运筹学实验讲解
《运筹学》实验四__网络计划(学生版)

实验四网络计划
一、实验目的
掌握WinQSB软件绘制计划网络图,计算时间参数,求关键路线。
二、实验平台和环境
WindowsXP平台下,WinQSB V2.0版本已经安装在D:\WinQSB中。
三、实验内容和要求
用WinQSB软件求解网络计划问题。
输人数据(PERT/CPM),显示网络图,计算时间参数,显示结果和关键工序,计算赶工时间,显示甘特图。
四、实验操作步骤
启动程序。
点击开始→程序→WinQSB→PERT_CPM.(课堂演示)
五、分析讨论题
参考上述实验过程,编制下述项目的网络计划图,计算有关参数并指出关键工序。
1、某工程项目明细如表4-1所示。
2、某工程项目明细如表4-2所示。
表4-2
六、网络计划常用术语词汇及其含义。
运筹学实验报告讲诉

运筹学实验报告姓名:学号:班级:指导老师:实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。
解:(1) max =8*x1+6*x2;9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13;(2)计算结果: Objective value: 10.66667Total solver iterations: 2 Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111 Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000灵敏度分析: Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITY Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000(3)a)该LP问题的最优解x={x1,x2}={1.333333,0.000000} 目标函数值z=10.66667b)第2行资源的对偶价格为0.8888889,3、4行的对偶价格为0、0.对偶价格的含义:表示当对应约束有微小变动时, 目标函数的变化率。
运筹学实验报告2讲解

实验报告《运筹学》2015~2016学年第一学期实验目的:加强学生分析问题的能力,锻炼数学建模的能力。
掌握WinQSB/Matlab 软件中线性规划、灵敏度问题的求解和分析。
用 WORD 书写实验报告:包括详细规划模型、试验步骤和结果分析。
实验内容:题1:某厂的一个车间有1B ,2B 两个工段可以生产123,,A A A 三种产品,各工段开工一天生产三种产品的数量和成本,以及合同对三种产品的每周最低需求量由表1给出。
问每周各工段对该生产任务应开工几天,可使生产合同的要求得到满足,并使成本最低。
建立模型。
表1生产定额(吨/天)工段B生产合同每周最低需求量(吨)ib iA 产品1A 2A 3A 1B 2B 11311310002000599成本(元/天)建立模型:WinQSB录入模型界面:运行结果界面:结果分析:决策变量:X1,X2最优解:X1=3,X2=2;目标系数:C1=1000,C2=2000;最优值:7000;其中X1贡献3000,X2贡献4000;检验数,或称缩减成本:0,0。
即当非基变量增加一个单位时,目标值的变动量。
目标系数的允许减量和允许增量;目标系数在此范围变量时,最优基不变。
约束条件约束条件:C1,C2,C3左端:5,11,9右端:5,9,9松弛变量或剩余变量:该端等于约束左端与约束优端之差;为0表示资源达到限制值。
题2:明兴公司面临一个是外包协作还是自行生产的问题。
该公司生产甲、乙、丙三种产品,这三种产品都要经过铸造、机加工和装配三个车间。
甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。
有关情况见表2;公司中可利用的总工时为:铸造8000小时,机加工12000小时和装配10000小时。
建立模型:解;假设公司选择甲产品自产X1件,外包协作X2件,乙产品自产X3件,外包协作X4件,丙产品生产X5件,则有;maxZ=15X1+13X2+10X3+9X4+7X5s.t. 5X1+10X3+7X5<=80006X1+6X2+4X3+4X4+8X5<=12000 3X1+3X2+2X3+2X4+2X5<=10000 X1-5>=0WinQSB录入模型界面:运行结果界面:结果分析:(1)X*=(1600,0,0,600,0), Z*=29400元,即:公司为了获得最大利润29400元,甲、乙、丙三种产品各生产1600件、600件、0件。
运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。
二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。
2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。
