运筹学实验一线性规划

合集下载

运筹学实验报告

运筹学实验报告

运筹学实验报告中南民族⼤学管理学院学⽣实验报告课程名称:《管理运筹学》年级:2011级专业:会计学指导教师:胡丹丹学号:姓名:实验地点:管理学院综合实验室2012学年⾄2013学年度第2 学期⽬录实验⼀线性规划建模及求解实验⼆运输问题实验三⽣产存储问题实验四整数规划问题实验五⽬标规划实验六⽤lingo求解简单的规划问题实验七实验⼋实验九实验⼗实验(⼀)线性规划建模及求解实验时间:2013-5-18实验内容:某轮胎⼚计划⽣产甲、⼄两种轮胎,这两种轮胎都需要在A、B、C三种不同的设备上加⼯。

每个轮胎的⼯时消耗定额、每种设备的⽣产能⼒以及每件产品的计划如表所⽰。

问在计划内应该如何安排⽣产计划,使总利润最⼤?(1)请建⽴模型。

(2)使⽤“管理运筹学”软件求得结果。

根据“管理运筹学”软件结果,回答下列问题:(3)哪些设备的⽣产能⼒已使⽤完?哪些设备的⽣产能⼒还没有使⽤完?其剩余的⽣产能⼒为多少?(4)三种设备的对偶价格各为多少?请对此对偶价格的含义给予说明。

(5)保证产品组合不变的前提下,⽬标函数中的甲产品产量决策变量的⽬标系数的变化范围是多少?(6)当⼄中轮胎的单位售价变成90元时,最优产品的组合是否改变?为什么?(7)如何在A、B、C三台设备中选择⼀台增加1⼩时的⼯作量使得利润增加最多,请说明理由。

(8)若增加设备C的加⼯时间由180⼩时增加到200⼩时,总利润是否变化?为什么?(9)请写出约束条件中常数项的变化范围。

(10)当甲种轮胎的利润由70元增加到80元,⼄种轮胎的利润从65元增加到75元,请试⽤百分之⼀百法则计算其最优产品组合是否变化?并计算新利润(11)当设备A的加⼯时间由215降低到200,⽽设备B的加⼯时间由205增加到225,设备C的加⼯时间由180降低到150,请试⽤百分之⼀百法则计算原来的⽣产⽅案是否变化,并计算新利润。

实验相应结果:解:(1)设计划⽣产甲⼄两种轮胎的数量分别为x1,x2. 此线性规划的数学模型如下:Max f =70*x1+65*x2约束条件:7*x1+3*x2≤2154*x1+5*x2≤2052*x1+4*x2≤180x1 ≥0 , x2 ≥0(2)⽤运筹学软件求的结果如下:则当x1=20, x2=25时,最⼤利润为3025元(3)由(2)中结果可知,设备A和设备B的⽣产能⼒已经使⽤完,设备C 的⽣产能⼒还没有⽤完,还剩40h。

运筹学实验报告线性规划及其灵敏度分析

运筹学实验报告线性规划及其灵敏度分析

数学与计算科学学院实验报告
实验项目名称线性规划及其灵敏度分析
所属课程名称运筹学B
实验类型综合
实验日期2014年10月24日
班级数学1201班
学号************
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色. 6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。

运筹学实验报告

运筹学实验报告

运筹学实验报告姓名:学号:班级:指导老师:实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。

解:(1) max =8*x1+6*x2;9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13;(2)计算结果: Objective value: 10.66667Total solver iterations: 2 Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111 Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000灵敏度分析: Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITY Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000(3)a)该LP问题的最优解x={x1,x2}={1.333333,0.000000} 目标函数值z=10.66667b)第2行资源的对偶价格为0.8888889,3、4行的对偶价格为0、0.对偶价格的含义:表示当对应约束有微小变动时, 目标函数的变化率。

运筹学实验报告-线性规划

运筹学实验报告-线性规划

商学院课程实验报告课程名称 运筹学 专业班级 金融工程班 姓 名 指导教师 成 绩2018年 9 月 20日学号:表2 所需营业员统计表星期一二三四五六日需要人数300 300350400480600 5503.建立线性规划模型设x j(j=1,2,…,7)为休息2天后星期一到星期日开始上班的营业员数量,则这个问题的线性规划问题模型为minZ=x1+x2+x3+x4+x5+x6+x7{x1+x4+x5+x6+x7≥300 x1+x2+x5+x6+x7≥300 x1+x2+x3+x6+x7≥350 x1+x2+x3+x4+x7≥400 x1+x2+x3+x4+x5≥480x2+x3+x4+x5+x6≥600x3+x4+x5+x6+x7≥550x≥0,j=1,2,…,7(二)操作步骤1.将WinQSB安装文件复制到本地硬盘,在WinQSB文件夹中双击setup.exe。

