光伏并网逆变器的设计

合集下载

光伏并网逆变器的程序设计流程

光伏并网逆变器的程序设计流程

光伏并网逆变器的程序设计流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!以下是一个光伏并网逆变器的程序设计流程的示例:1. 系统初始化:初始化硬件设备,如 ADC、PWM 等。

三电平光伏并网逆变器的设计和仿真

三电平光伏并网逆变器的设计和仿真

三电平光伏并网逆变器的设计和仿真三电平光伏并网逆变器是一种逆变器,可将光伏发电系统产生的直流电转换为交流电并注入电网中。

相较于传统的两电平逆变器,三电平逆变器具有较低的谐波畸变、较高的效率以及较低的损耗。

本文将主要介绍三电平光伏并网逆变器的设计和仿真。

首先,我们需要了解三电平光伏并网逆变器的工作原理。

该逆变器采用全桥拓扑结构,通过PWM控制技术将直流电转化为交流电。

在三电平拓扑中,单个逆变器开关可以处于三个可能的状态之一,产生三个不同的输出电平。

通过合理的控制逆变器开关状态,可以实现更接近纯正弦波形的输出。

接下来,我们需要进行三电平光伏并网逆变器的设计。

设计的关键步骤包括选择逆变器拓扑、选择开关器件以及设计控制策略。

逆变器拓扑的选择可以参考现有的研究成果和文献,如全桥拓扑、H桥拓扑等。

开关器件的选择需要考虑功率损耗、效率、成本等因素。

对于控制策略的设计,可以采用比例积分控制器,根据输入输出电流电压进行调节和控制。

设计完成后,我们可以使用电路仿真软件进行三电平光伏并网逆变器的仿真。

常用的电路仿真软件包括PSIM、Simulink等。

通过仿真,可以验证逆变器的性能以及输出波形是否满足要求。

在仿真过程中,需要输入逆变器的直流电源电压、负载的电阻值以及逆变器的控制信号等参数,以获取准确的仿真结果。

总结起来,三电平光伏并网逆变器的设计和仿真需要进行逆变器拓扑选择、开关器件选择以及控制策略设计等关键步骤,并可以通过电路仿真
软件进行验证。

这种逆变器在光伏发电系统中具有重要的应用价值,可以提高发电系统的效率和稳定性。

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构首先,光伏并网逆变器的拓扑结构有很多种,常用的有串联逆变器、并联逆变器以及单相桥式逆变器等。

