动,小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系如图乙所示,重力加速度为g ,下列判断中正确的是( )【导学号:17214183】甲 乙图3-21A .b 可以等于0B .可求出重力加速度gC .绳长不变,用质量不同的球做实验,得到的图线斜率不变D .绳长不变,用质量较大的球做实验,图线b 点的位置将往右移B [小球在竖直面内做圆周运动,在最高点的最小速度v =gl ,故b 不可能为零,故A 错误;当F =0时,根据表达式有:mg =m v 2l ,解得g =v 2l =b l ,故B 正确;根据F =m v 2l -mg 知,图线的斜率k =m l ,绳长不变,用质量较小的球做实验,斜率变小,故C 错误;当F =0时,g =b l ,可知b 点的位置与小球的质量无关,绳长不变,用质量较小的球做实验,图线b 点的位置不变,故D 错误.]热点模型解读| 竖直轨道运动模型(对应学生用书第16页)1.模型展示圆周运动与超重、失重[典例](多选)(2018·湖北黄石三模)如图3-22所示,竖直面内有个光滑的3/4圆。
高考物理二轮专题复习专题三力与曲线运动第讲物体的曲线运动课件.ppt

vB″=gt= 2gL , 2
A,B 发生弹性碰撞,根据动量守恒定律有 mvA″+mvB″=mvA‴+mvB‴ 根据机械能守恒定律有
1 mvA″2+ 1 mvB″2= 1 mvA‴2+ 1 mvB‴2,
2
2
2
2
2019-9-12
感谢你的聆听
23
计算可得 vA‴= 2gL ,vB‴= 3 2gL ,
落至斜面时速率的( A )
A.2倍
B.4倍
C.6倍
D.8倍
解析:甲、乙两球的运动轨迹如图所示,两球的位移方向相同,根据末速度方 向与位移方向的关系可知,两球末速度方向也相同,在速度的矢量三角形中, 末速度比值等于初速度比值,故A正确.
2019-9-12
感谢你的聆听
6Байду номын сангаас
内容排查: 平抛运动规律的应用□ 平抛运动的斜面模型□
用平抛运动的规 律、机械能守恒定 律或动能定理及 数学知识求解
用开普勒三定律 和机械能守恒定 律求解
(3)灵活运用两个重要的推论 ①平抛运动轨迹上任何一点的速度方向的 反向延长线过水平位移的中点; ②平抛运动过程中,物体任意时刻速度方向 与水平方向的夹角 和位移的方向与水平 方向的夹角θ ,满足 tan =2tan θ . (4)平抛运动的规律对类平抛运动都适用. 2.圆周运动问题的规律 (1)牢记一个思路:运用动能定理和牛顿第 二定律求解. (2)把握小球过最高点的临界条件:区分是 轻绳模型还是轻杆模型,物体在最高点的最 小的向心力对应物体的临界速度.
感谢你的聆听
17
2017 全国Ⅲ卷,14 (卫星的运行规律) 2016 全国Ⅰ卷,25 (曲线运动中的综合
高考物理二轮复习专题一力与运动第3讲力与物体的曲线运动课件
D.小环在
B
处的速度与重物上升的速度大小之比等于
2 2
解析:选 AC.由题意,释放时小环向下加速运动,则重物将加
速上升,对重物由牛顿第二定律可知绳中张力一定大于重力
2mg,所以 A 正确;小环到达 B 处时,重物上升的高度应为绳
子竖直部分缩短的长度,即Δ h= 2d-d,所以 B 错误;根据
题意,沿绳子方向的速度大小相等,将小环在 B 处的速度沿绳
解析:选 C.甲、乙两船在垂直河岸方向的分速度均为 vsin 60°,过河时间均为 t=vsinL60°,故 C 正确;由乙恰好到达 A 点知,u=vsin 30°=12v,则甲沿河岸方向的速度为 u+12v =v,沿河岸方向的位移为 v·t=sin L60°<2L,故 A、B、D 错 误.
角度 2 牵连速度的分解问题 2.(多选)如图所示,将质量为 2m 的重物 悬挂在轻绳的一端,轻绳的另一端系一质
[答案] BD
[题组突破] 角度 1 分解思想的应用 1.从距地面 h 高度处水平抛出一个小球,落地时速度方向与 水平方向的夹角为 θ,不计空气阻力,重力加速度为 g,下列结 论中正确的是( ) A.小球初速度大小为 2ghtanθ
B.小球落地时的速度大小为sin2gθh C.若小球初速度大小减为原来的一半,则平抛运动的时间变 为原来的两倍 D.若小球初速度大小减为原来的一半,则落地时速度方向与 水平方向的夹角为 2θ
择合适的方向,就能使乒乓球落到球网右侧台面上,则 v 的最大取值范围
是( )
A.L21
6gh<v<L1
g 6h
B.L41 hg<v<
(4L12+L22)g 6h
C.L21 6gh<v<12
高考物理二轮复习 训练3 力与物体的曲线运动
训练3 力与物体的曲线运动一、单项选择题1.(2012·安徽江南十校联考)飞镖比赛是一项极具观赏性的体育比赛项目,2010年的IDF(国际飞镖联合会)飞镖世界杯赛在上海进行.某一选手在距地面高h,离靶面的水平距离L处,将质量为m的飞镖以速度v0水平投出,结果飞镖落在靶心正上方.如只改变h、L、m、v0四个量中的一个,可使飞镖投中靶心的是(不计空气阻力)( ).A.适当减小v0B.适当提高hC.适当减小m D.适当减小L2.(2012·安徽卷,14)我国发射的“天宫一号”和“神舟八号”在对接前,“天宫一号”的运行轨道高度为350 km,“神舟八号”的运行轨道高度为343 km,它们的运行轨道均视为圆周,则( ).A.“天宫一号”比“神舟八号”速度大B.“天宫一号”比“神舟八号”周期长C.“天宫一号”比“神舟八号”角速度大D.“天宫一号”比“神舟八号”加速度大3.(2012·浙江卷,15)如图3-13所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是( ).图3-13A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均小于一年C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值4.一个中间钻有小孔的球,穿在半径为R的光滑圆形细轨道上,如图3-14所示.在最低点给小球一个初速度v0,关于小球到达最高点的受力,下列说法正确的是( ).图3-14A .v 0越大,则小球到最高点时受到杆的弹力越大B .v 0=2 gR 时,小球恰能通过最高点C .v 0=2 gR 时,小球在最高点受到杆的支持力为零D .v 0=2 5gR 时,小球在最高点受到杆的支持力等于重力5.(2012·福建卷,16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常量为G ,则这颗行星的质量为( ).A.mv 2GN B.mv 4GN C.Nv 2GmD.Nv 4Gm6.如图3-15所示,一长为 2L 的木板倾斜放置,倾角为45°,今有一弹性小球,自与木板上端等高的某处自由释放,小球落到木板上反弹时,速度大小不变,碰撞前后,速度方向与木板夹角相等,欲使小球一次碰撞后恰好落到木板下端,则小球释放点距木板上端的水平距离为( ).图3-15A.12L B.13L C.14L D.15L 7.如图3-16所示,P 是水平放置的足够大的圆盘,绕经过圆心O 点的竖直轴匀速转动,在圆盘上方固定的水平钢架上,吊有盛水小桶的滑轮带动小桶一起以v =0.2 m/s 的速度匀速向右运动,小桶底部与圆盘上表面的高度差为h =5 m .t =0时,小桶运动到O点正上方且滴出第一滴水,以后每当一滴水刚好落在圆盘上时桶中恰好再滴出一滴水,不计空气阻力,取g=10 m/s2,若要使水滴都落在圆盘上的同一条直径上,圆盘角速度的最小值为ω,第二、三滴水落点的最大距离为d,则:( ).图3-16A.ω=π rad/s,d=1.0 m B.ω=2π rad/s,d=0.8 mC.