运筹学 线性规划习题解析
运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1用图解法求解线性规划问题min z=2x 3x24为6x2 _ 6st ]4x1+2x2>4X i,X2 _0解:由图1可知,该问题的可行域为凸集MABC,且可知线段BA上的点都为3最优解,即该问题有无穷多最优解,这时的最优值为%=2 - 3P47 1.3用图解法和单纯形法求解线性规划问题max z=10x1 5x213为4x2乞9a )s.t」5为+2x2兰8x1, x^ 0解:由图1可知,该问题的可行域为凸集OABCO且可知B点为最优值点,即严+4卷=9斗|人3,即最优解为x」1,3(5X1 +2X2 =8 & =2 I 2丿这时的最优值为Z max = 10 1 5 -2 2原问题化成标准型为max z=10x1 5x23\ 4x2 x3 = 9 s.t <5^+2x2 +x4 =8X i,X2,X3,X4 —0z所以有—1,3 ,Z max=10 1 5I 2 丿 2 2P78 2.4已知线性规划问题:max z =2x 4x2x3x4/+3X2+x4兰82咅+x2<6彳x2+X3 +x4兰6X,+ x2+ X3<9XZX, X4 一0求:(1)写出其对偶问题;(2)已知原问题最优解为X^(2,2,410),试根据对偶理论,直接求出对偶问题的最优解。
解:(1)该线性规划问题的对偶问题为:min w =8y, 6y26y39y4\i+2y2 +y4 兰23yr H y<H yr H y^4彳y^y^iy i, y2,y3,y4—0(2)由原问题最优解为X* =(2,2,4,0),根据互补松弛性得:y1 2y2 y4 = 23y1 y2 y a y^4I y a + yU把X* = (2,2,4,0)代入原线性规划问题的约束中得第四个约束取严格不等号,即 2 2 4 =8 < 9 - y4=0y1 2y2 =2从而有+y2 +y a =4L ya =1得Y1 ,Y2 ,Y a = 1,y4 = 05 5所以对偶问题的最优解为y* =(4,3,1,0)T,最优值为W min =165 5P79 2.7考虑如下线性规划问题:min z = 60x i 40x2 80x3” 3x i + 2x2 + X3 兰24x i + X2 + 3x^ > 42x i +2X2 +2x3 兰3x i,x?,x^ >0(1)写出其对偶问题;(2)用对偶单纯形法求解原问题;解:(1)该线性规划问题的对偶问题为:max w = 2% 4y2 3y33% +4y2 +2y3 W60』2% +y2 +2y3 玄40y i 3y2 2y3 — 80[y i,y2,y^0(2)在原问题加入三个松弛变量X4,X5,X6把该线性规划问题化为标准型max z = -60旨-40X2-80X3—3x i — 2x? — X3 + X4 = -2~4x<i — x? — 3X3 + X5 ——4-2 X i — 2 X2 — 2 X3 + = _3X j "j =1川,6x* 5,?,O)T,Z max =60 540 - 80 06 3 6 3 3P81 2.12某厂生产A、B、C三种产品,其所需劳动力、材料等有关数据见下表。
运筹学:线性规划模型、线性规划的解法习题与答案

1、图解法适用于含有()个变量的线性规划问题。
正确答案:两或22、线性规划问题的可行解是指满足()的解。
正确答案:所有约束条件3、在线性规划问题的基本解中,所有的非基变量等于()。
正确答案:零或04、若线性规划问题有最优解,则最优解一定可以在可行域的()达到。
正确答案:顶点或极点5、线性规划问题有可行解,则必有()。
正确答案:基可行解6、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其()的集合中进行搜索即可得到最优解。
正确答案:基可行解7、满足()条件的基本解称为基本可行解。
正确答案:非负8、求解线性规划问题可能的结果有四种,分别是()。
正确答案:无解,有唯一最优解,有无穷多个最优解和退化解9、求一个线性函数在一组()约束条件下的最大化或最小化问题,称为线性规划问题。
正确答案:线性1、若x、y满足约束条件{x≤2 y≤2x+y≥2则z=x+2y的取值范围是()。
A. [2,6]B. [2,5]C. [3,6]D. [3,5]正确答案:A2、为化为标准形式而引入的松弛变量在目标函数中的系数应为()。
A.0B.1C.2D.3正确答案:A3、若线性规划问题没有可行解,可行解集是空集,则此问题()。
A.没有无穷多最优解B.没有最优解C.有无界解D.没有无界解正确答案:B4、在单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中()。
A.不影响解的可行性B.至少有一个基变量的值为负C.找不到出基变量D.找不到进基变量正确答案:B5、用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部<0,则说明本问题()。
