光伏并网逆变器控制与仿真设计

合集下载

光伏并网逆变器建模和仿真研究概要

光伏并网逆变器建模和仿真研究概要

东南大学硕士学位论文光伏并网逆变器建模和仿真研究姓名:唐金成申请学位级别:硕士专业:电机与电器指导教师:林明耀20080512摘要摘要随着I:业技术的迅猛发展,能源问题越米越受到人们的重视。

如何开发利用可再生资源以解决当前的能源危机成为一个热I’J话题。

人们普遍认为在目前可知的、并且已经得到比较广泛利用的可再生能源中,技术含量最高、最有发展前途的是太刖能。

太刖能利用的主流方向是光伏并网发电。

在光伏并网发电系统中,并网逆变器为核心。

因此,本文主要研究适用于光伏并网发电系统的逆变器。

论文首先描述了光伏电池的工作特性,研究了常见光伏阵列模型。

在此基础上,在MATLAB仿真环境F,开发了光伏阵列通片j仿真模型,分析了光伏阵列最人功率点的跟踪控制方法,最终采用干扰观测法实现了光伏阵列的最大功率点跟踪。

论文详细分析了Dc/Dc变换电路、DC/AC逆变电路的工作原理和r作特性。

光伏并网发电系统中主电路参数的选择对于系统能否正常工作、系统输出电流波形质量的好坏有着重要的作用。

使_}}j舭TLAB中的POWERSYSTEMBLOCKSETS工具软件建立了DC/DC变换电路、DC/AC逆变电路的动态模型.并进行了在开环和闭环谢种情况卜的仿真。

由DC/Dc变换电路、DC/AC逆变电路两个部分通过DCIink连接组成光伏并网逆变器。

通过对DC/DC变换电路的占空比调制实现了光伏阵列输出电压的控制,使光伏阵列运行在最大功率点。

通过对DC/AC逆变电路的舣环控制,以取得与电网电压同步的正弦电流输出和直流母线侧电压的稳定,其中电流内环采用滞环电流跟踪控制,电压外环采用PI控制。

最后,实验说明了仿真结果的止确性。

论文在给出孤岛效应危害的基础上,分析了目前常用的被动式、主动式孤岛检测方法,并采用并网电流幅值扰动法实现反孤岛效应。

【关键词】:建模,仿真,光伏并网,是大功率点跟踪,电流滞环控制,反孤岛效应AbstractAbstractWiththerapiddevelopmentoftechnology,peoplepaymoreandmoreattentiontotheproblemofenergy.Itbecomesahottopicthathowtoexploitanduserenewableresourcetoresolveenergycrisisrecently.Ongeneralview,amongtherenewableenergywhichpeoplehaveknownandusedextensively,solarenergyhasthemostteehnicalcontentandwoulddevelopbestinfuture.Themainphaseofutilizationofsolarenergyisphotovoltaic(PV)grid—connectedsystem,Thegrid-connectedinverteristhekeyforthePVsystem.TheefficientinverterforthePVsystemispresentedinthethesis.Firstly,theoperationpropertiesofPVcellareintroducedandthePVarraymodelisstudiedinthisthesis.Onthebasisofthestudy,aversatilesimulationmodeIforPVartayisdevelopedunderMATLABenvironment.Themaximumpowerpointtracing(MPPT)controlmethodofPVarrayisgiven,andtheperturbationandobservation(P&o)areadoptedtoachieveMPPTofPVarrayfinally.Secondly,theprinciplesandcharacteristicsofDC/DCconverter,DC/ACinverterareanalyzedindetailsinthisthesis.TheparameterselectionofmaincircuitinthePVgrid.connectedsystemwillconcemdirectlywhetherthesystemcanoperateproperly,andwillinfluencesthequailtyofoutputcurrent.TwodynamicmodelsofDC/DCconverter,DC/ACinverteraredevelopedusingPOWERSYSTEMBLOCKSETStooloftheMATLAB.Somesimulationresultsforopenloopandcloseloopconditionsaregiveninthisdissertation.Thirdly,thePVgdd.connectedjnverterconsistsofaDC/DCconverterandaDC/ACinverterandthetwopartsarecombinedbyaDClink.BymodulatingthedutycycleofDC/DCconverter,thePVarrayoutputvoltageiscontrolled,soPVarraycalf]operateonmaximumpowerpoint.DC/ACconverteradoptsdoubleloopcontrol,asaresult,thesinusoidalwaveoutputcurrentissynchronizedwithgridvoltageandDCbusvoltagecanleveloff.Currentandvoltageloopadoptshysteresis—bandcurrenttrackingcontrolandPIcon订olrespectively.Atlast,theexperimentresultsverifythesimulationanalysis.TheislandingeffectshouldbepreventedinPVgrid-connectedsystem.Theactiveandpassivedetectingmethodsareinves._tigatedinthisthesisKeyword:ModulingtSimulation,PVgad-connected,Maximumpowerpointtrackingcurrenthysteresiscontrol,Anti-islandingeffectlI东南大学学位论文独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。

