运筹学线性规划实验报告

合集下载

运筹学综合实验报告

运筹学综合实验报告

运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。

一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。

二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。

它将优化目标函数的线性组合与整数限制相结合。

一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。

最后两个约束条件要求自变量只能是整数。

2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。

Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。

Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。

三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。

运筹学实验报告-线性规划

运筹学实验报告-线性规划

商学院课程实验报告课程名称 运筹学 专业班级 金融工程班 姓 名 指导教师 成 绩2018年 9 月 20日学号:表2 所需营业员统计表星期一二三四五六日需要人数300 300350400480600 5503.建立线性规划模型设x j(j=1,2,…,7)为休息2天后星期一到星期日开始上班的营业员数量,则这个问题的线性规划问题模型为minZ=x1+x2+x3+x4+x5+x6+x7{x1+x4+x5+x6+x7≥300 x1+x2+x5+x6+x7≥300 x1+x2+x3+x6+x7≥350 x1+x2+x3+x4+x7≥400 x1+x2+x3+x4+x5≥480x2+x3+x4+x5+x6≥600x3+x4+x5+x6+x7≥550x≥0,j=1,2,…,7(二)操作步骤1.将WinQSB安装文件复制到本地硬盘,在WinQSB文件夹中双击setup.exe。

图1 WinQSB文件夹2.指定安装软件的目标目录,安装过程中输入用户名和单位名称(任意输入),安装完毕之后,WinQSB菜单自动生成在系统程序中,熟悉软件子菜单内容和功能,掌握操作命令。

图2 目标目录3.启动线性规划和整数规划程序。

点击开始→程序→WinQSB→Linear and Lnteger Programming,屏幕显示如图3所示的线性规划和整数规划界面。

图3 线性规划4.建立新问题或打开磁盘中已有文件。

按图3所示操作建立或打开一个LP问题,或点击File→New Problem建立新问题。

点击File→Load Problem打开磁盘中的数据文件,点击File→New Problem,出现图4所示的问题选项输入界面。

图4 建立新问题5.输入数据。

在选择数据输入格式时,选择Spreadsheet Matrix Form则以电子表格形式输入变量系统矩阵和右端常数矩阵,是固定格式,如图5所示。

选择Normal Model Form则以自由格式输入标准模型。

线性规划实验报告

线性规划实验报告

一、实验目的通过本次实验,了解线性规划的基本原理和方法,掌握线性规划模型的建立和求解过程,提高解决实际问题的能力。

二、实验内容1. 线性规划模型的建立2. 利用Lingo软件进行线性规划模型的求解3. 分析求解结果,进行灵敏度分析三、实验步骤1. 建立线性规划模型以某公司生产问题为例,建立线性规划模型。

设该公司有三种产品A、B、C,每种产品分别需要原材料X1、X2、X3,且原材料的价格分别为p1、p2、p3。

公司拥有一定的生产设备,每种产品的生产需要消耗一定的设备时间,设备时间的价格为p4。

设A、B、C产品的生产量分别为x1、x2、x3,原材料消耗量分别为y1、y2、y3,设备使用量分别为z1、z2、z3。

目标函数:最大化利润Z = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3)约束条件:(1)原材料消耗限制:y1 ≤ 10x1,y2 ≤ 8x2,y3 ≤ 5x3(2)设备使用限制:z1 ≤ 6x1,z2 ≤ 4x2,z3 ≤ 3x3(3)非负限制:x1 ≥ 0,x2 ≥ 0,x3 ≥ 0,y1 ≥ 0,y2 ≥ 0,y3 ≥ 0,z1 ≥ 0,z2 ≥ 0,z3 ≥ 02. 利用Lingo软件进行线性规划模型的求解打开Lingo软件,按照以下步骤输入模型:① 在“Model”菜单中选择“Enter Model”;② 输入目标函数:@max = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3);③ 输入约束条件:@and(y1 <= 10x1, y2 <= 8x2, y3 <= 5x3);@and(z1 <= 6x1, z2 <= 4x2, z3 <= 3x3);@and(x1 >= 0, x2 >= 0, x3 >= 0, y1 >= 0, y2 >= 0, y3 >= 0, z1 >= 0, z2 >= 0, z3 >= 0);④ 在“Model”菜单中选择“Solve”进行求解。