ω=π rad/s,d=0.8 m D.ω=2π rad/s,d=1.0 m二、多项选择题8.一个质量为2 kg的物体在光滑水平面上运动,在水平面内建立直角坐标系xOy.t=0时刻,该物体处于坐标原点,之后它的两个分速度v x、v y随时间变化的图象分别如图3-17所示.则( ).图3-17A.4 s末物体的速度大小为6 m/sB.4~6 s时间内物体做曲线运动C.4~6 s时间内物体做匀减速直线运动D.0~4 s和4~6 s两段时间内物体均做匀变速运动9.下表是科学家通过理论推算出的“天宫一号”目标飞行器发射的几组数据,其中发射速度v0是燃料燃烧完毕时火箭具有的速度,之后火箭带着空间站依靠惯性继续上升,到达指定高度h后再星箭分离,分离后的空间站以环绕速度v绕地球运动,假设燃料燃烧阶段火箭上升高度忽略不计.根据发射过程和表格中的数据,下面哪些说法是正确的( ).B .离地越高的卫星机械能越大,动能越大C .离地越高的卫星环绕周期越大D .当发射速度达到11.20 km/s 时,卫星能脱离地球到达宇宙的任何地方 10.(2012·浙江卷,18)由光滑细管组成的轨道如图3-18所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平地面高为H 的管口D 处静止释放,最后能够从A 端水平抛出落到地面上.下列说法正确的是 ( ).图3-18A .小球落到地面时相对于A 点的水平位移值为2 2RH -2R 2B .小球落到地面时相对于A 点的水平位移值为2 2RH -4R 2C .小球能从细管A 端水平抛出的条件是H >2RD .小球能从细管A 端水平抛出的最小高度H min =52R11.2012年2月25日凌晨0时12分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,将第十一颗北斗导航卫星成功送入太空预定转移轨道,这是北斗导航系统组网的第六颗倾斜地球同步轨道卫星.卫星的运动都可看做是绕地心的匀速圆周运动,该卫星进入轨道正常运转后和前面正在工作的北斗卫星分别记作卫星1和卫星2,如图3-19所示.图3-19假设运行方向为顺时针,轨道半径为r ,某时刻这两颗正在工作的卫星分别位于轨道上的P 、Q 两位置,轨道半径夹角为60°.已知地球表面处的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力.则以下判断正确的是 ( ).A .两卫星的运行速度都为7.9 km/sB .这两颗卫星的加速度大小相等,均为gR 2r2C .若卫星1向后喷气就一定能追上卫星2D .卫星1由位置P 运动到位置Q 所需的时间为4小时参考答案1.A [由于飞镖飞出后做平抛运动,水平方向位移有L =v 0t ,竖直方向位移x=12gt 2,得:x =12g ⎝⎛⎭⎫L v 02.要击中靶心,可以增大x 或减小h .要增大x ,可以减小v 0或增大L .] 2.B [由题知“天宫一号”运行的轨道半径r 1大于“神舟八号”运行的轨道 半径r 2,天体运行时万有引力提供向心力.根据G Mm r 2m v 2r 得v =GMr,因为r 1>r 2,故“天宫一号”的运行速度较小,选项A 错误;根据G Mm r 2m ⎝⎛⎭⎫2πT 2r 得T =2πr 3GM,故“天宫一号”的运行周期较长,选项B 正确;根据GMm r 2=m ω2r ,得ω= GM r 3,故“天宫一号”的角速度较小,选项C 错误;根据G Mmr2ma ,得a =GMr 2D 错误.] 3.C [根据F =GMmr 2,小行星带中各小行星的轨道半径r 、质量m 均不确定, 因此无法比较太阳对各小行星引力的大小,选项A 错误;根据GMm r 2=m ⎝⎛⎭⎫2πT 2r 得,T =2π r 3GM,因小行星绕太阳运动的轨道半径大于地球绕太阳运动的轨道半径,故小行星的运动周期大于地球的公转周期,即大于一年,选项B 错误;根据G Mm r 2=ma 得a =GM r2,所以内侧小行星的向心加速度值大于外侧小行星的向心加速度值,选项C正确;根据G Mmr2=mv2rv=GMr,所以小行星带内各小行星做圆周运动的线速度值小于地球公转的线速度值,选项D 错误.]4.B [光滑圆形细轨道对球可以施加向内或向外的力.在最高点,当小球所需向心力小于重力时,小球受到重力和向上的支持力,即mg-F N=m v2R①,又12mv2-12mv20=-2mgR②,v0越大,F N越小,A错;小球恰能通过最高点,即小球到最高点速度恰为0,由②式知,v=0时v0=2gR,B正确;此时杆对球的支持力大小等于重力,C错;由②式知v0=5gR时,v=gR,再由①式知,F N=0,D错.]5.B [设卫星的质量为m′,由万有引力提供向心力,得G Mm′R2=m′v2R,①m′v2R=m′g,②由已知条件:m的重力为N得N=mg,③由③得g=Nm,代入②得:R=mv2N,代入①得M=mv4 GN,故A、C、D三项均错误,B项正确.]6.D [本题考查自由落体运动及平抛运动.由于小球释放位置与木板上端等高,设小球释放位置距木板上端的水平距离为x,小球与木板碰撞前有v2=2gx,小球与木板碰撞后做平抛运动,则水平方向上有L-x=vt,竖直方向上有L-x=12gt2,由以上三式联立解得x=15L,故选项D正确.]7.A [从小桶滴出的水滴做平抛运动,圆盘做匀速圆周运动,要使水滴都落在圆盘的同一条直径上,则水滴在空中运动的时间等于圆盘做匀速圆周运动的半个周期的整数倍,要满足题目条件则每相邻两滴水落下的时间间隔应为圆盘做匀速圆周运动的半个周期,而且相邻落下的水滴分布在同一直径不同的半径上,由以上分析可知:h=12gt2,t=2h g =1 s.由于t=T2=πω1 s,所以ω=π rad/s,第2滴的落点距轴0.4 m,圆盘转半周后第3滴落在同一条直径上,距轴0.6 m,所以d=1.0 m.] 8.CD [由图象可知,4 s 末v x =2 m/s ,v y =4 m/s ,则v =v 2x +v 2y =2 5 m/s ,A 项错;t =4 s 时刻,F x =ma x =2 N ,F y =ma y =4 N ,合力F 的方向与合速度v 的方向恰好相反,如图所示,故4~6 s 时间内物体做匀减速直线运动,B 错、C 对;0~4 s 和4~6 s 两段时间内物体所受合力均为恒力,物体均做匀变速运动,D 项正确.]9.AC [根据表中的数据,计算可得12mv 20=mgh +12mv 2,由此可知不计空气阻力,在火箭依靠惯性上升的过程中机械能守恒,选项A 正确;离地越高的空间站机械能越大,动能越小,选项B 错误;离地越高的空间站环绕速度越小,而轨道半径越大,运行一周的路程越大,环绕周期越大,选项C 正确;当发射速度达到11.20 km/s 时,空间站能脱离地球的引力范围,但仍要受到太阳引力的约束,只能在太阳系内运动,不能到达太阳系以外的地方,选项D 错误.]10.BC [要使小球从A 点水平抛出,则小球到达A 点时的速度v >0,根据机械能守恒定律,有mgH -mg ·2R =12mv 2,所以H >2R ,故选项C 正确、选项D 错误;小球从A点水平抛出时的速度v = 2gH -4gR ,小球离开A 点后做平抛运动,则有2R =12gt 2,水平位移x =vt ,联立以上两式可得水平位移x =22RH -4R 2,选项A 错误、选项B 正确.] 11.BD [本题考查同步卫星的基本规律,旨在考查运用万有引力定律解决问题的能力.第一宇宙速度v =7.9 km/s 是卫星的最小发射速度,最大运行速度,由v = GMr知卫星轨道半径越大,运行速度越小,A 错;在轨道上运行时,GMm r2ma ,又GM =gR 2,所以a =gR 2r2,B 对;卫星1要想追上卫星2,则需要减速,向低轨道运行,然后加速,才能追上,C 错;同步卫星周期是24小时,从P 到Q 为16圆周,故运行时间为4小时,D 对.]。