图1 WinQSB文件夹2.指定安装软件的目标目录,安装过程中输入用户名和单位名称(任意输入),安装完毕之后,WinQSB菜单自动生成在系统程序中,熟悉软件子菜单内容和功能,掌握操作命令。

图2 目标目录3.启动线性规划和整数规划程序。

点击开始→程序→WinQSB→Linear and Lnteger Programming,屏幕显示如图3所示的线性规划和整数规划界面。

图3 线性规划4.建立新问题或打开磁盘中已有文件。

按图3所示操作建立或打开一个LP问题,或点击File→New Problem建立新问题。

点击File→Load Problem打开磁盘中的数据文件,点击File→New Problem,出现图4所示的问题选项输入界面。

图4 建立新问题5.输入数据。

在选择数据输入格式时,选择Spreadsheet Matrix Form则以电子表格形式输入变量系统矩阵和右端常数矩阵,是固定格式,如图5所示。

选择Normal Model Form则以自由格式输入标准模型。

运筹学-线性规划-第一次

运筹学-线性规划-第一次

课内实验报告
课程名:运筹学
任课教师:邢光军
专业:
学号:
姓名:
2012/2013学年第 2 学期
南京邮电大学经济与管理学院
x1+x2+x3+x6+x7>=31
x1+x2+x3+x4+x7>=28
x1,x2,x3,x4,x5,x6,x7>=0
1.计算过程
用excel软件进行计算,过程如下:
先在工具中加载宏,然后按题设填好表格再进行规划求解,如下图
得到如下最优解
所以最优解为x1=12,x2=0,x3=11,x4=1,x5=4,x6=4,x7=4,min w=36
2.结果分析
在实际问题中,通常数据较多而复杂,约束条件也比较繁琐,利用excel软件大大提高了效率,并且降低了错误率。

我们应该将excel软件最大程度的应用到现实生活中,很多生产厂商很需要这样的软件来制定最优计划,提高工作效率
成绩评定:。

运筹学实验指导书

运筹学实验指导书

运筹学实验指导书-CAL-FENGHAI.-(YICAI)-Company One1实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。

通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。

要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。

二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。

2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。

3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。

4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。

三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。

近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。

为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。

2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。

该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。

20000辆和22000辆。

为1600万元。

根据以上情况,该公司应如何制定1999年度总体经济效益最优的生产计划方案(二)线性规划建模设X j表示生产M j型摩托车的数量(j=1,2,…,9),则总利润最大的摩托车产品生产计划数学模型为:MaxZ=×+×+×+×+×+×+×+×+×=++++++++满足 X1+X2+X3≤50000 (1)X4+X5+X6≤60000 (2)X7+X8+X9≤10000 (3)++++++++≤4000×5 (4)X3≤20000 (5)X6≤22000 (6)×(X1+X2+X3)+×(X4+X5+X6)+×3(X7+X8+X9)≤3000 (7)++++++++≤1600(8)X j≥0(j=1,2,3,4…9)模型说明:约束(1)、(2)、(3)分别表示三种系列摩托车的最大生产能力限制;约束(4)表示摩托车的生产受流动资金的限制;约束(5)和(6)表示M3和M6两种车产量受发动机供应量限制;约束 (7)表示未销售的产量受库存能力的限制;约束(8)表示未销售产品占用资金的限制。

运筹学线性规划实验报告

运筹学线性规划实验报告

实验报告一、实验名称:线性规划问题二、实验目的:通过本实验,能掌握Spreadsheet方法,会熟练应用Spreedsheet建模与求解方法。

在Excel(或其他)背景下就所需解决的问题进行描述与展平,然后建立线性规划模型,并用Excel的命令与功能进行运算与分析。

三、实验设备计算机、Excel 四、实验内容1、线性规划其中,目标函数为求总利润的最大值。

B11=SUMPRODUCT(B6:C6,B9:C9);B14=SUMPRODUCT(B3:C3,$B$9:$C$9); B15=SUMPRODUCT(B4:C4,$B$9:$C$9); B16=SUMPRODUCT(B5:C5,$B$9:$C$9); D14=D3; D15=D4; D16=D5; 用规划求解工具求解:目标单元格为B11,求最大值,可变单元格为$B$9:$C$9,约束条件为B14:B16<=D14:D16。

在【选项】菜单中选择“采用线性模型”“假定非负”。

即可进行求解得结果,即确定产品A的产量为20,产品B的产量为24,可实现最大总利润为428。

2、灵敏度分析在【可变单元格】表中:在【可变单元格】表中:“终值”表示最优解,即产品A 产量为20,产品B 产量为24。

“递减成本”表示产品的边际收入与按影子价格折算的边际成本的差,当递减成本小于0时,表示不应该安排该产品的生产,在表中的情况反映了产品A 产品、B 都进行生产,因为在产品A 与产品B 产量增加的同时利润也是在增加的。

