用于三相PWM并网逆变器的改进型幅相控制方法_英文_

合集下载

基于MATLAB的三相桥式PWM逆变电路的状态空间分析与仿真_本科课程设计论文

基于MATLAB的三相桥式PWM逆变电路的状态空间分析与仿真_本科课程设计论文
Keywords:PWM;State-space;Simulink
在电力电子中把直流电变为交流电称为逆变。逆变电路的应用非常广泛,如在直流电源向负载供电时需要交流电动机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分也是逆变电路。本文重点根据三相电压型PWM整流器的原理和特点,对PWM控制电路进行了相应的分析,在此基础上对PWM电路后面所接的L-C滤波电路和R-L负载电路运用状态空间法建立了模型。最后采用MATLAB7.1软件搭建了相应的仿真平台,取得了较好的仿真结果。
1.2
由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交一直一交变频器中的整流器采用不可控的二极管整流器就可以了。逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(Modulation Wave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果。从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。

Three-Phase Three-Level PWM Converter三相三电平PWM转换器

Three-Phase Three-Level PWM Converter三相三电平PWM转换器

Three-Phase Three-Level PWM Converte三相三电平PWM变换器This example shows the harmonic analysis of PWM waveforms using the Powergui/FFT tool.P. Giroux and G. Sybille (Hydro-Quebec))这个例子显示了使用Powergui / FFT工具PWM波形的谐波分析。

P. Giroux和G. Sybille(魁北克水电))DescriptionThe system consists of two three-phase three-level PWM voltage source converters connected in twin configuration The inverter feeds an AC load (1kW, 500 var 60Hz @ 208 Vrms) through a three-phase transformer. Harmonic filtering is performed by the transformer leakage inductance (8%) and load capacitance (500 var).该系统由两个三相三电平PWM电压源转换器连接的双配置逆变器交流负载(1KW,500无功60hz @ 208 VRMS)通过一个三相变换变压器。

谐波滤波进行变压器漏感(8%)和负载电容(500无功)。

Each of the two inverters uses the Three-Level Bridge block where the specified power electronic devices are IGBT/Diode pairs. Each arm consists of 4 IGBTs, 4 antiparallel diodes, and 2 neutral clamping diodes.每两个逆变器采用三电平桥块指定的电力电子器件,IGBT /二极管对。

三相交流电压型PWM变频电源及控制方法

三相交流电压型PWM变频电源及控制方法
86.67%
特点?
43-17同步调制和异步调制方式
(3)同步调制和异步调制方式:
根据载波频率与调制 波频率的关系, 调制方法又分为:
fsw / Hz
载波比k =fsw/fout
• 同步调制:载波比k为
3 的倍数, 能保证逆变器 输出波形的正、负半波
fout / Hz
对称,也能保证三相平 衡。但低速时,脉冲间隔
▪ 交流电机:
▪ 异步机: 绕线式,鼠笼式 ▪ 同步机: 它激式,自激式,永磁式
43-2变频器的分类
交流交流 (交)直交
矩阵式
相控型 电压型
硬开关 电流型
PAM 两电平
PWM 多电平
软开关
图 6.2.1 变频器的类型
三角波 PWM
空间电压矢量法 其他
重点:电压型, 两电平, PWM, 空间电压矢量法
uA
B : e j120o
F1 uB
uC
C : e j120o O
A : e j0
IM
Fg (t) 2 / 3(FA FB FC )
图 6.2.10 三 相 理 想 电 源 和 空 间 磁 动 势 表 示
2 / 3(
f Ae j0o
f e j120o B
fC e j120o )
空间位置
FA FB
uUN'
Ud

2
O
Ud 2
uVN'
Ud

2
O
Ud 2
uWN'
Ud

2
O
uA0 uB0 uC 0
ura (k) 与 该 周 期 内 矩 形 波 uAO (k ) 的平均值相等。

PWM SPWM SVPWM

PWM SPWM SVPWM

PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。

PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规率排列,这样输出波形经过适当的滤波可以做到正弦波输出。