3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。
4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。
5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。
三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。
将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。
四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。
通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。
因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。
五、实验心得:通过本次实验,我对运筹学有了更深入的了解。
通过实践应用运筹学方法,我明白了运筹学的实用性和价值。
在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。
本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。
我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。
运筹学实验讲解

Lingo软件实验报告一、实验内容:1)用lingo软件解决线性规划问题;2)熟悉lingo软件的相关操作。
3)对线性规划问题建立目标函数,罗列对应的表达式约束条件,并且对各变量设定实际的非负约束,考虑到lingo软件能方便地输入数据,并且有内置建模语言,提供内部处理函数,能很方便地处理一系列约束条件解出目标函数的最值,所以采用lingo软件解决线性规划问题。
4)对目标规划问题进行多目标处理,添加正负偏差变量罗列对应的表达式约束条件,并且对欲达到目标顺序添加优先等级,建立目标函数,利用lingo软件能能很方便地处理一系列约束条件解出目标函数的最值,采用lingo软件解决线性规划问题。
二、实验设备:计算机三、使用软件:lingo软件四、软件特点与优势:可以简单地表示模型,能方便地输入数据和选择输出。
五、举例计算:1,线性规划A: 营养套餐问题:根据生物营养学理论,要维持人体正常的生理健康需求,一个成年人每天需要从食物中获取3000cal热量,55g蛋白质和800mg钙。
假定市场上可供选择的食品有猪肉、鸡蛋、大米和白菜,这些食品每千克所含热量和营养成分,以及市场价格见下表。
问如何选购才能满足营养的前提下,使购买食品的总费用最小?解:为了建立该问题的数学模型,假设xj(j=1,2,3,4)分别为猪肉、鸡蛋、大米和白菜每天的购买量,则目标函数为Minz=20x1+8x2+4x3+2x4表示在满足营养要求的系列约束条件下,确定各种食物的购买量,使每天购买食物的总费用最小。
其约束条件是热量需求:1000x1+800x2+900x3+200x4>=3000蛋白质需求:50x1+60x2+20x3+10x4>=55钙需求:400x1+200x2+300x3+500x4>=800决策变量的非负约束:xj>=0(j=1,2,3,4)因此,营养配餐问题的数学模型为Minz=20x1+8x2+4x3+2x41000x1+800x2+900x3+200x4>=300050x1+60x2+20x3+10x4>=55400x1+200x2+300x3+500x4>=800xj>=0(j=1,2,3,4)B: lingo代码:model:min=20*x1+8*x2+4*x3+2*x4;1000*x1+800*x2+900*x3+200*x4>=3000;50*x1+60*x2+20*x3+10*x4>=55;400*x1+200*x2+300*x3+500*x4>=800;ENDC: 结果截屏:D:运行结果分析:由运行结构可知:该线性规划的最值为13.33333,即在变量为非负的情况下,只买3.33kg的大米可以满足目标函数的要求。
管理运筹学运输问题实验报告

管理运筹学运输问题实验报告一、实验目的通过研究和实践,掌握线性规划求解运输问题的基本模型和求解方法,了解运输问题在生产、物流和经济管理中的应用。
二、实验背景运输问题是管理运筹学中的一个重要问题,其主要目的是确定在不同生产或仓库的产量和销售点的需求之间如何进行运输,使得运输成本最小。
运输问题可以通过线性规划模型来解决。
三、实验内容1. 根据实验数据,建立运输问题的线性规划模型。
2. 使用Excel中的“规划求解器”功能求解模型。
3. 对不同情况进行敏感性分析。
四、实验原理运输问题是一种典型的线性规划问题,其目的是求解一组描述生产和需要之间的运输方案,使得总运输费用最小。