A.有惟一最优解B.有多重最优解C.无界D.无解正确答案:B6、单纯形法当中,入基变量的确定应选择检验数()。
A.绝对值最大B.绝对值最小C.正值最大D.负值最小正确答案:C7、在单纯形表的终表中,若非基变量的检验数有0,那么最优解()。
A.不存在B.唯一C.无穷多D.无穷大正确答案:A8、线性规划模型不包括下列()要素。
运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
运筹学:线性规划的数学模型与单纯形法习题与答案

一、单选题1、线性规划具有唯一最优解是指()。
A.不加入人工变量就可进行单纯形法计算B.最优表中非基变量检验数全部非零C.可行解集合有界D.最优表中存在非基变量的检验数为零正确答案:B2、线性规划具有多重最优解是指()。
A.最优表中存在非基变量的检验数为零B.可行解集合无界C.基变量全部大于零D.目标函数系数与某约束系数对应成比例正确答案:A3使函数z=−x1+x2+2x3减少得最快的方向是()。
A. (1,-1,-2)B. (-1,-1,-2)C. 1,1,2)D. (-1,1,2)正确答案:A4、线性规划的退化基可行解是指()。
A.基可行解中存在为零的非基变量B.基可行解中存在为零的基变量C.非基变量的检验数为零D.所有基变量不等于零正确答案:B5、线性规划无可行解是指()。
A.有两个相同的最小比值B.第一阶段最优目标函数值等于零C.用大M法求解时,最优解中还有非零的人工变量D. 进基列系数非正正确答案:C6、若线性规划不加入人工变量就可以进行单纯形法计算()。
A.一定有最优解B.全部约束是小于等于的形式C.可能无可行解D.一定有可行解正确答案:D7、设线性规划的约束条件为x1+x2+x3=22x1+2x2+x4=4x1,…,x4≥0则非可行解是()。
A. (0,1,1,2)B. (2,0,0,0)C. (1,0,1,0)D. (1,1,0,0)正确答案:C8、线性规划可行域的顶点一定是()。
A.可行解B.非基本解C.非可行解D.最优解正确答案:A9、X是线性规划的基本可行解则有()。
A.X不一定满足约束条件B.X不是基本解C.X中的基变量非零,非基变量为零D.X中的基变量非负,非基变量为零正确答案:D10、下例错误的结论是()。
A.检验数就是目标函数的系数B.检验数是用来检验可行解是否是最优解的数C.不同检验数的定义其检验标准也不同D.检验数是目标函数用非基变量表达的系数正确答案:A11、在解决运筹学问题时,根据对问题内在机理的认识直接构造出模型的方法称为()。
线性规划习题及答案

线性规划习题及答案线性规划是运筹学中的一个重要分支,它主要用于解决资源分配问题,以达到最大化或最小化目标函数。
下面是一个线性规划的习题及答案:习题:某工厂生产两种产品A和B,每种产品都需要使用机器时间和劳动力。
产品A每件需要3小时的机器时间和2小时的劳动力,产品B每件需要2小时的机器时间和3小时的劳动力。
工厂每天有24小时的机器时间和18小时的劳动力。
设生产产品A的数量为x,生产产品B的数量为y。
1. 建立目标函数和约束条件。
2. 求解线性规划问题,找出最优生产计划。
答案:1. 目标函数:设目标是最大化利润,产品A的利润为40元/件,产品B的利润为30元/件。
因此,目标函数为:\[ \text{Maximize } P = 40x + 30y \]2. 约束条件:- 机器时间约束:\[ 3x + 2y \leq 24 \]- 劳动力时间约束:\[ 2x + 3y \leq 18 \]- 非负约束:\[ x \geq 0, y \geq 0 \]3. 图解法求解:- 首先在坐标系中画出约束条件所形成的可行域。
- 可行域的顶点坐标为:(0,0), (0,6), (4,2), (8,0)。
- 将这些点代入目标函数计算利润:- P(0,0) = 40*0 + 30*0 = 0- P(0,6) = 40*0 + 30*6 = 180- P(4,2) = 40*4 + 30*2 = 200- P(8,0) = 40*8 + 30*0 = 3204. 最优解:- 通过比较各点的利润,发现当生产8件产品A和0件产品B时,利润最大,为320元。
5. 结论:- 工厂应该生产8件产品A和0件产品B,以实现最大利润320元。
注意:本题答案仅为示例,实际解题时需要根据具体题目条件进行分析和计算。
《运筹学》_习题_线性规划部分练习题及_答案

一、思考题1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征?3. 建立一个实际问题的数学模型一般要几步?4. 两个变量的线性规划问题的图解法的一般步骤是什么?5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。
7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。
8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。
9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。