它广泛的用于支流交流逆变器等,比如高级一些的UPS就是一个例子。

三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。

SPWM原理,正弦PWM的信号波为正弦波,就是正弦波等效成一系列等幅不等宽的矩形脉冲波形,其脉冲宽度是由正弦波和三角波自然相交生成的。

正弦波波形产生的方法有很多种,但较典型的主要有:对称规则采样法、不对称规则采样法和平均对称规则采样法三种。

第一种方法由于生成的PWM脉宽偏小,所以变频器的输出电压达不到直流侧电压的倍;第二种方法在一个载波周期里要采样两次正弦波,显然输出电压高于前者,但对于微处理器来说,增加了数据处理量当载波频率较高时,对微机的要求较高;第三种方法应用最为广泛的,它兼顾了前两种方法的优点。

SPWM虽然可以得到三相正弦电压,但直流侧的电压利用率较低,最大是直流侧电压的倍,这是此方法的最大的缺点。

SVPWM是Space Vector Pulse Width Modul的意思,翻译成空间矢量脉宽调制,它是一种PWM技术的调制方法,他的思想是通过pwm调制形成的pwm波在接入电机三相定子绕组中时,使电机的定子产生圆形旋转磁场,从而带动电机旋转,这里的空间矢量指的是三相定子电压的合成矢量(具体了解你可以看看交流传动方面的书我这里就不解释了),SVPWM 说白了是一种逆变方法是正弦脉宽调制(SPWM)的一个特例,而矢量控制是电动机调速的一种控制方法,他的目的是把三相异步电动机的转速和转矩控制分开使控制更精确,形成类似于直流电动机的数学模型,从而达到直流电动机的控制性能,矢量控制最终算出来的就是三相定子电压的数值,你根据这个数值再运用SVPWM就可以驱动电机达到你的控制要求了。

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM(Pulse Width Modulation)逆变电路是一种通过改变电压或电流波形的占空比来实现电能转换的技术。

它广泛应用于各种电源逆变器、交流电机驱动器、太阳能逆变器、UPS(不间断电源系统)等领域。

本文将介绍PWM逆变电路的基本原理、常见的控制方法以及应用实例。

PWM逆变电路的基本原理是通过将直流电压转换为交流电压,使得输出波形的频率和幅值可以根据需求进行调节。

其核心部件是逆变器,通常由开关元件(如功率开关管)和输出变压器组成。

逆变器通过快速开关开关闭合,产生一系列电压脉冲,然后经过输出变压器将直流电压转换为交流电压。

PWM逆变电路的控制方法有多种,常见的包括:固定频率脉宽调制(Fixed Frequency Pulse Width Modulation,FFPWM)、固定频率电压脉宽调制(Constant Frequency Voltage Pulse Width Modulation,CFVPWM)、固定频率电流脉宽调制(Constant Frequency Current Pulse Width Modulation,CFCPWM)以及多重脉冲脉宽调制(Multiple Pulse Width Modulation,MPWM)等。

固定频率脉宽调制是PWM逆变电路中最简单的控制方法之一,其特点是输出频率和开关频率固定,可以通过调节脉宽来实现输出波形的幅值控制。

固定频率电压脉宽调制在固定频率脉宽调制的基础上增加了电压控制环节,通过反馈控制使输出电压达到设定值。

固定频率电流脉宽调制则在固定频率脉宽调制的基础上增加了电流控制环节,通过反馈控制使输出电流达到设定值。

多重脉冲脉宽调制是在固定频率脉宽调制的基础上引入多个脉冲周期,通过交错控制来改善输出波形的谐波含量。

1.电力电子逆变器:将直流电能转换为交流电能。

通过控制PWM逆变电路的开关元件,可以实现交流电压的频率和幅值的调节,广泛应用于电力系统、电动机驱动器及电力调速系统等。

根据matlab的三相桥式PWM逆变电路的仿真实验报告

根据matlab的三相桥式PWM逆变电路的仿真实验报告

基于matlab的三相桥式PWM逆变电路的仿真实验报告一、小组成员指导教师二、实验目的1.深入理解三相桥式PWM逆变电路的工作原理。

2.使用simulink和simpowersystem工具箱搭建三相桥式PWM 逆变电路的仿真框图。

3.观察在PWM控制方式下电路输出线电压和负载相电压的波形。

4.分别改变三角波的频率和正弦波的幅值,观察电路的频谱图并进行谐波分析。

三、实验平台Matlab / simulink / simpowersystem五、实验模块介绍1. 正弦波,电路常用到的正弦信号模块,双击图标,在弹出的窗口中调整相关参数。