全国2018版高考物理总复习考前三个月专题一力与运动第3讲曲线运动试题
第3讲曲线运动高考命题轨迹年份题号(分值)考点难度2017年卷Ⅰ15题(6分)发球机发射乒乓球,考查平抛运动容易卷Ⅱ19题(6分)海王星绕太阳的运动,考查开普勒行星运动定律与机械能守恒中等卷Ⅲ14题(6分)天舟一号与天宫二号对接,考查卫星运动规律与万有引力定律容易2016年卷Ⅰ17题(6分)利用地球同步卫星信号覆盖考查开普勒第三定律中等卷Ⅰ18题(6分)曲线运动条件中等卷Ⅰ25题(18分)平抛与竖直面内圆周运动结合机械能守恒较难卷Ⅱ16题(6分)竖直面内的圆周运动与机械能守恒结合中等卷Ⅱ25题(20分)平抛与竖直面内圆周运动结合弹簧、能量问题较难卷Ⅲ14题(6分)考查开普勒在行星运动方面的主要成就容易2015年卷Ⅰ17题(6分)竖直面圆周运动与功能关系中等卷Ⅰ18题(6分)乒乓球发射机,求平抛运动初速度范围中等卷Ⅰ21题(6分)结合登月探测器的着陆考查万有引力定律的应用容易卷Ⅱ16题(6分)结合卫星变轨过程考查运动的合成与分解容易卷Ⅱ21题(6分)轻杆关联物体的速度分解与功能关系结合中等考情分析平抛运动的规律及分析方法、圆周运动的受力特点(特别是竖直面内的圆周运动受力特点及能量变化),一般在选择题中出现.平抛运动与竖直面内圆周运动相结合,再结合能量守恒,近年在计算题中出现,需要重视.绳、杆关联物体的速度,曲线运动条件的考查近年来也有出现,值得注意.知识方法链接1.物体做曲线运动的条件及特点(1)条件:F合与v的方向不在同一直线上.(2)特点①F 合恒定:做匀变速曲线运动. ②F 合不恒定:做非匀变速曲线运动.③做曲线运动的物体受的合力总是指向曲线的凹侧. 2.绳(杆)关联物体的速度(1)若由绳(杆)连接的两运动物体的运动方向沿绳(杆)方向,则两物体速度大小相等. (2)若物体运动方向不沿绳(杆),将其速度分解到沿绳(杆)方向和垂直绳(杆)方向,再参考上一条.真题模拟精练1.(2017·山西晋中市调研)如图1所示为一个做匀变速曲线运动的物块轨迹的示意图,运动至A 点时速度大小为v 0,经一段时间后物块运动至B 点,速度大小仍为v 0,但相对于A 点时的速度方向改变了90°,则在此过程中( )图1A .物块的运动轨迹AB 可能是某个圆的一段圆弧 B .物块的动能可能先增大后减小C .物块的速度大小可能为v 02D .B 点的加速度与速度的夹角小于90° 答案 D解析 由题意,物块做匀变速曲线运动,则加速度的大小与方向都不变,所以运动的轨迹是一段抛物线,不是圆弧,故A 错误;由题意,物块运动到B 点时速度方向相对A 点时的速度方向改变了90°,速度沿B 点轨迹的切线方向,则知加速度方向垂直于AB 的连线向下,合外力也向下,物块做匀变速曲线运动,物块由A 到B 过程中,合外力先做负功,后做正功,由动能定理可得,物块的动能先减小后增大,故B 错误;物块的加速度方向垂直于A 、B 的连线向下,根据题意可知速度方向改变90°,则A 点的速度方向与AB 连线方向夹角为45°,如图所示,所以在物块运动过程中的最小速度为22v 0,C 错误;物块在B 点速度沿B 点轨迹的切线方向,而加速度方向垂直于A 、B 的连线向下,可知二者之间的夹角小于90°,故D 正确.2.(2017·四川成都市诊断)质量为m 的物体P 置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑轻质定滑轮分别连接着P 与小车,P 与滑轮间的细绳平行于斜面,小车以速率v 水平向右做匀速直线运动.当小车与滑轮间的细绳和水平方向成夹角θ2时(如图2),下列判断正确的是( )图2A .P 的速率为vB .P 的速率为v cos θ2C .绳的拉力等于mg sin θ1D .绳的拉力小于mg sin θ1 答案 B解析 将小车的速度v 进行分解如图所示,则v P =v cos θ2,故A 错误,B 正确;小车向右运动,θ2减小,v 不变,则v P 逐渐增大,说明物体P 沿斜面向上做加速运动,由牛顿第二定律F T -mg sin θ1=ma ,可知绳子对P 的拉力F T >mg sin θ1,故C 、D 错误.故选B.知识方法链接1.求解平抛运动的基本思路和方法——运动的分解将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动——“化曲为直”,是处理平抛运动的基本思路和方法. 2.两个基本关系(1)位移关系:⎩⎪⎨⎪⎧x =v 0t y =12gt 2位移方向偏转角tan α=yx.(2)速度关系:⎩⎪⎨⎪⎧v x =v 0v y =gt速度方向偏转角tan θ=v y vx =y x2=2tan α.分析题目条件是位移(方向)关系,还是速度(方向)关系,选择合适关系式解题. 真题模拟精练3.(2017·全国卷Ⅰ·15)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球网,速度较小的球没有越过球网.其原因是( ) A .速度较小的球下降相同距离所用的时间较多B .速度较小的球在下降相同距离时在竖直方向上的速度较大C .速度较大的球通过同一水平距离所用的时间较少D .速度较大的球在相同时间间隔内下降的距离较大 答案 C解析 由题意知,两个乒乓球均做平抛运动,则根据h =12gt 2及v 2y =2gh 可知,乒乓球的运动时间、下降的高度及竖直方向速度的大小均与水平速度大小无关,故选项A 、B 、D 均错误;由发出点到球网的水平位移相同时,速度较大的球运动时间短,在竖直方向下落的距离较小,可以越过球网,故C 正确.4.(2017·安徽十校联考)如图3所示,将小球以速度v 沿与水平方向成θ=37°角斜向上抛出,结果球刚好能垂直打在竖直墙面上,球反弹的瞬间速度方向水平,且速度大小为碰撞前瞬间速度大小的34,已知sin 37°=0.6,cos 37°=0.8,空气阻力不计,则当反弹后小球的速度大小再次为v 时,速度方向与水平方向夹角的正切值为( )图3A.34B.43C.35D.53 答案 B解析 采用逆向思维,小球做斜抛运动看成是平抛运动的逆反运动,将抛出速度沿水平和竖直方向分解,有:v x =v cos θ=v ·cos 37°=0.8v v y =v ·sin 37°=0.6v球撞墙前瞬间的速度等于0.8v ,反弹速度大小为:v x ′=34×0.8v =0.6v反弹后小球做平抛运动,当小球的速度大小再次为v 时,竖直速度为:v y ′=v 2-v x ′2=v 2-(0.6v )2=0.8v ,速度方向与水平方向的正切值为: tan θ=v y ′v x ′=0.8v 0.6v =43,故B 正确,A 、C 、D 错误.知识方法链接1.解决圆周运动动力学问题的关键(1)圆周运动动力学问题的实质是牛顿第二定律的应用,且已知合外力方向(匀速圆周运动合外力方向指向圆心),所以做好受力分析,由牛顿第二定律列方程求合外力. (2)做匀速圆周运动的物体,所受合外力提供向心力.(3)做变速圆周运动的物体,所受合外力沿半径方向的分力提供向心力,沿切线方向的分力改变速度的大小.2.竖直平面内圆周运动的两种临界问题(1)绳球模型:小球能通过最高点的条件是v ≥gR .其实圆周轨道上比圆心高的点都有自己的临界速度,小球的速度小于临界速度时就会以斜上抛的方式脱离圆周轨道;在比圆心低的点小球速度可以减小到0,而不脱离轨道,如果轨道光滑的话会沿圆周轨道滑下去.(2)杆球模型:小球能到达最高点的条件是v ≥0. 真题模拟精练5.