产量增加的同时利润也是在增加的。

“目标式系数”是在目标函数中变量的系数,也是产品A 与产品B 的单位利润。

的单位利润。

“允许的增量”“允许的增量”和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,单个目标系数可变的单个目标系数可变的上下限。

也就是说,在目标函数中,产品A 的价值系数在(3.6,9.6】内,产品B 的价值系数不变,或者产品A 的价值不变,产品B 的价值系数在【23.3,8.75】内,最有的生产方案依旧为产品A 产量为20,产品B 产量为24,以达到最大利润。

运筹学实验指导书

运筹学实验指导书

实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。

通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。

要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。

二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。

2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。

3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。

4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。

三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。

近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。

为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。

2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。

该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。

在市场调查的1999年该集团可供摩托车生产的流动资金总量为4000万元,年周转次数为5次,生产各种型号摩托车资金占用情况如下表2经预测三种系列摩托车1999年产销率及仓储面积占用情况如下表3公司1999年可提供的最大仓储能力为3000个仓储单位,库存产品最大允许占用生产资金为1600万元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验项目一线性规划
实验学时:2
实验目的:线性规划(Linear Programming,简写LP)是运筹学中最成熟的一个分枝,而且是应用最为广泛的一个运筹学分枝,是解决最优化问题的重要工具。

而目前 Lindo/lingo 是求解线性规划比较成熟的一个软
件,通过本实验,掌握线性规划模型在 Lindo/lingo 中的求解,并能达到灵活运用。

实验要求:1.掌握线性规划的建模步骤及方法;
2.掌握Lindo/lingo 的初步使用;
3.掌握线性规划模型在Lindo/lingo 建模及求解;
4.掌握线性规划的灵敏度分析
实验内容及步骤:
例:美佳公司计划制造I、II 两种家电产品。

已知各制造一件时分别占用设备A、B 的台时、调试时间、调试工序每天可用于这种家电的能力、各售出一件时的获利情况,如表1-1 所示。

1.问该公司应制造两种家电各多少件,使其获取的利润最大。

2. 如果资源出租,资源出租的最低价格至少是多少(即每种资源的影子价格是多少)。

3.若家电I 的利润不变,家电II 的利润在什么范围内变化时,则该公司的最优生产计划将不发生变化。

4. 若设备A 和B 每天可用能力不变,则调试工序能力在什么范围内变化时,问题的最优基不变。

解:设x1表示产品I 的生产量; x2表示产品II 的生产量,所在该线性规划的模型为:
从此线性规划的模型中可以看出,第一个小问是典型的生产计划问题,第二小问是相应资源的影子价格,第三和第四个小问则是此问题的灵敏度分析。

现在我们利用lingo8.0 来教你求解线性规划问题。

第一步,启动lingo 进入初始界面如下图1-1 和图1-2 所示:
第二步,在进行线性规划模型求解时,先要对初始求解方法及参数要进行设置,首先选择ling o 菜单下的Option 菜单项,并切换在general solver(通用求解器)页面下,如下图1-3所示:
general solver 选项卡上的各项设置意义如下表格1-1 所示:表格1-1 general solver 选项卡上的各项设置意义
接下来再对Linear Solver(线性求解器)选项卡进行设置,切换界面如所示:
其各项设置意义如下表格1-2 所示:
表格1-2 Linear Solver 选项卡各项设置意义
因为这个线性规划模型较为简单,数字也是比较小的,而且需要进行灵敏度分析,所以对gen eral solver 选项卡上的Dual Computations(对偶计算)项设为“Prices and Ranges(计算对偶价格并分析敏感性)”。

对Linear Solver(线性求解器)选项卡上的Method(求解方法)项设为“Primal Simplex(原始单纯形法)”其余的选项采用Lingo 默认值,注竟,如果模型变量较多,数字较大时,就需要对其它选项进行设置。

第三步,在Lingo 的命令窗口中输入此线性规划的模型(注意没有上下标之分),如下图1-5 所示:
然后单击File 菜单下的Save,将模型保存,以供以后使用。