其信号生成方式有两种:Timebased和Sample based。

2. 锯齿波发生器,产生一个时基和高度可调的锯齿波序列。

块可以接受多个输入信号,3. 示波器,其模每个端口的输入信号都将在一个坐标轴中显示。

4. 关系运算符,<、>、=等运算。

源,提供一个直流电源。

5. 直流电压6. 三相RLC串联电路,电阻、电感、电容串联的三相电路,单位欧姆、亨利、法拉。

7. 电压测量,用于检测电压,使用时并联在被测电路中,相当于电压表的检测棒,其输出端“v”则输出电压信号。

8. 多路测量仪,可以接收该需要测模块的电压、电流或电压电流信号并输出。

9. IGBT/二极管,带续流二极管的IGBT模型.10 为了执行仿真其可以允许修改初始状态、进行电网稳定性分析、傅里叶分解等功能.六、实验原理三相桥式PWM逆变电路图1-1如下:图1-1三相桥式PWM逆变电路图三相桥式PWM逆变电路波形七、仿真实验内容三相桥式PWM逆变电路仿真框如图1-2所示:图1-2 三相桥式PWM逆变电路仿真框图仿真参数设置如下:三角波参数如图1-3所示:载波频率f=1kHz,周期T=1e-3s,幅值Ur=1V.图1-3三角波参数图正弦波参数,正弦信号A/B/C相位差为120,分别为0、2*pi/3、-2*pi/3,幅值都为1,如图1-4、1-5、1-6所示。

三相电压型PWM整流器控制策略及应用研究

三相电压型PWM整流器控制策略及应用研究

三相电压型PWM整流器控制策略及应用研究一、概述随着电力电子技术的快速发展,三相电压型PWM(脉冲宽度调制)整流器作为一种高效、可靠的电能转换装置,在电力系统中得到了广泛应用。