(多选)(2017·福建厦门市模拟)如图4所示,两根等长的细线拴着两个小球在竖直平面内各自做圆周运动,某一时刻小球1运动到自身轨道的最低点,小球2恰好运动到自身轨道的最高点,这两点高度相同,此时两小球速度大小相同,若两小球质量均为m ,可视为质点,忽略空气阻力的影响,则下列说法正确的是( )图4A .此刻两根细线拉力大小相同B .运动过程中,两根线上拉力的差值最大为2mgC .运动过程中,两根线上拉力的差值最大为10mgD .若相对同一零势能面,小球1在最高点的机械能等于小球2在最低点的机械能解析 初始位置,球1加速度向上,处于超重状态;球2加速度向下,处于失重状态,故球1受到的拉力较大,故A 错误;球1在最高点,有:F 1+mg =m v21R ,球2在最低点,有:F 2-mg =m v 22R ,两个球运动过程中机械能守恒,有:球1:12mv 2=12mv 21+2mgR ,球2:12mv 2=12mv22-2mgR ,联立解得:F 1=m v 2R -5mg ,F 2=m v 2R+5mg ,故F 2-F 1=10mg ,故B 错误,C 正确;两个球运动过程中机械能守恒,而初始位置两个球的机械能相等,故两个球的机械能一直是相等的,故D 正确.6.(多选)(2017·广东广州市测试)如图5所示,在角锥体表面上放一个物体,角锥绕竖直轴转动.当角锥体旋转角速度增大时,物体仍和角锥体保持相对静止,则角锥对物体的( )图5A .支持力将减小B .支持力将增大C .静摩擦力将不变D .静摩擦力将增大 答案 AD7.(多选)(2017·山东枣庄市模拟)如图6所示,水平转台上有一质量为m 的小物块,用长为L 的细绳连接在通过转台中心的竖直转轴上,细线与转轴间的夹角为θ;系统静止时,细线绷直但绳中张力为零,物块与转台间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.当物块随转台由静止开始缓慢加速转动且未离开转台的过程中( )图6A .物块受转台的静摩擦力方向始终指向转轴B .至转台对物块的支持力为零时,物块的角速度大小为g tan θLC .至转台对物块的支持力为零时,转台对物块做的功为mgL sin 2θ2cos θD .细绳对物块拉力的瞬时功率始终为零知识方法链接 1.星球表面的物体(1)重力与引力的关系⎩⎪⎨⎪⎧赤道:G MmR2=mg +mω2R 两极:G MmR2=mg(2)自转可忽略时:G Mm R2=mg 可得:g =GM R2M =gR 2GGM =gR 22.中心天体——环绕天体模型环绕天体做圆周运动的向心力由中心天体对它的万有引力提供,即G Mm r 2=m 4π2T 2r =m v 2r=ma 等,可得:中心天体质量M =4π2r 3GT 2,ρ=3πr 3GT 2R 3(r =R 时有ρ=3πGT2)环绕天体运行速度v =GM r ,加速度a =GMr2. 3.双星问题双星各自做圆周运动的向心力由两者之间的万有引力提供,即G m 1m 2(r 1+r 2)2=m 1ω2r 1=m 2ω2r 2,另:G m 1+m 2(r 1+r 2)2=ω2(r 1+r 2)双星总质量:m 1+m 2=ω2(r 1+r 2)3G.真题模拟精练8.(多选)(2017·全国卷Ⅱ·19)如图7所示,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0,若只考虑海王星和太阳之间的相互作用,则海王星在从P 经过M 、Q 到N 的运动过程中( )图7A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功 答案 CD解析 由行星运动的对称性可知,从P 经M 到Q 点的时间为12T 0,根据开普勒第二定律可知,从P 到M 运动的速率大于从M 到Q 运动的速率,可知从P 到M 所用的时间小于14T 0,选项A 错误;海王星在运动过程中只受太阳的引力作用,故机械能守恒,选项B 错误;根据开普勒第二定律可知,从P 到Q 阶段,速率逐渐变小,选项C 正确;海王星受到的万有引力指向太阳,从M 到N 阶段,万有引力对它先做负功后做正功,选项D 正确.9.(2017·全国卷Ⅲ·14)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( ) A .周期变大 B .速率变大 C .动能变大 D .向心加速度变大答案 C解析 根据组合体受到的万有引力提供向心力可得,GMm r 2= m 4π2T 2r =m v 2r=ma ,解得T =4π2r3GM,v =GM r ,a =GMr2,由于轨道半径不变,所以周期、速率、向心加速度均不变,选项A 、B 、D 错误;组合体比天宫二号的质量大,动能E k =12mv 2变大,选项C 正确.10.(2014·新课标Ⅱ卷·18)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ,地球自转的周期为T ,引力常量为G .地球的密度为( ) A.3π(g 0-g )GT 2g 0B.3πg 0GT 2(g 0-g )C.3πGT 2D.3πg 0GT 2g答案 B解析 物体在地球的两极时,mg 0=G Mm R 2,物体在赤道上时,mg +m (2πT )2R =G Mm R 2,又V =43πR 3,联立以上三式解得地球的密度ρ=3πg 0GT 2(g 0-g ).故选项B 正确,选项A 、C 、D 错误.11.(2017·四川资阳市4月模拟)地球同步卫星A 和一颗轨道平面为赤道平面的科学实验卫星B 的轨道半径之比为4∶1,两卫星的公转方向相同,那么关于A 、B 两颗卫星的说法正确的是( )A .A 、B 两颗卫星所受地球引力之比为1∶16B .B 卫星的公转角速度小于地面上跟随地球自转物体的角速度C .同一物体在B 卫星中时对支持物的压力更大D .B 卫星中的宇航员一天内可看到8次日出 答案 D解析 根据万有引力定律F =Gm 1m 2r 2知,物体间的引力与两个物体的质量和两者之间的距离均有关,由于A 、B 两卫星的质量关系未知,所以A 、B 两颗卫星所受地球引力之比不一定为1∶16,故A 错误;A 卫星的轨道半径比B 卫星的轨道半径大,由开普勒第三定律知,B 卫星的公转周期小于A 卫星的公转周期,而A 卫星的公转周期等于地球自转周期,所以B 卫星的公转周期小于随地球自转物体的周期,因此B 卫星的公转角速度大于地面上跟随地球自转物体的角速度,故B 错误;物体在A 、B 卫星中均处于完全失重状态,物体对支持物的压力均为零,故C错误;根据开普勒第三定律r 3T 2=k ,知A 、B 卫星轨道半径之比为4∶1,则周期为8∶1,所以B 卫星的运行周期是地球自转周期的8倍,因此B 卫星中的宇航员一天内可看到8次日出,故D 正确.12.(多选)(2017·黑龙江大庆市一模)如图8所示,a 为放在地球赤道上随地球表面一起转动的物体,b 为处于地面附近近地轨道上的卫星,c 是地球同步卫星,d 是高空探测卫星,若a 、b 、c 、d 的质量相同,地球表面附近的重力加速度为g .则下列说法正确的是( )图8A .a 和b 的向心加速度都等于重力加速度gB .b 的角速度最大C .c 距离地面的高度不是一确定值D .d 是三颗卫星中动能最小,机械能最大的 答案 BD解析 同步卫星的周期与地球自转周期相同,角速度相同,则知a 与c 的角速度相同,根据a =ω2r 知,c 的向心加速度大.