光伏并网逆变器的设计与控制

光伏并网逆变器的设计与控制
接 口装置 , 新 能 源 的开 发 和利 用 中 有 着 至 关 重 要 的 在 作用 , 接 影 响 着 光 伏 并 网发 电 系 统 的经 济 性 、 靠 直 可 性 。因此 , 高逆变 器 的性 能 、 提 开关 频 率 及 功 率 密度 便
图 1 光 伏 发 电 系统 结构 简 图
中 图 分 类 号 : T l M6 5
文献标识码 : A
文章 编 号 : 29 -8 2( 0 1 0 - 8 -3 0 50 0 一2 1 )20 30 0
De i n a d Co r lo sg n nt o fPV i nv r e Gr d i e t r
2 1 年 第 2期 ( 第 6 01 总 5期 )
E EG N N R YC N E V T0 N R Y DE EG O SR A 1N A
钰 i 与 夏

2 1 年 2月 01

纛 誊
ห้องสมุดไป่ตู้
光 伏 并 网逆 变 器 的 设 计 与 控 制
潘 龙
( 苏 龙 腾 工 程 设 计有 限 公 司 , 苏 宜 兴 江 江 摘 指 出, 光伏 并 网 逆 变 器的 技 术 关键 在 于 对 电流 和 功 率 的控 制 。

为线 路 电阻 , 为 串 联 电抗 器 , 为 回馈 电 网 电 流 , 其 中 , 网回馈 电流 的相 位要 与 电 网电压 相位 一致 。 电
部 件 , 在 系统 中承 担着 两项 任 务 , ) 制 光伏 阵列 最 它 a控 大 功率点 运 行 ; ) 太 阳 能 电池 产 生 的 直 流 电转 换 成 b将 交 流 电并 输 入公 共 电 网 , 典 型 结 构 见 图 1 电路 原 理 其 ,

三电平光伏并网逆变器的设计和仿真

三电平光伏并网逆变器的设计和仿真

三电平光伏并网逆变器的设计和仿真三电平光伏并网逆变器是一种逆变器,可将光伏发电系统产生的直流电转换为交流电并注入电网中。

相较于传统的两电平逆变器,三电平逆变器具有较低的谐波畸变、较高的效率以及较低的损耗。

本文将主要介绍三电平光伏并网逆变器的设计和仿真。

首先,我们需要了解三电平光伏并网逆变器的工作原理。

该逆变器采用全桥拓扑结构,通过PWM控制技术将直流电转化为交流电。

在三电平拓扑中,单个逆变器开关可以处于三个可能的状态之一,产生三个不同的输出电平。

通过合理的控制逆变器开关状态,可以实现更接近纯正弦波形的输出。

接下来,我们需要进行三电平光伏并网逆变器的设计。

设计的关键步骤包括选择逆变器拓扑、选择开关器件以及设计控制策略。

逆变器拓扑的选择可以参考现有的研究成果和文献,如全桥拓扑、H桥拓扑等。

开关器件的选择需要考虑功率损耗、效率、成本等因素。

对于控制策略的设计,可以采用比例积分控制器,根据输入输出电流电压进行调节和控制。

设计完成后,我们可以使用电路仿真软件进行三电平光伏并网逆变器的仿真。

常用的电路仿真软件包括PSIM、Simulink等。

通过仿真,可以验证逆变器的性能以及输出波形是否满足要求。

在仿真过程中,需要输入逆变器的直流电源电压、负载的电阻值以及逆变器的控制信号等参数,以获取准确的仿真结果。

总结起来,三电平光伏并网逆变器的设计和仿真需要进行逆变器拓扑选择、开关器件选择以及控制策略设计等关键步骤,并可以通过电路仿真
软件进行验证。

这种逆变器在光伏发电系统中具有重要的应用价值,可以提高发电系统的效率和稳定性。

太阳能光伏系统的并网逆变器设计与控制研究

太阳能光伏系统的并网逆变器设计与控制研究

太阳能光伏系统的并网逆变器设计与控制研究近年来,随着环境保护意识的增强和可再生能源的发展,太阳能光伏系统作为一种清洁、可持续的能源供应方式得到了广泛的推广和应用。