其不仅能够实现AC(交流)到DC(直流)的高效转换,还具有功率因数高、谐波污染小等优点,对于改善电网质量、提高能源利用效率具有重要意义。

对三相电压型PWM整流器的控制策略及应用进行深入研究,对于推动电力电子技术的发展和电力系统的优化升级具有重要意义。

三相电压型PWM整流器的控制策略是实现其高效稳定运行的关键。

目前,常用的控制策略包括基于电压矢量控制的直接电流控制、基于空间矢量脉宽调制的间接电流控制等。

这些控制策略各有优缺点,适用于不同的应用场景。

需要根据实际应用需求,选择合适的控制策略,并进行相应的优化和改进。

在实际应用中,三相电压型PWM整流器被广泛应用于风力发电、太阳能发电、电动汽车充电站等领域。

在这些领域中,整流器的稳定性和效率对于保证整个系统的正常运行和提高能源利用效率具有至关重要的作用。

对三相电压型PWM整流器的控制策略及应用进行研究,不仅有助于推动电力电子技术的发展,还有助于提高能源利用效率、促进可再生能源的发展和应用。

本文将对三相电压型PWM整流器的控制策略及应用进行深入研究。

介绍三相电压型PWM整流器的基本原理和常用控制策略分析不同控制策略的优缺点及适用场景结合实际应用案例,探讨三相电压型PWM整流器的优化改进方法和发展趋势。

通过本文的研究,旨在为三相电压型PWM整流器的设计、优化和应用提供理论支持和实践指导。

1. 研究背景与意义随着全球能源危机和环境污染问题日益严重,可再生能源的利用与开发已成为世界各国关注的焦点。

作为清洁、可再生的能源形式,电能在现代社会中发挥着至关重要的作用。

传统的电能转换和利用方式存在能量转换效率低、谐波污染严重等问题,严重影响了电力系统的稳定性和电能质量。

研究高效、环保的电能转换技术具有重要意义。

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM逆变电路是一种将直流电能转换为交流电能的电路。

它通过以一定的频率和变化占空比的脉冲宽度调制信号,使得输入的直流电压经过逆变器变换后,输出成为一定频率和幅值可调的交流电压。

PWM逆变电路主要用于交流传动,太阳能发电系统,UPS等领域。

PWM逆变电路的基本结构包括直流输入电源、逆变器和输出滤波电路。

其中,直流输入电源将直流电压提供给逆变器,逆变器利用PWM技术将直流电压转换为交流电压,输出滤波电路对逆变器输出的脉冲波进行滤波,得到平滑的交流电压输出。

脉宽调制控制是最常用的PWM逆变电路控制方法。

它通过改变逆变器输入脉冲信号的占空比,控制逆变器输出交流电压的幅值。

具体实现方法是利用比较器将一个三角波信号与一个参考电压进行比较,产生一个PWM波形信号。

这个PWM波形信号的脉宽由比较器输出的高低电平确定,通过改变三角波信号的频率和参考电压的大小,可以改变脉冲宽度从而控制逆变器输出电压的幅值。

频率调制控制是通过改变逆变器输入脉冲信号的频率,控制逆变器输出交流电压的频率。

与脉宽调制控制不同,频率调制控制中,逆变器输出的脉冲宽度保持不变。

具体实现方法是通过改变比较器的阈值电压,或者改变三角波信号的频率,从而改变逆变器输出信号的频率。

值得注意的是,PWM逆变电路的控制方法还可以根据需要,对脉宽调制控制和频率调制控制进行组合,以实现更复杂的控制策略。

总结起来,PWM逆变电路是一种将直流电能转换为交流电能的电路,其控制方法主要有脉宽调制控制和频率调制控制两种。

通过调整脉宽和频率,可以实现对逆变器输出交流电压幅值和频率的精确控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