运输问题的一般模型如下:min ∑∑CijXijs.t. ∑Xij = ai i = 1,2,...,m∑Xij = bj j = 1,2,...,nXij ≥ 0其中,Cij表示从i生产地到j销售点的运输成本;ai和bj分别表示第i个生产地和第j个销售点的产量和需求量;Xij表示从第i个生产地向第j个销售点运输的物品数量。
五、实验步骤1. 根据实验数据,建立运输问题的线性规划模型。
根据题目所给数据,我们可以列出线性规划模型:min Z =200X11+300X12+450X13+350X21+325X22+475X23+225X31+275X32+400X 33s.t. X11+X12+X13 = 600X21+X22+X23 = 750X31+X32+X33 = 550X11+X21+X31 = 550X12+X22+X32 = 600X13+X23+X33 = 450Xij ≥ 02. 使用Excel中的“规划求解器”功能求解模型。
在Excel中,选择“数据”选项卡中的“规划求解器”,输入线性规划的目标函数和约束条件,并设置求解参数,包括求解方法、求解精度、最大迭代次数等。
3. 对不同情况进行敏感性分析。
敏感度分析是指在有些条件发生变化时,线性规划模型的最优解会如何变化。
运筹学实验报告

运筹学实验报告导言运筹学是一门研究如何有效地进行决策、规划、控制和优化的学科。
它在不同领域中都有广泛应用,例如物流管理、生产调度、资源分配等。
本实验报告将介绍一个基于运筹学方法的实际案例,展示其在实践中的应用和效果。
问题描述我们选取了一个假设情景作为研究案例:一家电子公司正在考虑如何优化其供应链。
供应链的核心问题是如何在最小的时间和成本内将产品从制造商运送到最终客户手中。
该公司一直面临着供应链效率低下、库存过高等问题,因此需要进行优化。
方法选择为了解决供应链问题,我们选择了线性规划方法进行建模和求解。
线性规划是一种经典的运筹学方法,通过建立目标函数和约束条件来实现优化。
我们将考虑运输成本、库存成本和交货时间等因素,以最小化总成本为目标进行优化。
数据收集与分析首先,我们需要收集与供应链相关的数据,包括产品库存量、制造商的运输能力、客户的需求等信息。
通过对这些数据进行分析,我们可以获得对供应链瓶颈和优化潜力的洞察。
模型建立与求解根据数据分析的结果,我们可以建立数学模型来描述供应链的运作。
假设有n个制造商和m个客户,我们需要决策每个制造商向每个客户运送的产品数量。
我们定义决策变量x_ij表示制造商i 向客户j运送的产品数量。
通过设定合适的约束条件,如制造商的运输能力限制、客户的需求限制等,我们可以建立如下的线性规划模型:minimize ∑(c_ij * x_ij) for all i, jsubject to:∑(x_ij) <= supply_i for all i∑(x_ij) >= demand_j for all jx_ij >= 0 for all i, j其中c_ij表示从制造商i到客户j运输一个产品的成本,supply_i表示制造商i的运输能力,demand_j表示客户j的需求。
接下来,我们可以使用线性规划求解器对模型进行求解。
求解过程将得到最优的运输方案,包括每个制造商向每个客户运输的产品数量。
《运筹学》实验三__图与网络分析(学生版)

18
实验三 图与网络分析
一、实验目的
掌握不同问题的输入方法,求解网络模型,观察求解步骤,显示并读出结果。
二、实验平台和环境
WindowsXP 平台下,WinQSB V2.0版本已经安装在D:\WinQSB 中。
三、实验内容和要求
用WinQSB 软件求解最小支撑树,最短路及网络最大流等问题。
四、实验操作步骤
1、启动程序。
点击开始→程序→WinQSB →Network Modeling.
2、求最小支撑树:Minimal spanning tree ,输入节点数,沿编号从小到大顺次输入备树枝的长。
3、求最短路:Shortest path ,输入节点数,沿箭头方向输入各段弧上的数据。
4、求最大流:Maximal flow ,输入节点数,输入各段弧的容量。
五、分析讨论题
(一)应用求最小树子程序,求解下述问题的最小支撑树。
1、求以下问题的最小树
图3-39
2、求以下问题的最小树
图3-40
(二)应用求最短路子程序,求解下述问题从v 1到各点的最短路。
1、求v 1~v 7的最短路线及最短路长。
19
图3-41
2、求v 1~v 12的最短路线及最短路长。
图3-42
(三)应用求最大流的子程序,求解下述问题从v s 到v t 的网络最大流,图中弧旁数字为容量c ij 。
1、求以下网络的最大流
图3-43
2、求以下网络的最大流
图3-44
六、图论模型常用术语词汇及其含义
20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lingo软件实验报告一、实验内容:1)用lingo软件解决线性规划问题;2)熟悉lingo软件的相关操作。
3)对线性规划问题建立目标函数,罗列对应的表达式约束条件,并且对各变量设定实际的非负约束,考虑到lingo软件能方便地输入数据,并且有内置建模语言,提供内部处理函数,能很方便地处理一系列约束条件解出目标函数的最值,所以采用lingo软件解决线性规划问题。