1. 线性规划问题的最优解一定在可行域的顶点达到。
2. 线性规划的可行解集是凸集。
3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。
4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。
5. 线性规划问题的每一个基本解对应可行域的一个顶点。
6. 如果一个线性规划问题有可行解,那么它必有最优解。
7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。
8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。
9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目 标函数值得到最快的减少。
10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
运筹学线性规划练习题详解演示文稿

钢卷 工序
I
III(1) 1
II
III(2)
I
2
II
III
II 3
III
机器效率 10吨/28小时 50米/分钟 20米/分钟 25米/分钟 10吨/35小时 20米/分钟 25米/分钟 16米/分钟 20米/分钟
每月需求量 销售利润 ≤1250吨 250元/吨
≤250吨
350元/吨
离机场距离
摧毁可能性
要害部位 (公里) 每枚重型炸弹 每枚轻型炸弹
1
450
0.10
0.08
2
480
0.20
0.16
为了使摧毁敌3方军事目标54的0 可能性最大0.,15应如何确定0飞.1机2 轰炸的方案。
要求建立这4 个问题的线600性规划模型。0.25
0.20
第十六页,共22页。
15.一个大的造纸公司下设10个造纸厂,供应1000个用户。这些造纸厂内 应用三种可以互相替换的机器,四种不同的原材料生产五种类型的纸 张。公司要制定计划,确定每个工厂每台机器上生产各种类型纸张的 数量,并确定每个工厂生产的哪一种类型纸张,供应哪些用户及供应 的数量,使总的运输费用最少。已知:
≤1500吨 400元/吨
14.某战略轰炸机群奉命摧毁敌人军事目标。已知该目标有四个要害部 位,只要摧毁其一即可达到目的。为完成此项任务的汽油消耗量限 制为48000升,重型炸弹48枚,轻型炸弹32枚。飞机携带重型炸弹 时每升汽油可飞行2公里,带轻型炸弹时每升汽油可飞行3公里。又 知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路程汽 油消耗(空载时每升汽油可飞行4公里)外,起飞和降落每次各消 耗100升。有关数据如下表所示:
运筹学课后习题及答案

运筹学课后习题及答案运筹学是一门应用数学的学科,旨在通过数学模型和方法来解决实际问题。
在学习运筹学的过程中,课后习题是非常重要的一部分,它不仅可以帮助我们巩固所学的知识,还可以提升我们的解决问题的能力。
下面,我将为大家提供一些运筹学课后习题及答案,希望对大家的学习有所帮助。
1. 线性规划问题线性规划是运筹学中的一个重要分支,它旨在寻找线性目标函数下的最优解。
以下是一个线性规划问题的例子:Max Z = 3x + 4ySubject to:2x + 3y ≤ 10x + y ≥ 5x, y ≥ 0解答:首先,我们可以画出约束条件的图形,如下所示:```y^|5 | /| /| /| /|/+-----------------10 x```通过观察图形,我们可以发现最优解点是(3, 2),此时目标函数取得最大值为Z = 3(3) + 4(2) = 17。
2. 整数规划问题整数规划是线性规划的一种扩展,它要求变量的取值必须是整数。
以下是一个整数规划问题的例子:Max Z = 2x + 3ySubject to:x + y ≤ 52x + y ≤ 8x, y ≥ 0x, y为整数解答:通过计算,我们可以得到以下整数解之一:x = 2, y = 3此时,目标函数取得最大值为Z = 2(2) + 3(3) = 13。
3. 网络流问题网络流问题是运筹学中的另一个重要分支,它研究的是在网络中物体的流动问题。
以下是一个网络流问题的例子:有一个有向图,其中有三个节点S、A、B和一个汇点T。
边的容量和费用如下所示:S -> A: 容量为2,费用为1S -> B: 容量为3,费用为2A -> T: 容量为1,费用为1B -> T: 容量为2,费用为3A -> B: 容量为1,费用为1解答:通过使用最小费用最大流算法,我们可以找到从源点S到汇点T的最小费用流量。
在该例中,最小费用为5,最大流量为3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 线性规划
第一章 线性规划
1、某化工厂生产某项化学产品,每单位标准重 量为1000克,由A、B、C三种化学物混合而成 。产品组成成分是每单位产品中A不超过300克 ,B不少于150克,C不少于200克。A、B、C每 克成本分别为5元、6元、7元。问如何配置此化 学产品,才能使成本最低?