而在光伏系统中,逆变器的设计与控制是其中关键的一环。

在太阳能光伏系统中,光伏电池将太阳辐射转化为直流电能,而光伏逆变器则负责将直流电转化为交流电,以满足家庭或工业用电的需求。

逆变器具有将直流电转为交流电的功能,同时还能实现电网注入和电网同步等功能。

在太阳能光伏系统中,逆变器的设计与控制是非常重要的,它直接关系到光伏系统的效率、功率因素和电网安全等方面。

首先,逆变器的设计要考虑到太阳能光伏系统的工作环境和特性。

由于光伏电池发电受到太阳辐射的影响,因此逆变器的设计要充分考虑到太阳能的辐射强度和角度等因素,以获得尽可能高的发电效率。

其次,逆变器的设计还要考虑到系统的安全性和可靠性。

在光伏系统中,逆变器需要将直流电转化为交流电并注入电网,因此逆变器的设计要符合国家相关标准和规定,确保系统的安全运行。

同时,逆变器还要具备过压、欠压和过流等保护功能,以保护系统的设备和电网的安全。

与逆变器的设计相比,逆变器的控制则更为复杂。

逆变器的控制主要包括功率控制、电流控制和频率控制等方面。

功率控制是指逆变器在不同负载条件下能够输出相应的功率,并实现最大功率点追踪,以提高系统的发电效率。

电流控制是指逆变器能够根据电网的需求实时调整输出电流,以满足电网的要求。

而频率控制则是指逆变器能够实现与电网同步运行,确保输出电流的频率与电网相匹配。

为了实现逆变器的控制,常常采用数字信号处理器(DSP)和微控制器(MCU)等集成电路设备,通过对光伏系统的监测和控制,实现对逆变器的精确控制。

同时,还可以利用复杂传感器和智能算法等技术手段,提高逆变器的控制精度和稳定性。

总之,太阳能光伏系统的并网逆变器设计与控制是太阳能光伏系统中至关重要的一环。

在逆变器的设计方面,要考虑到光伏电池的工作环境和特性,实现高效率的发电。

光伏发电并网逆变器设计及其控制实现

光伏发电并网逆变器设计及其控制实现

光伏发电并网逆变器设计及其控制实现光伏发电并网逆变器是一种将光伏电池组发出的直流电能转换为交流电能并与电网连接的装置。

它在光伏发电系统中起着重要的作用,能够将光伏电池组产生的直流电能转化为交流电能供电网使用,从而实现将太阳能转化为电能的目的。

本文将对光伏发电并网逆变器的设计原理及其控制实现进行详细介绍。

光伏发电并网逆变器的设计原理是将光伏电池组发出的直流电能经过逆变器的转换,变为符合电网要求的交流电能。

其主要功能包括功率调节、电网电压频率跟踪以及电网短路保护等。

在设计过程中,需要考虑逆变器的效率、可靠性以及控制精度等因素。

光伏发电并网逆变器的组成主要包括直流侧和交流侧两个部分。

直流侧主要由光伏电池组、直流输入滤波电路和直流侧逆变器构成。

交流侧主要由交流输出滤波电路、逆变桥和输出变压器构成。

在设计中,需要对每个部分进行设计和参数选择,以保证逆变器的正常运行。

光伏发电并网逆变器的控制实现主要包括两个方面:MPPT(Maximum Power Point Tracking,最大功率点跟踪)控制和电网逆变控制。

MPPT控制是为了保证光伏电池组能够始终工作在最大功率点上,通过调整光伏电池组的工作电压和电流,以获得最大功率输出。

电网逆变控制是为了保证逆变器能够将直流电能转换为符合电网要求的交流电能,包括电压和频率的跟踪控制。

在MPPT控制方面,一般采用模拟控制和数字控制相结合的方式。

模拟控制主要通过比较光伏电池组输出电压和电流与最大功率点的关系,通过调整控制信号来实现。

数字控制是采用数字信号处理器(DSP)等处理器实现的,能够实时采集光伏电池组的输出电压和电流,并进行计算和调整。

在电网逆变控制方面,主要包括电网电压跟踪和频率控制两个方面。

电网电压跟踪是通过测量电网电压和逆变器输出电压的差值,并通过调整逆变器的控制信号来实现电网电压的稳定。

频率控制是通过测量电网频率和逆变器输出频率的差值,并通过调整逆变器的控制信号来实现电网频率的跟踪。

20kW并网型光伏发电系统的设计与仿真

20kW并网型光伏发电系统的设计与仿真

20kW并网型光伏发电系统的设计与仿真引言光伏发电系统是一种通过光电效应将太阳能转换为电能的系统。

随着清洁能源的日益受到关注,光伏发电系统的应用越来越广泛。

本文将介绍一个20kW的并网型光伏发电系统的设计与仿真。

设计方案光伏阵列设计在设计光伏阵列时,需要考虑光伏电池的类型、工作温度和数量。

通常情况下,多晶硅太阳能电池是最常见和最经济的选择。

在确定数量时,需要根据地区的太阳辐射程度和发电容量来计算。

MPPT控制器设计最大功率点追踪(Maximum Power Point Tracking,简称MPPT)控制器是光伏发电系统中重要的一部分。

其主要功能是通过调整负载来使光伏阵列输出电压和电流达到最大值,从而提高发电效率。

MPPT控制器的设计需要考虑功率损失、响应速度和系统稳定性。

通常,可以使用模拟控制或数字控制来实现MPPT控制。

逆变器设计逆变器是将直流电转换为交流电的设备。

在光伏发电系统中,逆变器将光伏阵列输出的直流电转换为适用于并网的交流电。

逆变器的设计需要考虑输出功率、输出电压波形质量和系统保护功能。

常见的逆变器拓扑包括PWM逆变器和H桥逆变器。

并网连接设计并网型光伏发电系统将发电输出连接到公共电网中,从而实现发电量的出口和购电量的进口。

并网连接设计需要考虑系统对电网的影响、反向电流的防护和系统保护。

通常,可以使用电网保护装置和功率限制器来确保并网连接的安全性和稳定性。

此外,还需满足当地的并网规范和要求。

仿真实验在设计完成后,可以使用适当的仿真工具对光伏发电系统进行仿真实验。

常见的仿真工具包括MATLAB/Simulink、PSIM等。

在仿真实验中,可以验证设计的可行性,同时优化设计参数以提高系统性能。

通过仿真实验,还可以分析光伏发电系统的工作特性和响应。

结论本文介绍了20kW并网型光伏发电系统的设计与仿真。