由牛顿第二定律得:G Mm r 2=ma ,解得:a =GMr2,卫星的轨道半径越大,向心加速度越小,则同步卫星的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,故知a 的向心加速度小于重力加速度g ,故A 错误;万有引力提供向心力,由牛顿第二定律得:G Mm r2=mω2r ,解得:ω=GMr 3,由于r b <r c <r d ,则ωb >ωc >ωd ,a 与c 的角速度相等,则b 的角速度最大,故B 正确;c 是同步卫星,同步卫星相对地面静止,c 的轨道半径是一定的,c 距离地面的高度是一确定值,故C 错误;卫星做圆周运动,万有引力提供向心力,由牛顿第二定律得:G Mm r 2=m v 2r ,卫星的动能:E k =GMm2r,三颗卫星中d 的轨道半径最大,则d 的动能最小,机械能:E =E k +E p =GMm 2r -GMm r =-GMm2r,d 的轨道半径最大,d 的机械能最大,故D 正确.专题规范练题组1 高考真题检验1.(多选)(2016·全国卷Ⅰ·18)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A .质点速度的方向总是与该恒力的方向相同B .质点速度的方向不可能总是与该恒力的方向垂直C .质点加速度的方向总是与该恒力的方向相同D .质点单位时间内速率的变化量总是不变 答案 BC解析 质点一开始做匀速直线运动,处于平衡状态,施加恒力后,则该质点所受的合外力等于该恒力.若该恒力方向与质点原运动方向不共线,则质点做曲线运动,质点速度方向与恒力方向不同,故A 错;若恒力的方向某一时刻与质点运动方向垂直,之后质点做曲线运动,力与速度方向不再垂直,例如平抛运动,故B 正确;由牛顿第二定律可知,质点加速度方向总是与其所受合外力方向相同,C 正确;根据加速度的定义,相等时间内速度变化量相同,而速率变化量不一定相同,故D 错.2.(2016·全国卷Ⅱ·16)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图1所示.将两球由静止释放.在各自轨迹的最低点( )图1A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度 答案 C解析 球从水平位置摆动至最低点,由动能定理得,mgL =12mv 2,解得v =2gL ,因L P <L Q ,故v P <v Q ,选项A 错误;因为E k =mgL ,又m P >m Q ,则两球的动能大小无法比较,选项B 错误;对球在最低点受力分析得,F T -mg =m v 2L ,可得F T =3mg ,选项C 正确;由a =v 2L=2g 可知,在最低点两球的向心加速度相等,选项D 错误.3.(2015·新课标全国Ⅰ·18)一带有乒乓球发射机的乒乓球台如图2所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图2A.L 12g6h <v <L 1g6hB.L 14gh <v <(4L 21+L 22)g6hC.L 12g 6h <v <12(4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt212①L 12=v 1t 1②联立①②得v 1=L 14gh当速度最大时,球斜向右侧台面两个角发射,有(L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确.4.(多选)(2014·新课标Ⅰ卷·20)如图3所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图3A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度 D .当ω=2kg3l时,a 所受摩擦力的大小为kmg 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即F f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :F f a =mω 2a l ,当F f a =kmg 时,kmg =mω 2a l ,ωa =kg l;对木块b :F f b =mω 2b ·2l ,当F f b =kmg 时,kmg =mω 2b ·2l ,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则F f a =mω2l ,F f b =mω2·2l ,F f a <F f b ,选项B 错误;当ω=kg2l时b 开始滑动,选项C 正确;当ω=2kg 3l 时,a 没有滑动,则F f a =mω2l =23kmg ,选项D 错误. 5.(2016·全国卷Ⅰ·17)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A .1 h B .4 h C .8 h D .16 h 答案 B解析 地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由开普勒第三定律r 3T2=k 可知卫星离地球的高度应变小,要实现三颗卫星覆盖全球的目的,则卫星周期最小时,由数学几何关系可作出卫星间的位置关系如图所示.卫星的轨道半径为r =Rsin 30°=2R由r 31T 21=r 32T 22得(6.6R )3242=(2R )3T 22. 解得T 2≈4 h.6.(多选)(2014·新课标Ⅰ卷·19)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示.则下列判断正确的是( )地球 火星 木星 土星 天王星 海王星 轨道半径(AU)1.01.55.29.51930A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日C .天王星相邻两次冲日的时间间隔为土星的一半D .地外行星中,海王星相邻两次冲日的时间间隔最短 答案 BD解析 由开普勒第三定律r 3T2=k 可知T 行=⎝ ⎛⎭⎪⎫r 行r 地3·T 地=r 3行年,根据相遇时转过的角度之差Δθ=2n π及ω=Δθt 可知相邻冲日时间间隔为t ,则⎝ ⎛⎭⎪⎫2πT 地-2πT 行t =2π,即t =T 行T 地T 行-T 地=T 行T 行-1,又T 火= 1.53年,T 木= 5.23年,T 土=9.53年,T 天=193年,T 海=303年,代入上式得t >1年,故选项A 错误;木星冲日时间间隔t 木=5.235.23-1年<2年,所以选项B 正确;由以上公式计算t 土≠2t 天,t 海最小,选项C 错误,选项D 正确.7.(2012·新课标卷·21)假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( ) A .1-d RB .1+d RC .(R -d R)2D .(RR -d)2答案 A解析 设地球的密度为ρ,地球的质量为M ,根据万有引力定律可知,地球表面的重力加速度g =GM R 2.地球质量可表示为M =43πR 3ρ.因质量分布均匀的球壳对壳内物体的引力为零,所以矿井下以(R -d )为半径的地球的质量为M ′=43π(R -d )3ρ,解得M ′=(R -d R)3M ,则矿井底部的重力加速度g ′=GM ′(R -d )2,则矿井底部的重力加速度和地面处的重力加速度之比为g ′g=1-dR,选项A 正确. 题组2 各省市模拟精选8.(2017·四川南充市第二次高考适应性考试)直角坐标系xOy 在水平面(纸面)内,一质点在该水平面内运动,经过坐标原点时开始受水平力F 作用,运动轨迹如图4所示,设质点经过O 点时沿x 轴方向的速度为v x ,沿y 轴方向的速度为v y ,则由图可知( )图4A .v x >v y ,F 可能沿x 轴正方向B .v x >v y ,F 可能沿y 轴正方向C .v x <v y ,F 可能沿x 轴正方向D .v x <v y ,F 可能沿y 轴正方向 答案 B解析 根据曲线运动的速度方向沿轨迹的切线方向对O 点的速度分解,如图所示,可知v x >v y,又由力应指向轨迹的“凹”侧,可知质点受力的方向可能沿y轴的正方向,不可能沿x 轴的正方向,故B正确,A、C、D错误.