运筹学实验报告

运筹学实验报告

运筹学实验报告导言运筹学是一门研究如何有效地进行决策、规划、控制和优化的学科。

它在不同领域中都有广泛应用,例如物流管理、生产调度、资源分配等。

本实验报告将介绍一个基于运筹学方法的实际案例,展示其在实践中的应用和效果。

问题描述我们选取了一个假设情景作为研究案例:一家电子公司正在考虑如何优化其供应链。

供应链的核心问题是如何在最小的时间和成本内将产品从制造商运送到最终客户手中。

该公司一直面临着供应链效率低下、库存过高等问题,因此需要进行优化。

方法选择为了解决供应链问题,我们选择了线性规划方法进行建模和求解。

线性规划是一种经典的运筹学方法,通过建立目标函数和约束条件来实现优化。

我们将考虑运输成本、库存成本和交货时间等因素,以最小化总成本为目标进行优化。

数据收集与分析首先,我们需要收集与供应链相关的数据,包括产品库存量、制造商的运输能力、客户的需求等信息。

通过对这些数据进行分析,我们可以获得对供应链瓶颈和优化潜力的洞察。

模型建立与求解根据数据分析的结果,我们可以建立数学模型来描述供应链的运作。

假设有n个制造商和m个客户,我们需要决策每个制造商向每个客户运送的产品数量。

我们定义决策变量x_ij表示制造商i 向客户j运送的产品数量。

通过设定合适的约束条件,如制造商的运输能力限制、客户的需求限制等,我们可以建立如下的线性规划模型:minimize ∑(c_ij * x_ij) for all i, jsubject to:∑(x_ij) <= supply_i for all i∑(x_ij) >= demand_j for all jx_ij >= 0 for all i, j其中c_ij表示从制造商i到客户j运输一个产品的成本,supply_i表示制造商i的运输能力,demand_j表示客户j的需求。

接下来,我们可以使用线性规划求解器对模型进行求解。

求解过程将得到最优的运输方案,包括每个制造商向每个客户运输的产品数量。

运筹学线性规划实验报告

运筹学线性规划实验报告

实验报告一、实验名称:线性规划问题二、实验目的:通过本实验,能掌握Spreadsheet方法,会熟练应用Spreedsheet建模与求解方法。

在Excel(或其他)背景下就所需解决的问题进行描述与展平,然后建立线性规划模型,并用Excel的命令与功能进行运算与分析。

三、实验设备计算机、Excel 四、实验内容1、线性规划其中,目标函数为求总利润的最大值。

B11=SUMPRODUCT(B6:C6,B9:C9);B14=SUMPRODUCT(B3:C3,$B$9:$C$9); B15=SUMPRODUCT(B4:C4,$B$9:$C$9); B16=SUMPRODUCT(B5:C5,$B$9:$C$9); D14=D3; D15=D4; D16=D5; 用规划求解工具求解:目标单元格为B11,求最大值,可变单元格为$B$9:$C$9,约束条件为B14:B16<=D14:D16。

在【选项】菜单中选择“采用线性模型”“假定非负”。

即可进行求解得结果,即确定产品A的产量为20,产品B的产量为24,可实现最大总利润为428。

2、灵敏度分析在【可变单元格】表中:在【可变单元格】表中:“终值”表示最优解,即产品A 产量为20,产品B 产量为24。

“递减成本”表示产品的边际收入与按影子价格折算的边际成本的差,当递减成本小于0时,表示不应该安排该产品的生产,在表中的情况反映了产品A 产品、B 都进行生产,因为在产品A 与产品B 产量增加的同时利润也是在增加的。