1.串联逆变器串联逆变器是将多个逆变单元串联在一起,通过分时工作的方式实现高电压输出。

它能够实现更高的输出功率和电压,适用于大容量的光伏发电系统。

2.并联逆变器并联逆变器是将多个逆变单元并联在一起,实现总输出功率的叠加。

它具有输出功率分散、可靠性高的特点,适用于小功率的光伏发电系统。

3.单相桥式逆变器单相桥式逆变器是采用单相桥式整流电路和逆变电路,能够实现交流输出。

它结构简单,适用于小功率的光伏发电系统。

选取逆变器的拓扑结构时,需要考虑光伏电池板的输出电压和功率以及电网的要求。

不同的拓扑结构有不同的特点和适用场景,设计者需要根据具体需求选择最合适的拓扑结构。

在硬件设计中,光伏并网逆变器的主要电路包括:整流电路、滤波电路、逆变电路和控制电路等。

1.整流电路:用于将光伏板输出的直流电转换为交流电。

常见的整流电路包括单相全波桥式整流电路和三相全波桥式整流电路等。

2.滤波电路:用于去除转换过程中产生的谐波和噪声,保证逆变器输出的电流和电压的纯净度。

常见的滤波电路有LC滤波电路和LCL滤波电路等。

3.逆变电路:用于将直流电转换为交流电,并注入电网。

常见的逆变电路有全桥逆变电路和半桥逆变电路等。

4.控制电路:用于控制逆变器的输出电流和电压,以及保护逆变器的安全运行。

控制电路通常包括微控制器、驱动电路、保护电路等。

在硬件设计过程中,需要选取合适的元器件和电路参数。

如选择功率器件时需要考虑功率损耗、开关速度等因素;选择电容和电感时需要考虑峰值电流和谐振频率等因素。

同时,还需要设计合理的散热系统来保证逆变器的温度和性能稳定。

总而言之,光伏并网逆变器的硬件设计和拓扑结构是实现光伏发电系统有效注入电网的关键。

合理的硬件设计和拓扑结构能够提高逆变器的效率和可靠性,从而提高光伏发电系统的整体性能。

光伏发电并网逆变器设计及其控制实现

光伏发电并网逆变器设计及其控制实现

光伏发电并网逆变器设计及其控制实现光伏发电并网逆变器是一种将光伏电池组发出的直流电能转换为交流电能并与电网连接的装置。

它在光伏发电系统中起着重要的作用,能够将光伏电池组产生的直流电能转化为交流电能供电网使用,从而实现将太阳能转化为电能的目的。

本文将对光伏发电并网逆变器的设计原理及其控制实现进行详细介绍。

光伏发电并网逆变器的设计原理是将光伏电池组发出的直流电能经过逆变器的转换,变为符合电网要求的交流电能。

其主要功能包括功率调节、电网电压频率跟踪以及电网短路保护等。

在设计过程中,需要考虑逆变器的效率、可靠性以及控制精度等因素。

光伏发电并网逆变器的组成主要包括直流侧和交流侧两个部分。

直流侧主要由光伏电池组、直流输入滤波电路和直流侧逆变器构成。

交流侧主要由交流输出滤波电路、逆变桥和输出变压器构成。

在设计中,需要对每个部分进行设计和参数选择,以保证逆变器的正常运行。

光伏发电并网逆变器的控制实现主要包括两个方面:MPPT(Maximum Power Point Tracking,最大功率点跟踪)控制和电网逆变控制。

MPPT控制是为了保证光伏电池组能够始终工作在最大功率点上,通过调整光伏电池组的工作电压和电流,以获得最大功率输出。

电网逆变控制是为了保证逆变器能够将直流电能转换为符合电网要求的交流电能,包括电压和频率的跟踪控制。

在MPPT控制方面,一般采用模拟控制和数字控制相结合的方式。

模拟控制主要通过比较光伏电池组输出电压和电流与最大功率点的关系,通过调整控制信号来实现。

数字控制是采用数字信号处理器(DSP)等处理器实现的,能够实时采集光伏电池组的输出电压和电流,并进行计算和调整。

在电网逆变控制方面,主要包括电网电压跟踪和频率控制两个方面。

电网电压跟踪是通过测量电网电压和逆变器输出电压的差值,并通过调整逆变器的控制信号来实现电网电压的稳定。

频率控制是通过测量电网频率和逆变器输出频率的差值,并通过调整逆变器的控制信号来实现电网频率的跟踪。

太阳能光伏并网逆变器的设计原理框图

太阳能光伏并网逆变器的设计原理框图

跟着生态环境的日趋恶化,人们渐渐认识到一定走可连续发展的道路,一定达成从增补能源向代替能源的过渡。

光伏并网是太阳能利用的发展趋向,光伏发电系统将主要用于调峰电站和屋顶光伏系统。

在光伏并网系统中,并网是中心部分。

当前并网型系统的研究主要集中于DC-DC和 DC-AC 两级能量变换的构造。

DC-DC变换环节调整光伏阵列的工作点使其追踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获取单位功率因数。