通过合理的光伏阵列设计、MPPT控制器设计、逆变器设计和并网连接设计,可以实现高效、稳定和安全的光伏发电系统。

分布式光伏发电系统的并网型逆变器设计与控制

分布式光伏发电系统的并网型逆变器设计与控制

分布式光伏发电系统的并网型逆变器设计与控制摘要:随着可再生能源的快速发展,分布式光伏发电系统成为了一个受到广泛关注的领域。

在分布式光伏发电系统中,逆变器的设计与控制是关键的环节之一。

本文将介绍分布式光伏发电系统的基本原理,然后重点讨论并网型逆变器的设计与控制方法。

同时,将探讨当前存在的一些问题,并提出可能的解决方案。

1. 引言分布式光伏发电系统是一种将太阳能转化为电能的系统。

该系统将太阳能电池板转化的直流电能通过逆变器转化为交流电能,并输入到电网中。

逆变器是实现这一转换的核心设备之一。

并网型逆变器允许光伏发电系统与电网之间的双向电能流动。

当光伏发电系统产生的电能超过负载需求时,多余的电能将被输送到电网中,从而实现电能的共享与利用。

然而,为了确保安全稳定地将电能输送到电网中,逆变器的设计与控制变得尤为重要。

2. 分布式光伏发电系统的基本原理分布式光伏发电系统主要由太阳能电池板、逆变器、电网和负载组成。

太阳能电池板将太阳能转化为直流电能,逆变器将直流电能转化为交流电能,然后输入到电网中,最后供给负载使用。

光伏发电系统的工作过程如下:1) 太阳能电池板将太阳光转化为直流电能。

2) 逆变器将直流电能转化为交流电能。

3) 交流电能通过变压器升压之后,输入到电网中。

4) 电网将电能供给给负载使用。

3. 并网型逆变器的设计由于并网型逆变器需要将直流电能转化为交流电能并输入到电网中,因此其设计需要满足以下要求:1) 高效性:逆变器的转换效率应尽可能高,以最大程度地减少能源损耗。

2) 可靠性:逆变器需要具备稳定、可靠的运行能力,以确保电能的安全输送。

3) 控制性能:逆变器需要具备灵活、精确的控制能力,以应对电能输出的要求。

4. 并网型逆变器的控制并网型逆变器的控制包括全局控制和局部控制两个方面。

全局控制主要是通过监测电网的运行状态和负载需求来控制逆变器的电能输出,以实现对电网功率的调节。

局部控制主要是通过反馈控制回路来调整逆变器的输出特性,以保持稳定的输出电压和频率。

光伏并网逆变器控制的设计

光伏并网逆变器控制的设计

光伏并网逆变器控制的设计
1 引言
21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。

在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。

因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。

太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。

文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。

2 系统工作原理及其控制方案
2.1 光伏并网逆变器电路原理
太阳能光伏并网逆变器的主电路原理图如图1所示。

在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。

系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。

图1 电路原理框图
2.2 系统控制方案
图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC变换器和后级的DC/AC 逆变器组成。

DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。

考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。

DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。

图2 主电路拓扑图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏并网逆变器控制与仿真设计
为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。

根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。

 近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。

并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。

太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。

在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。

逆变器的主电路拓扑直接决定其整体性能。

因此,开发出简洁、高效、高性价比的电路拓扑至关重要。

 1 逆变器原理
 该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。

光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。

光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。

所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。

作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻。

相关文档
最新文档