产量增加的同时利润也是在增加的。

“目标式系数”是在目标函数中变量的系数,也是产品A 与产品B 的单位利润。

的单位利润。

“允许的增量”“允许的增量”和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,单个目标系数可变的单个目标系数可变的上下限。

也就是说,在目标函数中,产品A 的价值系数在(3.6,9.6】内,产品B 的价值系数不变,或者产品A 的价值不变,产品B 的价值系数在【23.3,8.75】内,最有的生产方案依旧为产品A 产量为20,产品B 产量为24,以达到最大利润。

运筹学实验报告(1)

运筹学实验报告(1)

运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。

二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。

先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。

在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。

A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。

否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。

另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。

若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。

四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。

运筹学实验报告

运筹学实验报告

实验一:线性规划问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

(2)掌握利用计算机软件求解线性规划最优解的方法。

2、实验任务:(1)结合已学过的理论知识,建立正确的数学模型;(2)应用运筹学软件求解数学模型的最优解(3)解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:步骤一:打开管理运筹学软件,并选择线性规划,显示如下界面:步骤二:求目标函数值为最小值的唯一最优解,题目为课本上P47习题一1.1(a):步骤三:求目标函数值为最大值的唯一最优解,此题为P47习题一1.1(c):步骤四:求目标函数值为最大值有无穷多最优解:步骤五:求目标函数值为最大值无可行解,题目为课本P47习题一1.1(a):步骤六:求目标函数值为最大值无界解,此题为课本P47习题一1.1(d)5、实验心得:线性规划问题主要要确定决策变量,约束条件,目标函数。

其中,决策变量为可控的连续变量,目标函数和约束条件都是线性的,这类模型为线性规划问题的数学模型。

通过实验,我们学会了除了用笔算的方式求线性规划问题,懂得了用借助计算机求得问题,可以检验我们的计算结果。

应该开说,这个试验比较简单,计算过程不复杂,结果简略的可分为五种:最小值的唯一最优解,最大值的唯一最优解,最大值的无界解,最大值的无可行解,最大值的无穷多最优解。

应该来说,线性规划问题是整个运筹学最基本、最简单的问题。

实验二:整数规划与运输问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

(2)掌握利用计算机软件求解最优物资调运方案的方法。

(3)掌握利用计算机软件求解整数规划的方法。

2、实验任务(1)结合已学过的理论知识,建立正确的数学模型;(2)应用运筹学软件求解数学模型的最优解(3)解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)运输问题:步骤一:打开管理运筹学软件,并选择运输问题,显示如下界面:步骤二:根据产销平衡表与单位运价表,求出产销平衡运输问题的最佳运输方案,此题为课本运输问题的例题:步骤三:根据产销平衡表与单位运价表,求出产销不平衡(产量大于销量)运输问题的最佳运输方案,此题为课本P101习题三3.1表3-36:步骤四:根据产销平衡表与单位运价表,求出产销不平衡(销量大于产量)运输问题的最佳运输方案,此题为课本P101习题三3.1表3-37:(2)整数规划问题:步骤一:打开管理运筹学软件,并选择整数规划,显示如下界面:步骤二:根据整数规划模型,求出0-1整数规划问题的最优解:步骤三:根据整数规划模型,求出纯整数规划的最优值,此题为课本P107整数规划与分配问题的例题:步骤四:根据整数规划模型,求出混合整数规划的最优值:5、实验心得:整数规划与分配问题主要包括二个部分:运输问题,整数规划问题。

运筹学线性规划实验报告范本

运筹学线性规划实验报告范本

系别:专业班级:
学号:姓名:实验成绩:
实验一:线性规划问题一
一、实验内容:线性规划问题中的套裁下料问题、生产计划问题数学模型的建立及利用运筹学软件求解数学模型。