故选B.9.(多选)(2017·河北石家庄市第二次质检) 如图5所示,一带电小球自固定斜面顶端A 点以某速度水平抛出,小球落在斜面上B 点.现加上竖直向下的匀强电场,仍将小球自A 点以相同速度水平抛出,小球落在斜面上C 点.不计空气阻力,下列说法正确的是()图5A .小球带正电B .小球所受电场力可能大于重力C .小球两次落在斜面上所用的时间不相等D .小球两次落在斜面上的速度大小相等 答案 CD解析 不加电场时,小球做平抛运动,加电场时,小球做类平抛运动,根据tan α=12at 2v 0t,则t =2v 0tan αa,因为水平方向上做匀速直线运动,可知t 2>t 1,则a <g ,可知小球一定带负电,所受的电场力向上,且小于重力的大小,故A 、B 错误,C 正确;因为做类平抛运动或平抛运动时,小球在某时刻的速度方向与水平方向夹角的正切值是位移方向与水平方向夹角正切值的2倍,由于位移方向相同,则小球两次落在斜面上的速度方向一定相同,因为初速度相同,根据平行四边形定则知,则落在斜面上的速度大小相等,故D 正确.10.(2017·广东佛山市一模)如图6所示,内壁光滑、质量为m 的管形圆轨道,竖直放置在光滑水平地面上,恰好处在两固定光滑挡板M 、N 之间,圆轨道半径为R ,质量为m 的小球能在管内运动,小球可视为质点,管的内径忽略不计.当小球运动到轨道最高点时,圆轨道对地面的压力刚好为零,下列判断正确的是( )图6A .圆轨道对地面的最大压力大小为8mgB .圆轨道对挡板M 、N 的压力总为零C .小球运动的最小速度为gRD .小球离挡板N 最近时,圆轨对挡板N 的压力大小为5mg 答案 A11.(多选)(2017·江西第一次联考)如图7所示,一个质量为m的小球由两根细绳拴在竖直转轴上的A、B两处,A、B间距为L,A处绳长为2L,B处绳长为L,两根绳能承受的最大拉力均为2mg,转轴带动小球以角速度ω转动,下列判断正确的是( )图7A.当角速度ω逐渐增大时,A处绳的弹力一定增大B.当角速度ω逐渐增大时,B处绳一定先被拉断C.当ω=g2L时,A处绳的弹力大小为22mgD.当ω=g2L时,B处绳的弹力大小为22mg答案BC解析当B处绳刚被拉直时,A处绳与杆夹角θ=45°,mg tan 45°=mω2L,所以ω=g L ,在当角速度ω逐渐增大且小于gL的过程中,A处绳的弹力一定增大;当角速度大于gL后,A处绳与竖直方向之间的夹角不再变化,则A处绳的拉力不变,故A错误;当转轴转动的角速度最大时,B处绳拉力为F T B=2mg,A处绳拉力不变,F T A cos θ=mg,F T A sin θ+F T B=mω2L,得:ω=3gL,可知当ω=3gL时,B处绳先被拉断,故B正确;当ω=g2L<gL时,B处绳处于松弛的状态,拉力等于0;A处绳的弹力沿水平方向的分力提供向心力,则F T A′sinβ=mω2·2L sin β,解得:F T A′=22mg,故C正确,D错误.故选B、C.。
2018届全国卷高考物理考前复习大串讲基础知识及查漏补缺复习资料专题04 曲线运动基础知识含解析
【知识网络】【知识清单】一、曲线运动1. 曲线运动中的速度方向做曲线运动的物体,速度的方向时刻在改变,在某点(或某一时刻)的速度方向是曲线上该点的切线方向。
2. 曲线运动的性质由于曲线运动的速度方向不断变化,所以曲线运动一定是变速运动,一定存在加速度。
3. 物体做曲线运动的条件物体所受合外力(或加速度)的方向与它的速度方向不在同一直线上。
① 如果这个合外力是大小和方向都恒定的,即所受的力为恒力,物体就做匀变速曲线运动,如平抛运动。
② 如果这个合外力大小恒定,方向始终与速度垂直,物体就做匀速圆周运动。
③ 做曲线运动的物体,其轨迹向合外力所指一方弯曲。
根据曲线运动的轨迹,可以判断出物体所受合外力的大致方向。
说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小。
4. 分类:(1)加速度恒定(即大小、方向都不变)的曲线运动,叫做匀变速曲线运动,如平抛运动等。
(2)加速度变化(大小、方向之一或两者都变化)的曲线运动,叫做变加速曲线运动。
如匀速圆周运动等。
二、运动的合成与分解 1. 合运动与分运动的特征① 等时性:合运动和分运动是同时发生的,所用时间相等。
② 等效性:合运动跟几个分运动共同叠加的效果相同。
③ 独立性:一个物体同时参与几个运动,各个分运动独立进行,互不影响。
2. 已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成。
遵循平行四边形定则。
① 两分运动在同一直线上时,先规定正方向,凡与正方向相同的取正值,相反的取负值,合运动为各分运动的代数和。
② 不在同一直线上,按照平行四边形定则合成(如图示)。
③ 两个分运动垂直时,正交分解后的合成为s =合v =合a =合3. 已知合运动求分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。
三、平抛运动1. 定义:将一物体水平抛出,物体只在重力作用下的运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲力与曲线运动一、图解平抛运动的实质二、平抛运动与斜面相关的两个结论(1)对于在斜面上平抛又落到斜面上的问题,其竖直位移与水平位移之比等于斜面倾角的正切值.(2)若平抛的物体垂直打在斜面上,则物体打在斜面上瞬间,其水平速度与竖直速度之比等于斜面倾角的正切值.三、圆周运动基础知识和典型实例高频考点1运动的合成与分解1-1.(2017·张家界一中模拟)下列关于运动和力的叙述中,正确的是()A.做曲线运动的物体,其加速度方向一定是变化的B.物体做圆周运动,所受的合力一定指向圆心C.物体所受合力方向与运动方向相反,该物体一定做直线运动D.物体运动的速率在增加,所受合力方向一定与运动方向相同解析:做曲线运动的物体,其加速度方向也可能是不变的,例如平抛运动,选项A 错误;只有当物体做匀速圆周运动时,所受的合力才指向圆心,选项B 错误;物体所受合力方向与运动方向相反,该物体一定做匀减速直线运动,选项C 正确;物体运动的速率在增加,所受合力方向不一定与运动方向相同,例如平抛运动的物体,选项D 错误.答案:C1-2. (2017·青岛模拟)在水平放置的圆柱体轴线的正上方的P 点,将一个小球以水平速度v 0垂直圆柱体的轴线抛出,小球飞行一段时间后恰好从圆柱体上Q 点沿切线飞过,测得O 、Q 连线与竖直方向的夹角为θ,那么小球经过Q 点时的速度是( )A .v 0cos θB .v 0sin θC .v 02sin θ B .v 0tan θ解析:O 、Q 连线与竖直方向的夹角为θ,即水平速度与末速度的夹角为θ,根据平行四边形定则可得cos θ=v 0v Q ,解得v Q =v 0cos θ,A 正确. 答案:A1-3.(2017·赣州一模)有一个质量为3 kg 的质点在直角坐标系xOy 所在的平面内运动,x 方向的速度—时间图象和y 方向的位移—时间图象分别如图甲、乙所示,下列说法正确的是( )A .质点做匀变速直线运动B .质点所受的合外力为3 NC .质点的初速度大小为5 m/sD .