解:由题意设生产高级、中级、低级玩具各为 x1,x2,x3台,总利润为S元,则由题意可得本 题的线性规划模型为:
由题意可得下表条件约束:
max S=max(30x1+5x2+x3)
17x1 + 2x2+1/2x3 ≤ 500 8x1+1/2x2+1/6x3 ≤ 100 x1 ≤ 10 x2 ≤ 30 x3 ≤ 100 x1,x2,x3≥0
K1=-4
k2=-1/2
X1+2x2=28
4x1+x2=42 X1+2x2=28
解得:x1=8,x2如果原料甲增加到42吨,原最优解是否改变?
图解: x2
42
21
4x1+x2=42
4x1+x2=42 X1+2x2=42
解得:x1=6,x2=18
k=-7/5
X1+2x2=42
(2)X0一定不是可行解; (3)X0一定不是基可行解;
对
(4)X0一定不是最优解;
(5)X0一定不是基最优解。
第一章 线性规划
评讲完啦~ 谢谢大家~
10.5
42
x1
(3)如果每吨B产品的利润增加到15万元,原最优解 是否改变?
图解: x2
42
4x1+x2=42
最优解是x1+2x2=28 与x2轴的交点(0,14)
14 k=-7/15
X1+2x2=28
10.5
28
x1
(4)每吨B产品的利润在什么范围内变化,原最优 解才不会改变?
图解: x2
42
。
第一章 线性规划
11、已知X0=(2,3,0)T是某线性规划问题的最 优解,能否判断: (1)X0一定是基础解;错 (2)X0一定是可行解; 对 (3)X0一定是基可行解;错 (4)X0一定是基最优解。错
第一章 线性规划
12、已知X0=(2,0,-1)T是某已化成满秩标准 形的,具有3个变量的线性规划问题的一组值, 能否判定: (1)X0一定不是基础解; 错 (2)X0一定不是可行解; 对 (3)X0一定不是基可行解; 对 (4)X0一定不是最优解; 对 (5)X0一定不是基最优解。 对
max S=max(40x1+28x2+32x3+72x4+64x5+80x6)
x1+x2+x3+3x4+3x5+3x6≤850
2x1
+5x4
≤700
2x2 +5x4
≤600
3x3 x1,x2…x6≥0
+8x6≤900
第一章 线性规划
4、一家玩具公司制造三种玩具,每一种要求不同的制 造技术。高级的一种需要17个小时加工装配,8小时检 测,每台利润30元;中级的需2小时加工装配,半小时 检测,每台利润5元;低级的需半小时加工装配,10分 钟检测,每台利润1元。现公司可供利用的加工装配时 间为500小时,检测时间100小时。市场预测显示,对高 级、中级、低级玩具的需求量分别不超过10台、30台、 100台,试制定一个能够使总利润最大的生产计划。
解:由题意可设该产品中A、B原料分别为x1, x2千克,总成本为S,则本题线性规划模型为:
min S=min(2x1+8x2) 5x1+10x2=150 x1≤20 x2≥14 x1,x2≥0
第一章 线性规划
3、设某工厂有甲、乙、丙、丁四台机床,生产A、B、C、D、E、 F六种产品。加工每一件产品所需要时间和每一件产品的单价如下 表所示:
第一章 线性规划
5、现有300cm长的钢管500根,需截成70cm长 和80cm长两种规格的成套材料。每套由70cm的 3根,80cm的12根组成。问如何截管,可以使 余料最少,套数最多?