二、实验目的:掌握建立线性规划问题数学模型的方法,学会使用软件求解数学模型。

三、实验步骤:
1、套裁下料问题
(题目:可只画出相应的表把所有数据标于其中)
(1)建立数学模型
(2)利用软件求解
(注:把求解的结果通过截图或其它方式复制于此)
(3)实验结论
最优解为:x1=…
相应的最优值为:…
即…(把实际题目对应的具体方案写出,如第一种方式所裁原材料根…,总的用料根数最少为根。


2、生产计划问题(步骤同1)
系别:专业班级:
学号:姓名:实验成绩:
实验二:线性规划问题二
一、实验内容:线性规划问题中的配料问题、投资问题数学模型的建立及利用运筹学软件求解数学模型。

二、实验目的:掌握建立线性规划问题数学模型的方法,学会使用软件求解数学模型。

三、实验步骤:
1、配料问题
(题目:可只画出相应的表把所有数据标于其中)
(1)建立数学模型
(2)利用软件求解
(注:把求解的结果通过截图或其它方式复制于此)
(3)实验结论
最优解为:x1=…
相应的最优值为:…
即…
2、投资问题(步骤同1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《管理运筹学》实验报告
实验日期: 2016年 04月 21日—— 2016 年 05 月 18 日
班级2014级04班姓名杨艺玲学号56
实验
管理运筹学问题的计算机求解
名称
实验目的:
通过实验学生应该熟练掌握“管理运筹学”软件的使用,并能利用“管理运筹学”对具体问题进行问题处理,且能对软件处理结果进行解释和说明。

实验所用软件及版本:
管理运筹学
实验过程:(含基本步骤及异常情况记录等)
一、实验步骤(以P31页习题1 为例)
1.打开软件“管理运筹学”
2.在主菜单中选择线性规划模型,屏幕中会出现线性规划页面
3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决
4.注意事项:
(1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。

(2)输入前要合并同类项。

当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示
5.输出结果如下
5.课后习题: 一、P31习题1
某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元.
约束条件: 问题:
(1)甲、乙两种柜的日产量是多少这时最大利润是多少
答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。

(2)图中的对偶价格的含义是什么
答: 对偶价格的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加元。

(3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。

答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为。

(4)若甲组合柜的利润变为300,最优解不变为什么
.
0,0,6448,120126;
240200 z max ≥≥≤+≤++=y x y x y x y x
答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。

二、学号题
约束条件: 学号尾数:56 则:
约束条件:
无约束条件
(学号)
学号43214321432143214321 0 0,309991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=无约束条件
43214321432143214321 0 0,3099912445376413432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-≥-+-=-++-+++=⎪⎪
⎪⎪
⎪⎩⎪
⎪⎪⎪⎪
⎨⎧⨯-≥⨯-⨯-⨯-⨯-⨯-76061
65060~5154050~414
)30(40~313)20(30~21210 20
~11 10~1)(学号)(学号)(学号学号学号)(学号不变学号规则
实验过程如下:
1.输入目标函数及约束条件:
2.标准化结果:
3.运算过程
实验结果报告与实验总结:
4.输出结果
输出结果分析:
1.目标函数最优值是,x1=0,x2+,x3=,x4=,变量x1的相差值为的含义为如果目标函数中x1 的系数能够增加,则x1 的值能够大于零。

2.松弛变量为零,则表示与之相对应的资源已经全部用上;对偶价格:对应资源每增加一个单位,将增加多少个单位的最优值。

3.目标函数范围:最优解不变时,目标函数的决策变量的可变化范围,即生产安排可以在此范围内改变,而最优解不会改变。

4.常数项范围:目标函数右端的常数项的变化范围,常数项在此范围内的改变,不会影响对偶价格。

三、P59页习题1
答:由输出结果可得:最优解为352元,具体排班情况为:11点到12点的时段安排8个临时工;13点到14点的时段再安排1个临时工;14点到15点的时段安排1个临时工;16点到17点时段安排5个临时工;18点到19点安排7个临时工。

相关文档
最新文档