§6.2 线性空间的定义

合集下载

线性空间的定义与性质

线性空间的定义与性质

s1(x) = A1sin(x+B1)= (A1)sin(x+B1) S[x],
所以, S[x]是一个线性空间.
例5: 在区间[a, b]上全体实连续函数构成的集合 记为C[a, b], 对函数的加法和数与函数的数量乘法, 构 成实数域上的线性空间. (2) 一个集合, 如果定义的加法和乘数运算不是通 常的实数间的加, 乘运算, 则必需检验是否满足八条线 性运算规律. 例6: 正实数的全体记作R+, 在其中定义加法及乘 数运算为: ab = ab, a = a, (R, a, bR+) 验证R+对上述加法与乘数运算构成(实数域R上的)线 性空间. 证明: 对任意a, bR+, R, ab = abR+, a = aR+, 所以对R+上定义的加法与乘数运算封闭.
说明2. 向量(线性)空间中的元素称为向量, 但不一 定是有序数组. 说明3. 判别线性空间的方法: 一个集合, 对于定义 的加法和数乘运算不封闭, 或者运算不满足八条性质 的任一条, 则此集合就不能构成线性空间. 线性空间的判定方法: (1) 如果在一个集合上定义的加法和乘数运算是 通常实数间的加, 乘运算, 则只需检验运算的封闭性. 例1: 实数域上的全体mn矩阵, 对矩阵的加法和 数乘运算构成实数域R上的线性空间, 记作Rmn. Rmn 中的向量(元素)是mn矩阵. 例2: 次数不超过n的多项式的全体记作P[x]n, 即 P[x]n ={ p(x)=a0+a1x+· · · +anxn | a0, a1, · · · , a n R } 对通常多项式加法, 数乘构成向量空间.
二、线性空间的性质
1. 零元素是唯一的. 证明: 假设01, 02是线性空间V中的两个零元素. 则对任何V有, + 01 =, + 02 = , 由于01, 02V, 则有 02+01=02, 01+02=01. 所以 01=01+02 =02+01 =02.

第六章 线性空间与线性变换

第六章 线性空间与线性变换
(7) (k + l)α=kα+lα , k,l ∈ F ; (8) k(lα )=(kl)α ,
其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠

(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换

第二节线性空间的定义与简单性质ppt课件

第二节线性空间的定义与简单性质ppt课件

例 4 数域 P 上一元多项式环 P[ x ], 按通常 的多项式加法和数与多项式的乘法,构成数域 P 上 的一个线性空间. 如果只考虑其中次数小于 n 的多 项式,再添上零多项式也构成数域 P 上的一个线性 空间,用 P[ x ]n 表示. 但是,数域 P 上的 n 次多 项式集合对同样的运算不构成线性空间,因为两个 n 次多项式的和可能不是 n 次多项式.
§6.2 线性空间的定义与简单性质
3. 0 = 0 ; k0 = 0 ; (-1) = - .
证明 + 0 = 1 + 0 = (1 + 0) = 1 = .
所以
0 = 0 .
k0 + k = k (0 +) = k
所以
k0 = 0 .
(-1) + = (-1) + 1 =[(-1) + 1] = 0 =0 ,
§6.2 线性空间的定义与简单性质
注 ◆ 例 8 中集合 V 满足线性空间定义中的其 他七条公理, 可见第五条虽然比较简单, 但是不可 由其他七条推出.
◆ 在 8 条公理中只有第一条加法满足交换律不 是独立的.
证明 ∵ 2( )=2 2 =(1+1) +(1 +1) =(1 +1 )+(1 +1 )=(+ )+( + )= +( + )+ ,
在数域 P 与集合 V 的元素之间还定义了一种运算 , 叫做数量乘法; 这就是说,对于数域 P 中任一
数 k 与 V 中任一元素 ,在 V 中都有唯一的一个
§6.2 线性空间的定义与简单性质
元素 与它们对应,称为 k 与 的数量乘积,记 = k . 如果加法与数量乘法满足下述规则,那
么 V 称为数域 P 上的线性空间.
+ = 0 ( 称为 的负元素) .