J Shanghai Univ(Engl Ed),2008,12(6):560–564Digital Object Identifier(DOI):10.1007/s11741-008-0617-1The improved PAC method for a three-phase PWMgrid-connected inverterLI Jie( ),MA Yi-wei( ),CHEN Guo-cheng( ),WANG De-li( ),YU Jun-jie( )Shanghai Key Laboratory of Power Station Automation Technology,Shanghai University,Shanghai200072,P.R.China Abstract In this paper,a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up,the starting voltage prediction control and the current feed-forward control are proposed and used,which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.Keywords three-phase pulse width modulation(PWM)grid-connected inverter,phase and amplitude control(PAC),starting voltage prediction control,current feed-forward controlIntroductionThree-phase pulse width modulation(PWM)grid-connected inverters can realize feeding electric energy to grid with unity power factor without harmonious pollution.Therefore,it can be applied to many situa-tions,such as solar photovoltaic generation,wind power generation and the energy-regeneration application[1−2]. The current control methods of three-phase PWM grid-connected inverters can be divided into two sorts,the direct current control and the indirect current control.The direct current control includes the hysteresis cur-rent control,the space-vector control,etc.[3−4]These methods can obtain faster current response,but the con-trol structure and algorithm are comparatively complex. The indirect current control is also called the phase and amplitude control(PAC).It has advantages that thecontrol is simple without current feedback and its cost is low[5−6].However,comparing with the direct current control,its current dynamic response is not very fast. Recent research about PAC mainly involved in improv-ing the dynamic performance of the system in operationand design of system parameters[2,7].None of them re-fer to improving startup the dynamic performance of the system.However,in some situations(such as eleva-tors and port machines),grid-connected inverters have to start and stop frequently.The dynamic performance of the system in startup makes an important impact on the quality of electric power fed into grid.In this paper,based on the research concerned[7−8], a15kW three-phase PWM grid-connected inverter us-ing PAC is designed.Moreover,to solve the problem ofheavy inrush current and slow dynamic response when system starts up,the starting voltage prediction controland the current feed-forward control are presented.The experimental results proved the validity of the proposed methods.1Structure of main circuit and operat-ing principle1.1Structure of main circuitThe main circuit structure of a three-phase PWM grid-connected inverter consists of a bridge rectifier made up of six IGBTs with anti-parallel diodes,DC linkcapacitance and series inductances.As shown in Fig.1,The AC output ports of the sys-tem are directly connected to the gird,while the DC in-put ports are connected to E G(E G is a renewable power supply)in series with an isolation diodes V D which en-sure the energy can onlyflow into the grid.Before the system runs,all the IGBTs(V1∼V6)are blocked.En-ergy can’t be fed into the grid and the supply-side cur-rent is zero.After the system runs,the DC link voltage is held on the set voltage by controller and all the IGBTs are switched on or offby the given PWM rule.Then en-ergy is fed into the grid.Received Nov.21,2007;Revised Apr.15,2008Project supported by the Shanghai Education Committee Scientific Research Subsidization(Grant No.05AZ30),and the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20060280018)Corresponding author CHEN Guo-cheng,Prof.,E-mail:gchchen@J Shanghai Univ (Engl Ed),2008,12(6):560–564561Fig.1Main circuit of a three-phase PWM grid-connected inverter1.2Summary of PACOne of the control requirements of the three-phase PWM grid-connected inverter is that energy can be fed into grid with unity power factor,which means the angle between phase current and phase voltage must always be kept 180◦as well as possible.The other is controlling the DC link voltage availably and making it follow the set voltage closely.In order to reach these requirements,PAC is used in this paper.In the PAC,the amplitude and the phase of PWM modulation wave are controlled members.Therefore,the voltage on crunode R ,S ,T are controlled directly and phase current I r ,I s ,I t are changed indirectly to keep their phase opposite to grid voltage.Fig.2shows the equivalent circuit of phase R.In the figure,phasor E R represents grid voltage of phase R,phasor U R is the fundamental wave component of voltage on R ,R R is the distributed resistance,and L is the phase R inductance between grid andIGBTs.E R 'Fig.2Equivalent circuit of phase RAssuming that the current direction from grid to IG-BTs is positive and the distributed resistance R is omit-ted since it is very small,we can get the voltage pha-sor diagram of the three-phase PWM grid-connected in-verter shown in Fig.3.