4)对目标规划问题进行多目标处理,添加正负偏差变量罗列对应的表达式约束条件,并且对欲达到目标顺序添加优先等级,建立目标函数,利用lingo软件能能很方便地处理一系列约束条件解出目标函数的最值,采用lingo软件解决线性规划问题。
二、实验设备:计算机三、使用软件:lingo软件四、软件特点与优势:可以简单地表示模型,能方便地输入数据和选择输出。
五、举例计算:1,线性规划A: 营养套餐问题:根据生物营养学理论,要维持人体正常的生理健康需求,一个成年人每天需要从食物中获取3000cal热量,55g蛋白质和800mg钙。
假定市场上可供选择的食品有猪肉、鸡蛋、大米和白菜,这些食品每千克所含热量和营养成分,以及市场价格见下表。
问如何选购才能满足营养的前提下,使购买食品的总费用最小?解:为了建立该问题的数学模型,假设xj(j=1,2,3,4)分别为猪肉、鸡蛋、大米和白菜每天的购买量,则目标函数为Minz=20x1+8x2+4x3+2x4表示在满足营养要求的系列约束条件下,确定各种食物的购买量,使每天购买食物的总费用最小。
其约束条件是热量需求:1000x1+800x2+900x3+200x4>=3000蛋白质需求:50x1+60x2+20x3+10x4>=55钙需求:400x1+200x2+300x3+500x4>=800决策变量的非负约束:xj>=0(j=1,2,3,4)因此,营养配餐问题的数学模型为Minz=20x1+8x2+4x3+2x41000x1+800x2+900x3+200x4>=300050x1+60x2+20x3+10x4>=55400x1+200x2+300x3+500x4>=800xj>=0(j=1,2,3,4)B: lingo代码:model:min=20*x1+8*x2+4*x3+2*x4;1000*x1+800*x2+900*x3+200*x4>=3000;50*x1+60*x2+20*x3+10*x4>=55;400*x1+200*x2+300*x3+500*x4>=800;ENDC: 结果截屏:D:运行结果分析:由运行结构可知:该线性规划的最值为13.33333,即在变量为非负的情况下,只买3.33kg的大米可以满足目标函数的要求。
2,目标规划A: 设有一纺织厂可生产衣料和窗帘布共两种产品。
该厂两班生产,每周的生产时间为80h,无论生产那种产品,该厂每小时的产量都是1km。
根据市场预测,每周窗帘布的销售量为70km,而衣料的销售量为45km。
工厂有纺纱9000kg,生产1km窗帘布需要纺纱800kg,生产1km衣料需要纺纱500kg。
假定窗帘布和衣料的单位利润分别为2.5千元/km和1.5千元/km,上级主管部门对该厂提出了以下4个顺序目标:(1)尽可能避免开工不足;(2)尽可能限制每周加班时间不超过10h;(3)尽可能满足市场需求;(4)尽可能减少加班时间。
目标的惩罚因子各为:5、8、9、2.问该厂应如何安排生产才能使这些目标依序实现?解:建立该问题的数学模型,设该厂每周生产衣料和窗帘各为x1,x2km,即为决策变量。
此外,引进正负偏差变量d,d_.则:生产工时约束:x1+x2+d1_-d1=80加班时间约束:d1+d2_-d2=10窗帘布销售量约束:x1+d3_-d3=70衣料销售量约束:x2+d4_-d4=454个有序目标分别为:P1:minz1=d1_P2: minz2=d2P3: minz3=5d3_+3d4_P4: minz4=d1综上,该问题的目标规划模型为:minz=5d1_ +8d5+9(5d3_+3d4_)+2d1 500x1+800x2<=9000x1+x2+d1_-d1=80d1+d2_-d2=100x1+d3_-d3=70x2+d4_-d4=45xj>=0,di_,di>=0B: lingo编程:model:min=5*d1_+8*d2+45*d3_+27*d4_+2*d1;500*x1+800*x2<=9000;x1+x2+d1_-d1=80;d1+d2_-d2=100;x1+d3_-d3=70;x2+d4_-d4=45;EndC: 结果截图:D:运行结果分析:由运行结果可知:在惩罚因子如给出的条件下,目标函数的最值为3865.即只安排生产衣料18km,此时,开工少62h,比市场需求量少生产52km,减少加班时间45h。
六、实验总结:在使用lingo软件做实验的时候,我们小组选择了一道关于线性规划的营养套餐问题和一道关于目标规划的工业生产问题。
对于实际问题的要求,分别列出约束条件,此外对于目标规划问题列写有正负偏量的有权式,建立相应的数学模型,再根据lingo 软件的语言要求,编写lingo程序,上机运行,得到运行结果。
由小组明确分工合作,一步步得以实现。
之后再对运行结果进行实际的分析和讨论,检验结果的实际意义,从而了解lingo软件的方便性和局限性,以便对该软件有一定深入的理解,避免只依赖其运行结果而忽略掉其实际的可行度与否。
如上述线性规划选例,对所列模型,在满足目标函数的条件下,所得结果明显不符合实际情况,营养套餐应该实现食物的多样化再实现费用的最小化。