线性空间的定义与性质(精)

线性空间的定义与性质(精)

例2 数域F上m行n列矩阵组成的典例:
设 Mm×n = {A:数域 P 上 m× n 矩阵},显然
A, B Mm ×n , k P AB Mm ×n , kA Mm ×n ,
即 Mm×n 对矩阵加法和数乘运算封闭; 易验证 8 条算律亦成立 →
M m? n 对矩阵加法和数乘运算构成数域 P 上的向量空间.
引入减法运算: ( ) 3.
( )) ( ) ( ) ( ) .
( ) (( ) ) 0 .
要证 ( 1) ,即证 ( 1) 是 的负向量. 事实上
( 1) 1 (1) (1 1)) 0 0 → ( 1) 成立.
8)


k( ) ( k) k .(即证 k( ), ( k) 是 k 的负 常用表达式为:
(统称为运算封闭性) ,且满足算律: ① ② ③ ④
+ + ;
(+ )+ +( + ) ;
⑤ ⑥ ⑦ ⑧
(ab)α a(bα) ;
1 ;
0 V , V , 0 ;
V , / V , / 0 ;
二. 基本性质
8条算律 ― 基本法律依据(公理),以2个运算、8 条算律为基础推导其它基本性质. 以下6条基本性质:
1. V 中零向量唯一.
算律 3) 证明: 设 0 1,0 2 是 V 中零向量
0 2=0 2+0 1=0 1+0 2=0 1 . □
该性质是可以用 0 表示 V 中零向量的理论依据.
a( ) a a ; (a b) a b .

线性代数§6.2线性空间的维数、基与坐标

线性代数§6.2线性空间的维数、基与坐标
即, E11, E12, E21, E22线性无关. a11 a12 22 R ,有 对任意实二阶矩阵 A a21 a22 A=a11E11+ a12E12+ a21E21+ a22E22. 所以, E11, E12, E21, E22为V的一个基. 而A在基E11, E12, E21, E22下的坐标为: A=(a11, a12, a21, a22)T.
于是 + 与 k 的坐标分别为: (a1+b1, a2+b2, · · · , an+bn) = (a1, a2, · · · , an)T+(b1, b2, · · · , bn)T, (k a1, k a2, · · · , k an)T = k(a1, a2, · · · , an)T.
即, 向量, Vn在基1, 2, · · · , n下的坐标分别为: = (a1, a2, · · · , an)T, = (b1, b2, · · · , bn)T, · · + (a1 + b1)n 则 + = (a1 + b1)1 + (a1 + b1)2 + · k = ka11 + ka22 + · · · + kann
二、元素在给定基下的坐标
定义: 设1, 2, · · · , n为线性空间Vn的一个基, 对 任意V, 总有且仅有一组有序数x1, x2, · · · , x n, 使 = x11+x22+· · · +x n n , 则称有序数组 x1, x2, · · · , xn 为元素在基1, 2, · · · , n下 的坐标, 并记作 = (x1, x2, · · · , xn)T. 例1: 在线性空间P[x]4中, p0=1, p1=x, p2=x2, p3=x3, p4=x4 就是P[x]4的一个基. 任意不超过4次的多项式: p(x) = a0 + a1x + a2x2 + a3x3 + a4x4P[x]4, 都可表示为 p(x) = a0 p0 + a1p1 + a2p2 + a3p3 + a4p4 因此, p(x)在这个基1, x, x2, x3, x4下的坐标为 p(x) =(a0, a1, a2, a3, a4)T.

高等代数 第6章线性空间 6.2 基底、坐标与维数

高等代数 第6章线性空间 6.2 基底、坐标与维数

任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵

1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是

6.2 线性空间的定义与简单性质

R为Rxx线性空间
四、简单性质
1.V中零向量唯一。
2.Vxx每个向量的负向量唯一。
记Vxx的负向量为

定义可如下在Vxx定义减法:
(),,V。
3.00;k00,(1)。
4.若k0,则k0,或0。
5.若,则。
6.
(k
1Lk
n)k
1Lk
n,k(
1L
n)k
1Lk
n。
【教师解读】
线性空间是一个代数系统,是从众多实际问题中抽象出来的,代数学的一个主要任务就是研究各种代数系统,并将研究结果用于具体问题。
学习单元
_________________________________________________________
导学
学习目标:
深刻理解线性空间的概念;掌握线性空间的基本性质;掌握若干具体线性空间的例子。
学习建议:
线性空间的概念比较抽象,建议大家多读几遍定义,多看例题,结合具体线性空间的例题去理解线性空间的概念。
重点难点:
重点:理解线性空间的概念,掌握线性空间的具体例子。
难点:深刻理解线性空间的概念。
_________________________________________________________
学习内容
一、引例
观察以前学过的一些集合:
uuruur
V
2中向量有加法运算,(1)A为终点来自向量},P中数与V中元的数乘,数与多项式的乘法。