(当然也可以不保存模型。

第四步,单击Lingo 菜单下的Solver 菜单项,对模型进行求解。

其结果如下所示:
求解器状态窗口对于监视求解器的进展和模型大小是有用的。

求解器状态窗口提供了一个中断求解器按钮(Interrupt Solver),点击它会导致LINGO 在下一次迭代时停止求解。

在绝大多数情况,LINGO 能够交还和
报告到目前为止的最好解。

一个例外是线性规划模型,返回的解是无意义的,应该被忽略。

但这并不是一个问题,因为线性规划通常求解速度很快,很少需要中断。

注意:在中断求解器后,必须小心解释当前解,因为这些解可能根本就不最优解、可能也不是可行解或者对线性规划模型来说就是无价值的。

在中断求解器按钮的右边的是关闭按钮(Close)。

点击它可以关闭求解器状态窗口,不过可在
任何时间通过选择Windows|Status Window 再重新打开。

在中断求解器按钮的右边的是标记为更新时间间隔(Update Interval)的域。

LINGO 将根据该域指示的时间(以秒为单位)为周期更新求解器状态窗口。

可以随意设置该域,不过若设置为0 将导致更长的求解时间—
—LINGO 花费在更新的时间会超过求解模型的时间。

Total 显示当前模型的全部变量数,Nonlinear 显示其中的非线性变量数,Integers 显示其中的整数变量数。

非线性变量是指它至少处于某一个约束中的非线性关系中。

从计算结果告诉我们:这个线性规划的最优解为x1=3.5,x2=1.5,最优值为z=8.5,即产品I 生产 3.5 件,产品II 生产 1.5 件,可获最大利润8.5 元。

另外还可以看出第一个约束的资源剩余7.5 个单位,即设备A 剩
余,对应的影响价格为0;第二个约束和第三个约束对应的资源没有剩余,相应的影子价格为0.25 和0.50;即设备A、设备B 和调试工序的出让价格分别为0、0.25、0.50。

从中还可以看出迭代经过了四步。

第五步,单击上图窗体中的close 按钮,关闭求解窗体。

然后再单击模型窗体,使其处于活动状态。

接着单击Lingo 菜单下的Range 菜单项,其结果如下所示:
目标函数的系数发生变化时(假定约束条件不变),最优解和最优值会改变吗?这个问题不能简单地回答。

上面输出给出了最优基不变条件下目标函数系数的允许变化范围:x1 的系数为(2-1,2+1)=(1,3);x2
的系数为(1-0.3333,1+1)=(0.6667,2)。

注意:x1 系数的允许范围需要 x2 系数1不变,反之亦然。

由于目标函数的费用系数变化并不影响约束条件,因此此时最优基不变可以保证最优解也不变,但最优值变化。

用这个结果很容易回答附加问题3。

下面对“资源”的影子价格作进一步的分析。

影子价格的作用(即在最优解下“资源”增加1 个单位时“效益”的增量)是有限制的。

每增加单位资源利润增长影子价格元,但是,上面输出的 CU RRENT RHS 的
ALLOWABLE INCREASE 和 ALLOWABLE DECREASE 给出了影子价格有意义条件下约束右端的限制范围:设备 A 可以无限的增加,设备B最多增加6,调试工序最多最多增加1。

很容易回答问题4 的。

需要注意的是:灵敏性分析给出的只是最优基保持不变的充分条件,而不一定是必要条件。

比如对于上面的问题,“设备 A 最多增加6”的含义只能是“设备 A 增加6”时最优基保持不变,所以影子价格有意义,即
利润的增加大于牛奶的投资。

反过来,设备A 增加超过6,影子价格是否一定没有意义?最优基是否一定改变?一般来说,这是不能从灵敏性分析报告中直接得到的。

此时,应该重新用新数据求解规划模型,才能做出判断。

所以,从正常理解的角度来看,我们上面回答“设备A 最多增加6)”
并不是完全科学的。

实验思考:(第2题为选做题)
1、某公司有三个工厂均可生产A,B,C 三种产品.各产品的单件利润分别为35 元,30 元和25元;市场预测表明:三种产品的需求量分别是 900,1200 和750 件;各种产品的占地面积分别是20,15 和12 平方尺. 一厂仓库面积13000 平方尺,二厂12000 平方尺,三厂5000 平方尺. 产品必须放在库内且在期末一次售出. 问如何按排各厂的生产计划, 使全公司的总收益最高, 建立线性规划模型并用软件计算结果,对结果做简单说明。

2、某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,试分别回答下列问题:
(1)建立线性规划模型,求使该厂获利最大的生产计划;
(2)若产品乙、丙的单件利润不变,则产品甲的利润在什么范围内变化时,上述最解不变;(3)若有一种新产品丁,其原料消耗定额:A 为 3 单位,B 为 2单位,单件利润为2.5 单位。

问该产品是否值得安排生产,并求新的最优计划;
若材料 A 市场紧缺,除拥有量外一时无法购进,而原材料B 如数量不足可去市场购买,单价为 0.5,问该厂应否购买,并用运筹概念说明原因,并且购进多少为宜;
3、某商场决定:营业员每周连续工作5 天后连续休息2 天,轮流休息。

根据统计,商场每天需要的营业员如下表所示。

营业员需要量统计表
商场人力资源部应如何安排每天的上班人数,使商场总的营业员最少。

相关文档
最新文档