质点初速度的方向与合外力的方向垂直解析:从图甲可知质点在x 方向上做初速度v 0=3 m/s 的匀加速直线运动,加速度为a =1.5 m/s 2,从图乙中可知,质点在y 方向上做匀速直线运动,v y =4 m/s ,所以质点受到的合力恒定,但初速度方向和合力方向不共线,质点做匀变速曲线运动,A 错误;根据牛顿第二定律可得质点受到的合力为F =ma =4.5 N ,B 错误;质点的初速度为v =v 02+v 2y =5 m/s ,质点的合力方向沿x 正方向,初速度方向在x 轴与y 轴之间,故两者夹角不为90°,C 正确,D 错误.答案:C1-4.如图所示,长为L 的轻直棒一端可绕固定轴O 转动,另一端固定一质量为m 的小球,小球搁在水平升降台上,升降台以速度v 匀速上升,下列说法正确的是( )A .小球做匀速圆周运动B .当棒与竖直方向的夹角为α时,小球的速度为v L cos αC .棒的角速度逐渐增大D .当棒与竖直方向的夹角为α时,棒的角速度为v L sin α解析:棒与升降台接触点(即小球)的运动可视为竖直向上的匀速运动和沿平台向左的运动的合成.小球的实际运动即合运动方向是垂直于棒指向左上方,如图所示.设棒的角速度为ω,则合速度v 实=ωL ,沿竖直方向向上的速度分量等于v ,即ωL sin α=v ,所以ω=v L sin α,小球速度v 实=ωL =v sin α,由此可知棒(小球)的角速度随棒与竖直方向的夹角α的增大而减小,小球做角速度越来越小的变速圆周运动,故D 正确,A 、B 、C 错误.答案:D1.认清合速度与分速度,速解绳(杆)端速度问题求解此类问题的关键是正确认识合速度和两个分速度.与杆或绳相连的物体,相对地面实际发生的运动是合运动.如第4题中小球的实际运动,是以杆为半径的圆周运动,故合速度方向与杆垂直,其两个分运动是合运动产生的两个效果,即上升的同时沿平台向左运动.2.绳(杆)端速度分解方法绳(杆)端的实际速度为合速度.绳(杆)端速度一般分解为沿绳(杆)方向的速度和垂直于绳(杆)方向的速度.沿绳(杆)的方向上各点的速度大小相等.常见的模型如图甲、乙、丙所示:高频考点2 抛体运动问题2-1.(2017·全国卷Ⅰ)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球网,速度较小的球没有越过球网;其原因是( )A .速度较小的球下降相同距离所用的时间较多B .速度较小的球在下降相同距离时在竖直方向上的速度较大C .速度较大的球通过同一水平距离所用的时间较少D .速度较大的球在相同时间间隔内下降的距离较大解析:本题考查平抛运动.忽略空气的影响时乒乓球做平抛运动.由竖直方向做自由落体运动有t =2h g 、v y =2gh ,某一时间间隔内下降的距离y =v y t +12gt 2,由h 相同,可知A 、B 、D 皆错误;由水平方向上做匀速运动有x =v 0t ,可见x 相同时t 与v 0成反比,C 正确.答案:C2-2.(2017·石家庄市质检)如图所示,一带电小球自固定斜面顶端A 点以某速度水平抛出,落在斜面上B 点.现加上竖直向下的匀强电场,仍将小球自A 点以相同速度水平抛出,落在斜面上C点.不计空气阻力,下列说法正确的是( )A .小球带正电B .小球所受电场力可能大于重力C .小球两次落在斜面上所用的时间不相等D .小球两次落在斜面上的速度大小相等解析:不加电场时,小球做平抛运动,加电场时,小球做类平抛运动,根据tan α=12at 2v 0t,则t =2v 0tan αa,因为水平方向上做匀速直线运动,可知t 2>t 1,则a <g ,可知小球一定带负电,所受的电场力向上,且小于重力的大小,故A 、B 错误,C 正确;因为做类平抛运动或平抛运动时,小球在某时刻的速度方向与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍,由于位移方向相同,则小球两次落在斜面上的速度方向一定相同,根据平行四边形定则知,初速度相同,则落在斜面上的速度大小相等,故D 正确.答案:CD2-3.(2017·苏锡常镇四市调研)某同学玩飞镖游戏,先后将两只飞镖a 、b 由同一位置水平投出,已知飞镖投出的初速度v a >v b ,不计空气阻力,则两支飞镖插在竖直靶上的状态(侧视图)可能是( )解析:因v a >v b ,则根据t =x v 可知t a <t b ,根据h =12gt 2,h a <h b ,根据tan θ=v 0v y =v 0gt,对于飞镖a ,时间短,初速度大,则tan θa >tan θb ,所以θa >θb .故A 正确,故选A .答案:A运用平抛运动规律处理平抛运动问题时,要注意如下几点:(1)处理平抛运动(或类平抛运动)问题时,一般将运动沿初速度方向和垂直于初速度方向进行分解,先按分运动规律列式,再用运动的合成法则求合运动.(2)对于从斜面上平抛又落到斜面上的问题,竖直位移与水平位移的比值等于斜面倾角的正切值.(3)若平抛的物体垂直打在斜面上,则物体打在斜面上瞬间,其水平速度与竖直速度的比值等于斜面倾角的正切值.(4)做平抛运动的物体,其位移方向与速度方向一定不同.(5)抓住两个三角形,有关速度的三角形和有关位移的三角形,结合题目呈现的角度或函数方程找到解决问题的突破口.(6)对斜抛运动问题,可以将斜抛运动在对称轴(最高点)处分开,然后对两部分都可按平抛运动来处理.高频考点3 水平面内的圆周运动问题如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg[思路点拨]未滑动时静摩擦力提供向心力,一起转动时角速度相等―→运动半径大,所需向心力大↓最大静摩擦力提供向心力―→木块开始滑动的临界条件【解析】因圆盘从静止开始绕转轴缓慢加速转动,在某一时刻可认为,木块随圆盘转动时,其受到的静摩擦力的方向指向转轴,由静摩擦力提供向心力,两木块转动过程中角速度相等,则根据牛顿第二定律可得f=mω2R,由于小木块b的轨道半径大于小木块a的轨道半径,故小木块b做圆周运动需要的向心力较大,B错误;因为两小木块的最大静摩擦力相等,故b一定比a先开始滑动,A正确;当b开始滑动时,由牛顿第二定律可得kmg=mω2b·2l,可得ωb=kg2l,C正确;当a开始滑动时,由牛顿第二定律可得kmg=mω2al,可得ωa=kgl,而转盘的角速度2kg3l<kgl,小木块a未发生滑动,其所需的向心力由静摩擦力来提供,由牛顿第二定律可得f=mω2l=23kmg,D错误.【答案】AC圆周运动的临界问题的解题模板3-1.(多选)(2017·吉林省实验中学模拟)在光滑圆锥形容器中,固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接一轻绳,与一质量为m的光滑小球相连,让小球在圆锥内的水平面上做匀速圆周运动,并与圆锥内壁接触.如图所示,图a中小环与小球在同一水平面上,图b中轻绳与竖直轴成θ(θ<90°)角.设图a和图b中轻绳对小球的拉力分别为T a和T b,圆锥内壁对小球的支持力分别为N a和N b,则下列说法中正确的是()A.T a一定为零,T b一定为零B.T a、T b是否为零取决于小球速度的大小C.N a一定不为零,N b可以为零D.N a、N b的大小与小球的速度无关解析:对图a中的小球进行受力分析,小球所受的重力、支持力的合力方向可以指向圆心提供向心力,所以T a可以为零,若N a等于零,则小球所受的重力及绳子拉力的合力方向不能指向圆心提供向心力,所以N a一定不为零;对图b中的小球进行受力分析,若T b为零,则小球所受的重力、支持力的合力方向可以指向圆心提供向心力,所以T b可以为零,若N b 为零,则小球所受的重力及绳子拉力的合力方向也可以指向圆心而提供向心力,所以N b可以为零;由以上分析知N a、N b、T a、T b的大小与小球的速度有关;所以B、C正确,A、D 错误.答案:BC3-2.