P[x]为Pxx线性空间。
例5
VC(复数域),
PR。
Vxx加法:复数的加法。
P中数与V中元的数乘:实数与复数的乘法,则C为R上线性空间。

第六章线性空间与线性变换

高等代数第六章 线性空间与线性变换第六章 线性空间与线性变换§6.1 线性空间与简单性质一、线性空间的概念定义 设V 是一个非空集合,F 是一个数域.在V 上定义了一种加法运算“+”,即对V 中任意的两个元素α与β,总存在V 中唯一的元素γ与之对应,记为βαγ+=;在数域F 和V 的元素之间定义了一种运算,称为数乘,即对F 中的任意数k 与V 中任意一个元素α,在V 中存在唯一的一个元素δ与它们对应,记为αδk =.如果上述加法和数乘满足下列运算规则,则称V 是数域F 上的一个线性空间.(1) 加法交换律:αββα+=+;(2) 加法结合律:()()γβαγβα+=+++;(3) 在V 中存在一个元素0,对于V 中的任一元素α,都有αα=+0; (4) 对于V 中的任一元素α,存在元素β,使0=+βα; (5) α⋅1=α;(6) βαβαk k k +=+)(,∈k F ; (7) ()∈+l k l k l k ,,ααα+=F ; (8) ()()ααkl l k =,其中γβα,,是V 中的任意元素,l k ,是数域F 中任意数.V 中适合(3)的元素0称为零元素;适合(4)的元素β称为α的负元素,记为α−.下面我们列举几个线性空间的例子. 例1数域F 上的所有n 维列向量集nF 算规则,它是数域F 上的一个线性空间.特别地,当R F =时,n R 称为n 维实向量空间;当C F =时,n C 称为n 维复向量空间.例2 数域F 上的全体n m ×矩阵构成一个F 上的线性空间,记为)(F n m M ×. 例3数域F 上的一元多项式全体,记为][x F ,构成数域F 上的一个线性空间.如果只考虑其中次数小于n 的多项式,再添上零多项式也构成数域F 上的一个线性空间,记为n x F ][.高等代数讲义例4实系数的n 元齐次线性方程组0=Ax 的所有解向量构成R 上的一个线性空间.称之为方程组0=Ax 的解空间.例5闭区间],[b a 上的所有连续实函数,构成一个实线性空间,记为],[b a C .例6 零空间.注:线性空间中的元素仍称为向量.然而其涵义比n 维有序数组向量要广泛的多.二、性质性质1 零向量是唯一的. 性质2 负向量是唯一的.注:利用负向量,我们定义减法为:)(βαβα−+=−.性质3 对V 中任意向量γβα,,,有(1) 加法消去律:从γαβα+=+可推出γβ=;(2) 0=⋅α0,这里左边的0表示数零,右边的0表示零向量; (3) 00=⋅k ; (4) αα−=−)1(;(5) 如果0=αk ,则有0=k 或0=α.注:线性空间上的加法和数乘运算与nF 的一样,都满足八条运算规律,所以第四章 中关于向量组的一些概念以及结论,均可以平行地推广到一般的n 维线性空间中来.在这里不再列举这些概念和结论,以后我们就直接引用,不另加说明.§6.2 基与维数本节讨论线性空间的结构一、定义与例子定义1 设V 是数域F 上的一个线性空间,如果V 中的n 个向量n εεε,,,21L 满足 (1)n εεε,,,21L 线性无关;(2)V 中的任意向量都可由n εεε,,,21L 线性表示,则称n εεε,,,21L 为线性空间V 的一组基,n 称为V 的维数,记为n V =dim ,并称V 为数域F 上的n 维线性空间.注1:零空间没有基,其维数规定为0.注2:如果在线性空间V 中存在无穷多个线性无关的向量,则称V 为无限维线性空间,第六章 线性空间与线性变换例:连续函数空间],[b a C 就是一个无限维空间.推论1 n 维线性空间中的任意1+n 个向量必线性相关.