(a) Q < 0(b) Q = 0xFig.3Vector diagram of the three-phase grid-connected in-verterIn Fig.3,αis the control angle,ϕis the factor angle,and U x is the voltage on inductance.Fig.3(a)shows theenergy feedback status while Q <0(Q denotes reactive power).If U R is adjusted,the system operation status will change as well.As shown in Fig.3(b),when U R is in a suitable value,Q will be equal to 0.Unity power factor energy feedback is realized.In order to raise DC link voltage utilities,the three-phase PWM grid-connected inverter uses an optimum sine modulation waveform.When the modulation index M =1[9],the peak value of the R ,S ,T line voltage is E d .Therefore,we can getu R =(ME d /√3)sin(ωt −α).(1)Supposee R =√2E R sin ωt,(2)where,e R is the phase R grid voltage and E R is its root mean square (RMS)value.According to the law of conservation of energy,the input power and output power of the system are balanceable.Therefore,it can be obtained that 3E R I R cos ϕ+E d I d =0,(3)where I R is the RMS value of current of phase R.When cos ϕ=−1,we can get I R =E d I d3E R.(4)The RMS value of voltage on the inductance is U x =ωLI R =ωLE d I d3E R.(5)According to (1),(2)and (5),the amplitudes of U R ,E R and U x are ME d √3,√2E R and √2ωLE d I d /(3E R ).When the renewable power supply changes,DC link voltage E d and current I d will change as well.How-ever the voltage phasor triangle can be kept right-angle,unity power factor feedback can be realized and the DC link voltage can be controlled availably through adjust-ing the modulation index M and the control angle α.2Improvement of startup dynamic per-formanceThe PAC strategy has a simple structure and good static performance.But when we apply the strategy to some situations,in which the system starts and stops frequently,the dynamic performance of the system must be improved.Therefore starting the voltage prediction control and the current feed forward control based on the PAC strategy is proposed and used in the three-phase PWM grid-connected inverter.562J Shanghai Univ(Engl Ed),2008,12(6):560–564 2.1Starting voltage prediction controlBefore the system starts up,the switchs V1∼V6are blocked and the phase current equals to zero.Whenthe system starts up,the amplitude of phasor U R andthe phase angle between it and E R decide the magni-tude of inrush current and the length of regulation time.Therefore,the set value ofαand M at the starting timeis extremely important.The unity power factor start-ing can be realized if the initial value is set correctly.Ifit is unsuitable,the system is unable to enter the sta-ble state quickly and will produce inrush current,whichis several times larger than rating current and can de-stroy the power components.The starting voltage pre-diction control is a method that utilizes the parametersdetected before starting to calculate the ideal referencevalue which is used as the initial set value.Assume the set start voltage is E∗d.According to thephase relationship of right-triangle in Fig.3(b),we canget⎧⎪⎪⎪⎨⎪⎪⎪⎩tanα=√2ωLE∗d I d3E R1√2E R,cosα=√2E R√3ME∗d.(6) At the time the system has not started up,all of thecurrent on DC link is infused into the capacitance and the current is in proportion to the change rate of DC link voltage.I d can be expressed asI d=C d E dd t.(7) Substituting(7)into(8)yields⎧⎪⎪⎪⎨⎪⎪⎪⎩tanα=ωLCE∗d d E d d t3E2R,M=√6E RE∗d cosα.(8)Suppose thatαis small,we get tanα≈k1α,cosα≈1−k2αafter linear approximation,where k1,k2are lin-ear coefficients.Then(8)can be expressed as⎧⎪⎪⎨⎪⎪⎩α=k3d E dd t,M=√6E RE∗d(1−k2α),(9)where k3≈ωLCE∗d3E2R k1.Based on(9)we can get the set value of the initial control angleαand the modulation depth M for keeping unity factor when system starting.2.2Current feed-forward controlDuring the course of the system starting up,only when the operating point moves near the vertical line in Fig.3(b),can the dynamic response time be shortest.As shown in Fig.4,the ideal operating point A of the system is gained through calculating(9).When the system starts up,the supply-side current gradu-ally increases from zero.The system doesn’t operate at the ideal operating point A but produces overshoot, because the dynamic response of current in PAC is com-paratively slow.At that moment,the added current is provided by capacitance C,which results in the falling of DC link voltage.Operating point of the system also moves from A to B.In order to make the system op-erating point come back to A,the current should be decreased.The output DC link current of the system at the next controllable state is expressed asΔI d=Cd E dd t.(10)Fig.4Voltage phasor diagram of regulation processIt can be known from tangent relation of triangle in Fig.3(b)that the variety of R phase current isΔI R=E RωL[tan(α+Δα)−tanα].(11) SinceΔαis small,(11)is linearized asΔI R≈E RωLm1Δα,(12) where m1is the linear co-efficient.Considering energy balance between AC side and DC side of the converter, we have3E RΔI R=E dΔI d.(13) Substituting(10)and(12)into(13)yieldsΔα=ωLCE d3E2R m1d E dd t,(14)based on the triangle illustrated in Fig.3(b),we can getI R=ME d√6ωLsinα.(15)In the new static state,the output phase current I R+ΔI R isI R+ΔI R=(M+ΔM)E d√6ωLsin(α+Δα),(16)J Shanghai Univ(Engl Ed),2008,12(6):560–564563 so that the increasing powers in both sides areE dΔI d=3E RΔI R=3E R E d√6ωL[(M+ΔM)·sin(α+Δα)−M sinα].(17) Substituting(10)into(17),we can getΔM=−M[sin(α+Δα)−sinα] sin(α+Δα)+√6ωL3E R sin(α+Δα)C d E dd t.