(2017·合肥市一中)如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔(小孔光滑)的水平桌面上,小球在某一水平面内做匀速圆周运动,现使小球在一个更高的水平面上做匀速圆周运动,而金属块Q始终静止在桌面上的同一位置,则改变高度后与原来相比较,下面的判断中正确的是()A .细线所受的拉力不变B .小球P 运动的线速度变大C .小球P 运动的周期不变D .Q 受到桌面的静摩擦力变小解析:设细线与竖直方向的夹角为θ,细线的拉力大小为T ,细线的长度为L .P 球做匀速圆周运动时,由重力和细线的拉力的合力提供向心力,如图,则有:T =mg cos θ,mg tan θ=mω2L sin θ,mg tan θ=m v 2L sin θ,得线速度v = gL tan θsin θ,角速度ω=g L cos θ,使小球改到一个更高的水平面上做匀速圆周运动时,θ增 大,cos θ减小,sin θtan θ增大,则得到细线拉力T 增大,角速度ω增大,线速度增大,根据公式T =2πω可得周期减小,故B 正确,A 、C 错误;对金属块Q ,由平衡条件得知,Q 受到桌面的静摩擦力等于细线的拉力大小,故静摩擦力增大,D 错误.答案:B3-3.(多选)(2017·南阳市一中模拟)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图所示,绳a 与水平方向成θ角,绳b 在水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是( )A .a 绳的张力不可能为零B .a 绳的张力随角速度的增大而增大C .当角速度ω>g cot θl,b 绳将出现弹力 D .若b 绳突然被剪断,则a 绳的弹力一定发生变化解析:小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 正确;根据竖直方向上平衡得F a sin θ=mg ,解得F a =mg sin θ,可知a 绳的拉力不变,故B 错误;当b 绳拉力为零时,有mg tan θ=mlω2,解得ω2=g l tan θ,当角速度ω2>g l tan θ即ω>g cot θl,b 绳将出现弹力,故C 正确;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故D 错误.答案:AC竖直面内的圆周运动模型竖直面内的圆周运动是中学物理中常见模型之一.该模型通常以细线、轻杆等为载体(即所谓的“线模型”和“杆模型”),通过对质点在特殊位置受力情况的分析、在竖直面内圆周运动情况的分析等,综合考查受力分析、牛顿运动定律、圆周运动中的动力学关系、机械能守恒定律和动能定理的应用以及质点运动的临界条件的判断与分析等.考生在解决有关此模型的问题时,一定要注意质点在圆周运动最高点和最低点的受力和运动情况,这往往是解题关键.竖直面内圆周运动的“线模型”如图所示,长为L 的细线一端固定在O 点,另一端拴一质量为m 的小球.已知小球在最高点A 受到细线的拉力大小刚好等于小球自身的重力,重力加速度为g .求:(1)小球通过最高点A 时的速度v A 的大小;(2)小球通过最低点B 时,细线对小球的拉力大小.[思路点拨] 此模型为“线模型”.在最高点A ,由合力提供向心力可得出在A 点时小球的速度v A 的大小;由机械能守恒定律可算出小球运动到B 点时的速度大小v B ,进而由向心力公式求出细线对小球的拉力.【解析】 (1)小球运动到最高点A 时受重力与细线拉力作用,则由合外力提供向心力可得2mg =m v 2A L,解得v A =2gL . (2)设小球运动到B 点时的速度大小为v B ,则由机械能守恒定律可得mg ·2L +12m v 2A =12m v 2B,解得v B =6gL 设小球运动到B 点时细线对球的拉力为F T ,则有F T -mg =m v 2B L,解得F T =7mg . 【答案】 (1)2gL (2)7mg竖直面内圆周运动的“杆模型”如图所示,长为l 的轻杆一端固定质量为m 的小球,另一端固定在转轴O .现使小球在竖直平面内做圆周运动,P 为圆周运动的最高点,若小球通过圆周运动最低点时的速度大小为 92gl ,忽略空气阻力的影响,则以下判断正确的是( ) A .小球不能到达P 点B .小球到达P 点时的速度大于glC .小球能到达P 点,且在P 点受到轻杆向上的弹力D .小球能到达P 点,且在P 点受到轻杆向下的弹力[思路点拨] 此模型为“杆模型”.由于小球在最低点的速度已知,故由机械能守恒定律可计算出小球到达最高点时的速度v P ,若v P <0,说明小球不能到达最高点;若0<v P <gl ,说明杆对小球具有向上的弹力;若v P >gl ,说明杆对小球具有向下的弹力;若恰好满足v P =gl ,说明在最高点P 时杆对小球没有弹力作用.【解析】 假如小球能到达最高点P ,设小球在最高点P 时的速度大小为v P ,由机械能守恒定律可得:12m v 2P =12m v 2-mg ·2l ,将v =92gl 代入可解得v P =12gl ,故小球能到达最高点,选项A 、B 错误;由于12gl <gl ,故小球在P 点将受到轻杆向上的弹力,选项C正确、D 错误.【答案】 C对于竖直平面内圆周运动的“线模型”和“杆模型”,由于考查的物理知识相对集中,故解题思路非常清晰,解法相对固定.该模型常用的解题思路如下.(1)确定模型种类:首先判断是“线模型”还是“杆模型”.(2)确定临界位置:对于竖直面内的圆周运动,通常其临界位置为圆周运动的最高点或最低点.(3)研究临界状态:对于“线模型”,最高点的临界状态是速度满足v =gR (其中R 为圆周运动的半径);而对于“杆模型”,最高点的临界状态是速度满足v =0.(4)对质点进行受力分析:明确质点做圆周运动过程中的受力情况(通常是最高点或最低点),然后根据牛顿第二定律列出方程F 合=m v 2R. (5)对运动过程进行分析:对于处在两个状态之间的运动过程,通常采用动能定理或机械能守恒定律来求解.与平抛运动等相结合的综合模型(多选)如图所示,一个固定在竖直平面上的光滑半圆形管道,内有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后恰好与倾角为45°的斜面垂直相碰.已知半圆形管道的半径为R =1 m ,小球可看作质点且其质量为m =1 kg ,重力加速度g =10 m/s 2,则( )A .小球与斜面的相碰点C 与B 点的水平距离为0.9 mB .小球与斜面的相碰点C 与B 点的竖直距离为1.9 mC .小球经过管道的B 点时,受到管道的作用力大小是1 ND .小球经过管道的B 点时,受到管道的作用力大小是2 N【解析】 根据平抛运动的规律,小球在C 点的竖直分速度v y =gt ,由几何关系可知水平分速度v x =v y tan 45°,则B 点与C 点的水平距离为x =v x t ,竖直距离为y =12gt 2,联立并代入数据求解可得x =0.9 m ,y =0.45 m ,选项A 正确、B 错误;设小球在B 点时管道对小球的作用力方向竖直向下,则由牛顿第二定律可得F +mg =m v 2B R,而v B =v x ,代入数据可解得F =-1 N ,则管道对小球的作用力方向竖直向上,大小为1 N ,故选项C 正确、D 错误.【答案】AC此类问题是由圆周运动和平抛运动复合而成的,其解法相对简单,对于圆周运动,一般运用动能定理或机械能守恒定律来分析运动的过程,运用受力分析和牛顿运动定律来分析运动的特殊位置(如最高点和最低点);对于平抛运动,通常结合运动的合成与分解知识,将其分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动进行处理.解决此类问题时,要特别注意圆周运动与平抛运动的结合点,此位置往往是解题的关键.。