注3: 将线性空间V 看成一个向量组,那么它的任意一个极大线性无关组就是V 的一组基,其秩就是维数.推论2 n 维线性空间V 中的任意n 个线性无关的向量组成V 的一组基.定义2 设n εεε,,,21L 是n 维线性空间V 的一组基,则对V 中的任意向量α,存在唯一数组n x x x ,,,21L ,使得n n x x x εεεα+++=L 2211,我们称n x x x ,,,21L 为向量α在基n εεε,,,21L 下的坐标,记作()Tn x x x ,,,21L .例1 在n 维向量空间nF 中,显然⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=100,,010,00121ML M M n εεε,是nF 的一组基.对任一向量Tn a a a ),,,(21L =α都可表示成n n a a a εεεα+++=L 2211,所以Tn a a a ),,,(21L 就是向量α在这组基下的坐标.选取另一组基:⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=111,,011,00121ML M M n ηηη,对于向量Tn a a a ),,,(21L =α,有()()()n n n n n a a a a a a a ηηηηα+−++−+−=−−11232121L ,所以α在这组基下的坐标为()Tn n n a a a a a a a ,,,,13221−−−−L .例2 在线性空间n x F ][中,容易验证121,,,1−===n n x x αααL高等代数讲义是n x F ][的一组基.在这组基下,多项式1110)(−−+++=n n x a x a a x f L 的坐标就是它的系数()Tn a a a 110,,,−L .考虑n x F ][中的另一组基()121,,,1−−=−==n n a x a x βββL .由泰勒(Taylor)公式,多项式)(x f 可表示为()1)1()(!1)())((')()(−−−−++−+=n n a x n a fa x a f a f x f L ,因此,)(x f 在基n βββ,,,21L 下的坐标为()Tn n a f a f a f ⎟⎟⎠⎞⎜⎜⎝⎛−−!1)(,),('),()1(L . 例3 在所有二阶实矩阵构成的线性空间)(22R ×M 中,考虑向量组⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=1000,0100,0010,000122211211E E E E . 首先这是一组线性无关组.事实上,若有实数4321,,,k k k k ,使=+++224213122111E k E k E k E k O k k k k =⎟⎟⎠⎞⎜⎜⎝⎛4321, 则有04321====k k k k ,这就说明了22211211,,,E E E E 线性无关.其次,对于任意二阶实矩阵⎟⎟⎠⎞⎜⎜⎝⎛=22211211a aa a A , 可表示为2222212112121111E a E a E a E a A +++=,因此22211211,,,E E E E 是22×M 的一组基,22×M 是4维实线性空间,并且A 在这组基下的 坐标为()Ta a a a 22211211,,,.第六章 线性空间与线性变换二、同构关系1.映射设M,N 是两个集合.如果给定一个法则ϕ,使M 中的每个元素a 都有N 中的一个唯一确定的元素'a 与之对应,则称ϕ是集合M 到集合N 的一个映射.'a ∈N 称为a 在映射ϕ下的像,而a 称为'a 在映射ϕ下的原像.记作')(a a =ϕ.M 中元素在ϕ下像的全体构成N 的一个子集,记之为ϕIm 或)(M ϕ。