此中DC-AC 是系统的重点设计。

太阳能光伏并网系统构造图如图 1 所示。

本系统采纳两级式设计,前级为升压斩波器,后级为全桥式逆变器。

前级用于最大功率追踪,后级实现对并网电流的控制。

控制都是由DSP芯片 TMS320F2812 协调达成。

图1 光伏并网系统构造图逆变器的设计太阳能并网逆变器是并网发电系统的中心部分,其主要功能是将发出的直流电逆变为单相沟通电,并送入电网。

同时实现对中间电压的稳固,便于前级升压斩波器对最大功率点的追踪。

而且拥有完美的并网保护功能,保证系统能够安全靠谱地运转。

图 2 是并网逆变器的原理图。

图2 逆变器原理框图控制系统以TI 企业的TMS320F2812 为中心,能够实现反应信号的办理和A/D 变换、DC/DC 变换器和PWM 逆变器控制脉冲的产生、系统运转状态的监督和控制、故障保护和存储、 485 通信等功能。

实质电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812 控制板。

控制板主要包含:CPU及其外头电路,信号检测及调治电路,驱动电路及保护电路。

此中信号检测及调治单元主要达成强弱电隔绝、电平变换和信号放大及滤波等功能,以知足DSP 控制系统对各路信号电平范围和信号质量的要求。

驱动电路起到提升脉冲的驱动能力和隔绝的作用。

保护逻辑电路则保证发生故障时,系统能从硬件上直接封闭输出脉冲信号。

在实现同频的条件下可用矢量进行计算,从图 3 能够看出逆变器输出端存在如图3a 所示的矢量关系,关于光伏并网逆变器的输入端有以下基本矢量关系式:Vac=Vs+jωL·IN+RS·IN (1)式中 Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。

光伏并网逆变器控制的设计

光伏并网逆变器控制的设计

光伏并网逆变器控制的设计
1 引言
21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。

在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。

因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。

太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。

文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。

2 系统工作原理及其控制方案
2.1 光伏并网逆变器电路原理
太阳能光伏并网逆变器的主电路原理图如图1所示。

在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。

系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。

图1 电路原理框图
2.2 系统控制方案
图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC变换器和后级的DC/AC 逆变器组成。

DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。

考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。

DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。

图2 主电路拓扑图。

光伏斜屋顶电站并网逆变器设计计算

光伏斜屋顶电站并网逆变器设计计算

光伏斜屋顶电站并网逆变器设计计算随着能源需求的增加和对环境友好型能源的追求,光伏电站逐渐成为一种受欢迎的能源选择。

而光伏斜屋顶电站作为光伏电站的一种形式,具有较高的能源利用效率和较低的建设成本。

然而,要实现光伏斜屋顶电站的并网发电,需要设计和计算逆变器来满足输出电流和电压的要求。

逆变器是将光伏电池板产生的直流电转换为交流电,以实现电力的传输和供应。

逆变器的设计和计算包括输入电压、输出电压、输出功率、效率等重要参数的确定。

下面将介绍光伏斜屋顶电站并网逆变器设计计算的几个关键步骤。

一、光伏电池板阵列设计在光伏斜屋顶电站的设计中,首先需要确定光伏电池板的阵列数量和布置方式。

光伏电池板的阵列设计考虑到斜屋顶的倾角和朝向,以最大化太阳辐射的接收。

根据电池板的参数,如额定功率、开路电压和短路电流等,可以计算出所需的光伏电池板数量。

二、逆变器的输入电压与输出电压确定在并网逆变器的设计中,需要确定逆变器的输入电压和输出电压,以确保逆变器能够适应光伏电池板的输出电压并满足电网的要求。

输入电压的选择应考虑到光伏电池板阵列的最大功率点追踪和电压变化范围;输出电压应符合电网标准的要求。

三、逆变器的输出功率计算逆变器的输出功率是设计中需要考虑的另一个重要参数。

光伏斜屋顶电站的输出功率取决于光伏电池板的阵列功率和逆变器的效率。

根据光伏电池板的额定功率和阵列的数量,可以计算出光伏斜屋顶电站的总容量。

逆变器的设计要保证输出功率能够满足需求并具有一定的裕度。

四、逆变器的效率计算逆变器的效率是评价逆变器性能的重要指标之一。

逆变器的效率表示光伏电池板产生的直流电转换为交流电的效率。

光伏斜屋顶电站的逆变器设计应考虑到系统的整体效率和能源利用效率。

通过逆变器的输出功率和输入功率的比值,可以计算出逆变器的效率。

综上所述,光伏斜屋顶电站并网逆变器的设计计算包括光伏电池板阵列设计、逆变器的输入电压与输出电压确定、逆变器的输出功率计算和逆变器的效率计算等几个关键步骤。

光伏并网发电系统中逆变器的设计与控制方法

光伏并网发电系统中逆变器的设计与控制方法

相关研究综述
太阳能光伏并网发电系统是将太阳能转化为电能并直接接入电网的系统。近年 来,针对该系统的研究主要集中在提高效率、扩大规模、降低成本以及改善并 网控制策略等方面。已有的研究成果包括对光伏电池模型的改进、并网逆变器 的设计以及系统优化配置等。实验研究方面,研究者们通过构建不同规模的实 验系统对各种控制策略和优化方法进行了验证和比较。
逆变器的基本原理
逆变器是一种将直流电转换为交流电的装置,其在光伏并网发电系统中起着重 要的作用。当太阳能电池板产生直流电时,逆变器将其转换为交流电,以便与 电网连接并进行电力交换。逆变器的主要组成部分包括整流器、逆变桥和滤波 器,其工作原理是基于半导体开关器件的开关动作来实现电流的逆变。
逆变器的设计方法
光伏并网发电系统中逆变器的设计与控 制方法
目录
01 引言
03 逆变器的设计方法
02 逆变器的基本原理 04 逆变器的控制方法
目录
05 逆变器的应用场景
07 参考内容
06 结论
引言
随着全球能源危机的加剧和环境问题的日益突出,光伏并网发电系统作为一种 清洁、可再生的能源形式,越来越受到人们的。逆变器作为光伏并网发电系统 的核心部件之一,其设计与控制方法对整个系统的性能和稳定性具有至关重要 的影响。本次演示将详细介绍逆变器的设计与控制方法在光伏并网发电系统中 的应用。
3、采用滤波技术:滤波技术是解决电磁兼容问题的重要手段之一。通过在系 统中加入滤波器,可以有效地滤除电网中的谐波和电磁噪声,提高系统的电磁 兼容性。
三、方法与技术
本次演示采用仿真和实验相结合的方法对光伏并网发电系统的电磁兼容性进行 研究。首先,利用仿真软件对不同因素引起的电磁干扰进行模拟分析,探讨其 传播途径和危害程度。同时,通过实验测试不同措施对提高系统电磁兼容性的 效果,为优化系统设计提供依据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏并网逆变器的设计
基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的
结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC 高频升压,
后级DC/AC 工频逆变。

该设计模式具有电路简单、性能稳定、转换效率高等
优点。

在能源日益紧张的今天,光伏发电技术越来越受到重视。

太阳能电池和
风力发电机产生的直流电需要经过逆变器逆变并达到规定要求才能并网,因此
逆变器的设计关乎到光伏系统是否合理、高效、经济的运行。

1 光伏逆变器的原理结构
光伏并网逆变器的结构如
逆变器主电路如作为并网逆变器的关键模块,DC/AC 模块具有更高的控
制要求,本设计采用TI 公司的TMS320F240 作为主控芯片,用于采集电网同
步信号、交流输入电压信号、调节IGBT 门极驱动电路脉冲频率,通过基于
DSP 芯片的软件锁相环控制技术,完成对并网电流的频率、相位控制,使输出
电压满足与电网电压的同频、同相关系。

滤波采用二阶带通滤波器,是有源滤波器的一种,用于传输有用频段的
信号,抑制或衰减无用频段的信号。

其可以有效地滤除逆变后产生的高频干扰
波形,使逆变后的电压波形达到并网的要求。

2 DC/DC 控制模块
SG3525 是专用于驱动N 沟道功率MOSFET 的PWM 控制芯片。

SG3525。

相关文档
最新文档