(18)SinceΔαis small,(19)can derive from(18)by lin-earizing and omiting the second portion of(18)for its smallness.ΔM≈−m2MΔαsin(α+Δα),(19)where m2is the linear coefficient.It can be known from (14)and(19)that the changes of DC link voltage can be transformed intoΔαandΔM,which are added tothe outputs of PI regulators in the next step to improve the dynamic response.3Control system configurationFig.5shows the control system configuration of thethree-phase grid-connected inverter.In order to de-crease the dependence of control angleαand modulation depth M on system parameters and increase stabilityand anti-disturbance ability of the system,two closed loops are used.The control algorithm is implementedusing a TMS320LF2407A DSP of TI.By detecting line voltage u ST and phase current i R,power factor angleϕcan be obtained after phase discrimination.It is usedin PI regulator and transformed into control angleαfor phase control.By detecting DC link voltage E d,the voltage offsetΔE d used in PI regulator is obtained and transformed into the modulation depth M for voltage control.When the system has not started,(9)is used to predict the starting voltage.After the system stars up,the feed-forward values calculated by(14)and(19) are added to the output of PI regulators to improve the dynamic response.4Experimental resultFig.6shows the waveforms of the output voltage and the current in the experiment.The experimental param-eters are that the set start DC link voltage is670V,DC link voltage in static status is620V,and carry wave fre-quency is5.3kHz.DC link voltage has not yet achieved 670V in initial several periods in Fig.6and the sys-tem hasn’t started to work,so the output current is0. When the voltage achieved the set start value,the sys-tem starts to operate.Fig.5Control system configuration of a three-phase grid-connected inverterFig.6Experimental results when system startingFig.6(a)shows the waveform of the supply-side volt-age and the current without starting voltage prediction control and current feed-forward control.It can be seen that there is biggish inrush current and time of current regulation upwards of2s.Fig.6(b)shows the waveform of the supply-side voltage and the current with starting voltage prediction control.There is no biggish inrush current,but the time of current regulation is long all the same(upwards of300ms).Fig.6(c)shows the waveform of the supply-side voltage and the current with starting564J Shanghai Univ (Engl Ed),2008,12(6):560–564voltage prediction control and current-feed forward con-trol.Obviously,the inrush current is very small and the time of current regulation is short (less than 50ms).Fig.7shows the waveforms of grid phase R voltage and the current when the system goes into the stable state.It can be seen that the phase angle between the output current and the grid voltage is very close to 180◦.The current waveform approaches sine wave.The power factor is larger than 0.99.The voltage shown in Fig.7has a distortion nearby the peak of the waveform.It is caused by grid voltage with lots of harmonic instead of the controlstrategy.Fig.7Experimental results in stable state (10ms/div)5ConclusionTraditional three-phase grid-connected inverters based on the PAC generally have heavy inrush current and slow dynamic current response when starting up.This paper presents a starting voltage prediction control and current feed-forward control method to improve the dynamic performance of the system.The experimental results demonstrated that the system has got the fea-tures of the unity power factor energy feedback,DC-link voltage controllability,no inrush current and stable performance.References[1]Wang H N,Su J H,Zhang G R, et al .Unitivecontrol of PV grid-connected generation and reactivecompensation [J].Transactions of China Electrotechni-cal Society,2005,20(9):114–118.[2]Zhang C H, Li K, Du C S, et al.An energy-feedback control system of inverter based on phase and amplitude control [J].Transactions of China Elec-trotechnical Society,2005,20(2):41–45.[3]Wu R,Dewan S B,Slemon G B.A PWM AC-to-DC converter with fixed switching frequency [J].IEEE Transactons on Industry Applications,1990,26:880–885.[4]Kazmierkowski M P,Malesani L.Current controltechniques for three-phase voltage-source PWM con-verters:a survey [J].IEEE Transactions on Industry Electronics,1998,45(5):691–703.[5]Tokuo O.Three-phase voltage fed type PWM powerconverter by means of power factor control [J].The Transactions of the Institute of Electrical Engineering of Japan,1990,110(7):821–830.[6]Dixon J W,Ooi B T.Indirect current control of aunity power factor sinusoidal current boost type three-phase rectifier [J].IEEE Transactions on Industrial Electronics,1988,35(4):508–515.[7]Qu K Q,Chen G C,Sun C B.A PAC based currentfeed forward control for three-phase PWM voltage type converter [J].Journal of Shanghai University (English Edition),2004,8(1):90–95.[8]Qu K Q,Chen G C,Sun C B.A PAC based three-phase zero-voltage soft-switching PWM converter [J].Transactions of China Electrotechnical Society,2005,20(2):41–45.[9]Chen G C,Jin D H.Inverter output characteristic bymeans of optimum PWM modecontrol [C]//Proceed-ing of the 1st Chinese Academic Conference on Variable Speed AC Drives,1989:204–207.(Editor CHEN Hai-qing)。

相关文档
最新文档