§6-2线性空间的定义和性质(精)

§6-2线性空间的定义和性质一、定义:设V 是一个非空集合,P 是一个数域1、 在V 中定义一种加法运算,使对于V 中任意两个元βα,都有V 中唯一的元γ与之对应,称为α与β的和,记作βαγ+=,加法满足:① α+β=β+α;② α+(β+γ)=(α+β)+γ;③ V 中有一个元素θ,使对V 中任一元α,都有α+θ=α(θ叫做零元); ④ 对于V 中每一个元α,都有V 中元β存在,使α+β=θ(β叫做α的负元);2、 在P 中的数与V 中的元之间定义一种数量乘法运算,使P k ∈∀及V ∈∀α都有V 中唯一的元δ 与之对应,记作αδk =,且满足:⑤αα=∙1;⑥()()ααkl l k =;⑦()αααl k l k +=+;⑧()βαβαk k k +=+;满足以上运算的V ,称为数域P 上的线性空间。

例1 :数域P 上的一元多项式环[]x P ,按通常的多项式加法和数与多项式的乘法,构成一个数域P 上的线性空间。

如果只考虑其中次数小于n 的多项式,再添上零多项式也构成数域P 上的一个线性空间,用[]n x P 表示。

例2:元素属于数域P 的n m ⨯矩阵,按矩阵的加法和矩阵与数的乘法,构成数域P 上的一个线性空间,用n m P ⨯表示。

例3: C[a,b]关于函数的加法和数与函数的乘法来说作成实数域R 上的向量空间。

)()()(x af x g x f +例4: R 为实数域,V 为全体正实数组成的集合,定义V 中两个元素的加法运算⊕为:V b a ab b a ∈=⊕,,定义V 中元素与R 中元素的数乘运算“ ”为p R v a a a k k ∈∈=,,下面验证V 对于这两种运算满足定义中的八条规则:1 a b ba ab b a ⊕===⊕;2 )()()()(c b a c ab c ab c b a ⊕⊕==⊕=⊕⊕;3 a a a =⋅=⊕11;4 a 的负元素是a -1, 111==⊕--aa a a ;5 a lk a a k a l k lk l ===)(;6 )()()(a l a k a a a a l k l k l k ⊕=⊕==++;7 k k k k k k b a b a ab b a b a k ⊕===⊕=⊕)()()(=)()(b k a k ⊕;8 a a a ='= 1;所以V 是实数域上的向量空间。

线性空间线性空间的定义及性质知识预备集合笼统的说

第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体。

集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。

★数域:一种数集,对四则运算封闭(除数不为零)。

比如有理数域、实数域(R)和复数域(C)。

实数域和复数域是工程上较常用的两个数域。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

1.线性空间的定义:设V是一个非空集合,其元素用zx,,等表示;K是一个数域,y其元素用m,等表示。

如果V满足[如下8条性质,分两类]:k,l(I)在V中定义一个“加法”运算,即当Vx∈,时,有唯一的和y+(封闭性),且加法运算满足下列性质:x∈yV(1)结合律z=+)()(;+y+zxyx+(2)交换律x+;=yyx+(3)零元律存在零元素O,使x+;x=O(4)负元律 对于任一元素V x ∈,存在一元素V y ∈,使O y x =+,且称y 为x 的负元素,记为)(x -。

则有O x x =-+)(。

(II )在V 中定义一个“数乘”运算,即当K k V x ∈∈,时,有唯一的V kx ∈(封闭性),且数乘运算满足下列性质: (5)数因子分配律 ky kx y x k +=+)(; (6)分配律 lx kx x l k +=+)(; (7)结合律 x kl lx k )()(=; (8)恒等律 x x =1; 则称V 为数域K 上的线性空间。

注意以下几点:1)线性空间是基于一定数域来的。

同一个集合,对于不同数域,就可能构成不同的线性空间,甚至对有的数域能构成线性空间,而对其他数域不能构成线性空间。

2)两种运算、八条性质。

数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则是抽象的、形式的。

3)除了两种运算和八条性质外,还应注意唯一性、封闭性是否满足。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§6.2 线性空间的定义
线性空间是数学中一个非常重要的基础概念,也被称为向量空间。

它是由一组称作向量的元素所构成的集合,并且这个集合也需要满足一定的运算规则。

具体来说,线性空间必须满足以下条件:
1. 加法性质:对于任意的 a、b 属于线性空间 V,其和 a+b 也属于 V。

6. 存在零元素:线性空间中必须存在一个元素 0,使得对于任意的 a 属于 V,有a+0=0+a=a。

以上这些条件都是线性空间必须满足的性质,只有同时满足以上所有条件,才能称为线性空间。

线性空间不仅可以是实数域上的,也可以是复数域或其他的数域,只要满足上述条件就行。

此外,线性空间的向量元素也可以是多维的,相应地,加法和数量乘法也要进行多维的运算。

总之,线性空间是数学中的一个非常重要的概念,它是在广泛的应用领域中得到了广泛的应用,包括物理、经济、计算机科学等领域,是许多高等数学学科的基础,深入理解并掌握线性空间的性质和应用,对于建立和发展许多数学理论和应用具有重要的意义。

相关文档
最新文档