因此,再建立模型时,应全面考虑所有的约束条件范围,从而得到合理的最优解。
用lingo软件处理目标规划问题的时候,特别地,要处理多目标,即对于含有权系数的目标函数,则需要从高到低一步步求不同优先级的最值,先满足高一级的目标要求再考虑低一级的目标,使不同程度重要的目标一一得以实现,即利润大的先满足需求,从而得到最理想的最值。
在对选例的处理中,我们也遇到了一些操作问题,得到了一些实用的软件使用经验,例如:在对实例的约束条件进行处理的时候,应该注意对所设变量范围的实际约束;在对lingo编程的时候,应该注意输入的语法。
如乘号(*)不能省略;model后有“:”等等。
总之,lingo软件在求解数学规划问题方面速度很快、易于方便输入、求解和分析。
如果我们可以很熟悉地运用该软件,对于很多关于规划的问题便可以很方便的得以解决,联系实际因素,从而得到具有实际意义的结果。
MATLAB软件实验报告一、实验内容:1)用MATLAB软件解决线性规划问题;2)熟悉MATLAB软件的相关操作。
3)对线性规划、目标规划、整数规划,0-1规划问题建立目标函数,罗列对应的表达式约束条件,并且对各变量设定实际的变量约束,考虑到MATLAB有超级强大的矩阵计算能力,能很方便地处理一系列约束条件解出目标函数的最值,所以采用MATLAB软件解决线性规划问题。
4)对目标规划问题进行多目标处理,添加正负偏差变量罗列对应的表达式约束条件,并且对欲达到目标顺序添加优先等级,建立目标函数,列写对应约束条件的矩阵形式,利用MATLAB解决目标规划问题。
二、实验设备:计算机三、使用软件:MATLAB软件四、软件特点与优势:MATLAB以矩阵作为数据操作的基本单位,还提供了十分丰富的数值计算函数。
语言简洁紧凑,使用方便灵活,库函数及其丰富。
运算符丰富,语法限制不严格,程序设计自由度大,程序可移植性好。
可以简单地表示模型,能方便地输入数据和选择输出。
五、举例计算:3、线性规划A: 现在要做100套钢架,每套用长为2.9米,2.1米和1.5米的元钢各一根。
已知原材料长7.4米,问如何下材料使原材料最省。
解:最简单的做法是:在每一根原材料上截取2.9m,2.1m 和1.5m的元钢各一根组成一套,每根原材料剩下料头0.9m。
为了做100套钢架,需要原材料100根,有90m料头,若改为用套裁,这样可以节约原材料。
下面几种套裁方案,都可以考虑采用。
如表:为了得到100套钢架,需要混合使用各种下料方案。
设按(一)方案下料的原材料根数为想x1,(二)方案为x2,(三)方案为x3,(四)方案为x4,(五)方案为x5.根据方案可列出以下数学模型:Min z = 0x1+0.1x2+0.2x3+0.3x4+0.8x5x1+2x2+ +x4 =1002x3+2x4+x5=1003x1+x2+x3+ +3x5=100x1,x2,x3,x4,x5>=0B、MATLAB编程:c=[0,0.1,0.2,0.3,0.8]aeq=[ 1 2 0 1 0;0 0 2 2 1;3 1 2 0 3 ]Beq=[100 100 100]Lb=[0 0 0 0 0 0 0]Ub=[]C;结果截图:D:运行结果分析:由运行结果得到:由计算得到最优下料方案是:按Ⅰ方案下料30根;Ⅱ方案下料10根;方案下料50根。
即需要90根原材料可以造100套钢架。
4、目标规划A:某公司分厂用一条生产线生产两种产品A和B,每周生产线运行时间为60h,生产一台A产品需要4h,生产一台B产品需要6h。
根据市场预测,A和B产品平均销售量分别为每周9台、8台,它们销售利润分别为12万、18万元。
在指定生产计划时,经理考虑下述4项目标:首先,产量不能超过市场预测的销售量;其次,工人加班时间最少;第三,希望总利润最大;最后,要尽可能满足市场需求,当不能满足时,市场认为B 产品的重要性啊A 产品的2倍。
单目标线性规划模型如下:引入正负偏差变量d+-d-、优先因子P1和权系数Wj ,建立 目标规划的目标函数如下:B:MATLAB 程序C=[0,0,1,1000,2,1000,0,100,10,0]; A=[]; b=[];Aeq=[1,0,1,-1,0,0,0,0,0,0;12121212121846609..8,0Maxz x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩0,1,0,0,1,-1,0,0,0,0;4,6,0,0,0,0,1,-1,0,0;12,18,0,0,0,0,0,0,1,-1];beq=[9;8;60;252];lb=zeros(1,10);ub=[];[x , fval , exitflag , output]=linprog(c , A , b , Aeq , beq , lb , ub)x=3 8 6 0 0 0 0 0 72 0fval=726exitflag=1C;结果截图:D:运行结果分析:由运行结果得到:A产品产量每周生产3台,B产品产量每周为8太时可以得到最大利润,最大利润为726万元。