解:由题设条件可得到1根300cm长的钢管有 以下几种分割方法:
设x1、x2、x3、x4分别代表四种方法分割 300cm的钢管的根数,S表示废料的总长度
x1+x2+x3+x4=500 可以截得80cm钢管(3x1+2x2+x3)根,70cm钢管
(2x2+3x3+4x4)根,共有废料(60x1+10x3+20x4 )cm 则可得: (3x1+2x2+x3):(2x2+3x3+4x4)=12:3 化简的: 3x1-6x2-11x3-16x4=0
min S=min(60x1+10x2+20x3) x1 + x2 + x3 + x4 = 500 3x1-6x2-11x3-16x4 = 0 x1,x2,x3 ,x4≥0
解:设配制此化学产品所需A、B、C三种化学 物分别为x1,x2,x3克,成本为S元,则由题意 可得本题的线性规划模型为:
min S=min(5x1+6x2+7x3) x1+x2+x3=1000 x1≤300 x2≥150 x3 ≥200 x1,x2,x3≥0
第一章 线性规划
2、某产品重量为150千克,用A、B两种原料制 成。每单位A原料成本为2元,每单位B原料成 本为8元。该产品至少需要含14单位B原料,最 多含20单位A原料。每单位A、B原料分别重5千 克、10千克,为使成本最小,该产品中A、B原 料应各占多少?
第一章 线性规划
X1不是基础解(满足前约束但非零分量对应的列向量线 性相关),不是可行解(不满足后约束),不是基可行 解。
X2不是基础解(非零分量对应的列变量线性相关),是 可行解(满足前后约束),不是基可行解。
X3是基础解(非零分量对应的列变量线性无关)、可行 解,因此也是基可行解。
X4是基础解,不是可行解,因此也不是基可行解。 X5是基础解、可行解,因此也是基可行解。 将X3和X5带入目标函数可得:S3<S5,所以X3是最优解
解类型 基础解 可行解 基可行解 最优解 基最优解
满足条件 ①③
①②
①②③ ①②④ ①②③④
第一章 线性规划
10、已知线性规划问题为: min S=min (x1+2x2-3x3+4x4) 5x2+x3+3x4=5 x1+4x2+x3+4x4=7 xi ≥( i =1,2,3,4)
判断下述各点:X1=(8,2,7,-4)T,X2=(1, 0,2,1)T,X3=( 2,0,5,0)T,X4=(0,0,-1,2)T ,X5=(3,1,0,0)T是不是该问题的可行解、基 础解、基可行解。试从中找出最优的一个解。
第一章 线性规划
6、某皮革厂生产甲、乙两种皮带,生产甲、乙 皮带每条可获利分别为4元、3元。但生产一条 甲皮带是生产一条乙皮带所需工时的2倍,如果 全部生产乙皮带,该厂每天可生产1000条,但 皮革供应只够日产800条(甲、乙两种皮带合计 ),甲、乙皮带所用皮扣(一条一扣)每天分 别只能供应400个、700个。问如何安排生产, 可使该厂获利最大?
第一章 线性规划
13、已知线性规划问题
max S=max(x1+x2-x3) ax1+9x2+7x3+9x4+x5=1 5x1+bx2-7x3 +x5=-3 xi ≥0( i =1,2…,5) a , b为任意常数
X0=(9,0,7,0,6)T是其变量的一组值。能否判定:
(1)X0一定不是基础解;
解:由题设条件设生产甲、乙两种皮带分别为x1、x2根
max S=max(4x1+3x2) 2x1+x2≤1000
交点:x1=200 x2=600
x1 +x2≤800
x1 ≤400
x2 ≤700 x1、x2≥0
第一章 线性规划
7、某厂用甲、乙两种原料生产A、B两种产品 ,制造A、B产品每吨所需要的各种原料、可得 利润以及工厂现有的各种原料数如下表所示:
-4<k<-1/2
4x1+x2=42
k1=-4
可得:-4<k<-1/2 目标函数:7x1+bx2 k=-7/b
7/4<b<14
14
k2=-1/2
X1+2x2=28
10.5
28
x1
复习
条件: ①满足前约束 ②满足后约束 ③无非零分量,或有非零分量但其非零分量对 应的A的列向量线性无关 ④使目标函数最大
解:设生产A、B两种产品分别为x1、x2单位
(1)在现有原料条件下,如何组织生产才能使利润最大 max S=max(7x1+5x2)
x1+2x2≤28 4x1 + x2 ≤42 x1,x2≥0
(1)在现有原料条件下,如何组织生产才能使 利润最大
图解: x2
42
k=-7/5 14
4x1+x2=42
表中没有 填数的表示这 台机床不参加 生产这种产品。 现假设在某一 时间内,甲、 乙、丙、丁四台机床的最大工作能力分别为850、700、600、900工时
,问这一时段内,每种产品各应生产多少,才能使该厂总收入最 大?
解:由题意可设产品A、B、C、D、E、F分别 生产x1,x2 ,x3,x4,x5,x6单位,总收入为S元, 则本题的线性规划模型为: