运筹学复习题目加答案
运筹学复习资料

一、单选题1.排队系统的状态转移速度矩阵中()元素之和等于零A、每一列B、每一行C、对角线D、次对角线答案: B2.设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为20分钟,打字时间服从指数分布,平均时间为15分钟,顾客在打字室内平均等待时间为().A、1.5小时B、0.75小时C、2.5小时D、3小时答案: B3.以下哪项是面向决策结果的方法的程序().A、收集信息→确定目标→提出方案→方案优化→决策B、确定目标→收集信息标→决策→提出方案→优化方案C、确定目标→收集信息标→提出方案→方案优化→决策D、确定目标→提出方案→收集信息标→优化方案→决策答案: C4.某人要从上海搭乘汽车去重庆,他希望选择一条线路,经过转乘,使得车费最少。
此问题可以转化为().A、最大流量问题求解B、最短路问题求解C、最小树问题求解D、最小费用最大流问题求解答案: B5.为了使各因素之间进行两两比较得到量化的判断矩阵,引入()的标度.A、1~7B、1~8C、1~9D、随便答案: C6.设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为20分钟,打字时间服从指数分布,平均时间为15分钟,若顾客在打字室内的平均逗留时间超过1.25小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为()时,主人才会考虑这样做?A、小于2B、大于2C、小于1.25D、大于1.25答案: D7.动态规划求解的一般方法是什么A、图解法B、单纯形法C、逆序求解D、标号法答案: C8.整数规划数学模型的组成部分不包括().A、决策变量B、目标函数C、约束条件D、计算方法答案: D二、判断题1.风险情况下采用EMV决策准则的前提是决策应重复相当大的次数.A、正确B、错误答案:正确2.正偏差变量应取正值,负偏差变量应取负值.A、正确B、错误答案:错误3.部分变量要求是整数的规划问题称为纯整数规划.A、正确B、错误答案:错误4.方案层在层次模型的最底层.A、正确B、错误答案:错误5.排队系统中,等待时间=逗留时间+服务时间.A、正确B、错误答案:错误6.银行储蓄所有四个服务窗口,到达顾客自选窗口排队,后该储蓄所改为按顾客到达先后发号排队等待,这种改变将有助于缩短顾客的平均等待时间.A、正确B、错误答案:正确7.判断矩阵的维数n越大,判断的一致性将越差,应放宽对高维判断矩阵一致性要求.A、正确B、错误答案:正确8.用层次分析法解决问题,构造好问题的层次结构图是解决问题的关键.A、正确B、错误答案:正确9.不平衡运输问题不一定有最优解.A、正确B、错误答案:错误10.根据决策者对物体之间两两相比的关系,主观做出比值的判断,这样得到的矩阵称作判断矩阵.A、正确B、错误答案:正确三、名词解释1.人工变量答案:亦称人造变量.求解线性规划问题时人为加入的变量。
运筹学复习题及参考答案

《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4. 满足线性规划问题所有约束条件的解称为可行解。
( T )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( T )6. 对偶问题的对偶是原问题。
( T )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( F )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9. 指派问题的解中基变量的个数为m+n。
( F )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( T )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( F)12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( F )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( T )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( F )二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9. D 10.B11.A 12.D 13.C 14.C 15.B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
运筹学试题及答案解析

WORD整理版⑵对偶问题的最优解: (5, 0, 23, 0, 0)运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、无界解____________ 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错?错4、如果某一整数规划:MaxZ=X+*X+9/14X2W 51/14-2X计X 1/3X1,X2> 0且均为整数所对应的线性规划(松弛问题)的最优解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在要对X进行分枝,应该分为X1 w 1 和X1》2 。
5、在用逆向解法求动态规划时,fk®)的含义是:从第k个阶段到第n个阶段的最优解。
6、假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D和B的关系为D包含B7、已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条件均为“w”型不等式)其中X3,X4,X5为松驰变量『-2 1 3问:(1)写出B-1= -1/3 .0 2/3.0 0 -1WORD整理版某一个非基变量的检验数8.线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有9.极大化的线性规划问题为无界解时,则对偶问题_ 无解 ______________ ;10.若整数规划的松驰问题的最优解不符合整数要求,假设X=b不符合整数要求,INT (b)是不超过b的最大整数,则构造两个约束条件:Xi > INT (b i)+ 1 和Xi < INT (b) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11.知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条件均为“w”型不等式)其中X4,X5,X6为松驰变量问:(1)对偶问题的最优解:丫= (4,0,9,0,0,0)(2)写出B-1 =■ 2 0 r1 0 4J 1 6」二、计算题(60分)1、已知线性规划(20分)MaxZ=3X+4X2<X1+X2< 52X+4XW 12 3X1+2X2W 8&,X2》0其最优解为:1)写出该线性规划的对偶问题。
运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。
答案:多,竞争。
运筹学复习题目加答案

一、单选题1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。
A. maxZB. max(-Z)C. –max(-Z)D.-maxZ2. 下列说法中正确的是( )。
A .基本解一定是可行解B .基本可行解的每个分量一定非负C .若B 是基,则B 一定是可逆D .非基变量的系数列向量一定是线性相关的3.在线性规划模型中,没有非负约束的变量称为 ( )A.多余变量 B .松弛变量 C .人工变量 D .自由变量4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。
A .多重解B .无解C .正则解D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。
A .等式约束B .“≤”型约束C .“≥”约束D .非负约束6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。
A .多余变量B .自由变量C .松弛变量D .非负变量7.在运输方案中出现退化现象,是指数字格的数目( )。
A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-1二、判断题1.线性规划问题的一般模型中不能有等式约束。
2.对偶问题的对偶一定是原问题。
3.产地数与销地数相等的运输问题是产销平衡运输问题。
4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。
5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。
6.线性规划问题的基本解就是基本可行解。
三、填空题1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。
2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为:3. 线性规划解的情形有4. 求解指派问题的方法是 。
最全的运筹学复习题及答案

四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。
建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件。
问如何安排生产计划,使总利润最大。
2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间 服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。
六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。
并指出问题的解属于哪一类。
八、下表为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为maxZ=5x 1+3x 2,约束形式为“≤”,X 3,X 4为松驰变量.表中解代入目标函数后得Z=10X l X 2 X 3 X 4 —10 b -1 f g X 3 2 C O 1 1/5 X lade1(1)求表中a ~g 的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解第四章 线性规划的对偶理论五、写出下列线性规划问题的对偶问题1.minZ=2x 1+2x 2+4x 3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。
运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
运筹学期末复习题及答案

19、简述线性规划模型主要参数(p11)(1)、价值系数:目标函数中决策变量前的系数为价值系数(2)、技术系数:约束条件中决策变量前的系数(3)、约束条件右边常数项15、简述线性规划解几种可能的结果(情形)(ppt第二章39或89页)(1).有唯一最优解 (单纯形法中在求最大目标函数的问题时,对于某个基本可行解,所有δj≤0)(2).无可行解,即可行域为空域,不存在满足约束条件的解,也就不存在最优解了。
(3).无界解,即可行域的范围延伸到无穷远,目标函数值可以无穷大或无穷小,一般来说,这说明模型有错,忽略了一些必要的约束条件(4).无穷多个最优解,则线段上的所有点都代表了最优解(5)退化问题,基变量有时存在两个以上相同的最小比值,这样在下一次迭代中就有一个或几个基变量等于零,用图解法无退化解1、简述单纯形法的基本思路(p70)从可行域中某一个顶点开始,判断此顶点是否是最优解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此点是否是最优解。
直到找到一个顶点为其最优解,就是使得其目标函数值最优的解,或者能判断出线性规划问题无最优解为止。
17、简述线性规划中添加人工变量的前提(p85)在系数矩阵中直接找不到初始可行解,进而通过添加人工变量的方法来构造初始可行基,得出初始基本可行解10、简述线性规划对偶问题的基本性质(p122)(1)对称性(2)弱对偶性(3)强对偶性(4)最优性(5)互补松弛型原函数与对偶问题的关系1)求目标函数最大值的线性规划问题中有n 个变量 m个约束条件,它的约束条件都是小于等于不等式。
而其对偶则是求目标函数为最小值的线性规划问题,有m个变量n个约束条件,其约束条件都为大于等于不等式。
2)原问题的目标函数中的价值系数为对偶问题中的约束条件的右边常数项,并且原问题的目标函数中的第i个价值系数就等于对偶问题中的第i个约束条件的右边常数项。
3)原问题的约束条件的右边常数项为对偶问题的目标函数中价值系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单选题
1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。
A. maxZ
B. max(-Z)
C. –max(-Z)
D.-maxZ 2.下列说法中正确的是( )。
A .基本解一定是可行解
B .基本可行解的每个分量一定非负
C .若B 是基,则B 一定是可逆
D .非基变量的系数列向量一定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为 ( )
A.多余变量 B .松弛变量 C .人工变量 D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。
A .多重解
B .无解
C .正则解
D .退化解
5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。
A .等式约束
B .“≤”型约束
C .“≥”约束
D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。
A .多余变量 B .自由变量 C .松弛变量 D .非负变量 7.在运输方案中出现退化现象,是指数字格的数目( )。
A.等于m+n
B.大于m+n-1
C.小于m+n-1
D.等于m+n-1
二、判断题
1.线性规划问题的一般模型中不能有等式约束。
2.对偶问题的对偶一定是原问题。
3.产地数与销地数相等的运输问题是产销平衡运输问题。
4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。
5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。
6.线性规划问题的基本解就是基本可行解。
三、填空题
1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3
X 1,X 2≥0且均为整数
所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。
2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为:
3. 线性规划解的情形有
4. 求解指派问题的方法是 。
5.美国的R.Bellman 根据动态规划的原理提出了求解动态规划的最优化原理为
6. 在用逆向解法求动态规划时,f k (s k )的含义是:
7. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件X B b X 1 X 2 X 3 X 4 X 5 X 6 X 1 2 1 1 0 2 0 1 X 3 2/3 0 0 1 1 0 4 X 5 1 0 -2 0 1 1 6 C j -Z j 0 0 0 -4 0 -9
问:(1)对偶问题的最优解: (2)写出B -1=
四、计算题
1. 下列线性规划问题化为标准型。
123min +5-2Z x x x =-
123123121236
23510
0,0,x x x x x x x x x x x +-≤-+≥+=≥≤符号不限
2. 写出下列问题的对偶问题
123min 42+3Z x x x =+
123123121234+56=7
891011121314
0,0x x x x x x x x x x x --+≥+≤≤≥无约束,
3. 用最小元素法求下列运输问题的一个初始基本可行解
4.某集团公司拟将6千万资金用于改造扩建所属的A 、B 、C 三个企业。
每个企业的利润增长额与所分配到的投资额有关,各企业在获得不同的投资额时所能增加的利润如下表所示。
集团公司考虑要给各企业都投资。
问应如何分配这些资金可使公司总的利润增长额最大?
满足
满足
5.已知运输问题的产销平衡表,最优调运方案及单位运价表分别如下表所示: 产销平衡表及最优方案 单位运价表
试分析:(1) 从2222c B A 的单位运价到在什么范围变化时,上述最优调运方案不变; (2) 从从4242c B A 的单位运价到变为何值时,将有无限多最优调运方案。
参考答案
一、单选题
1.C
2.B
3.D
4. A
5. D
6. B
7. C
二、判断题
1.×
2. √
3.×
4. √ 5√ 6×
三、填空题
1、X1≤1 , X1≥2
2、⎩⎨⎧=-+-++
--+0
2}min{21d d x x d d 3、可行解、无可行解、无界解、无穷多解 4、匈牙利法
5、作为整个过程的最优策略具有这样的性质,无论过去的状态和决策如何,对先前的决策所形成的状态而言,余下的诸决策必构成最优策略。
6、 从第k 个阶段到第n 个阶段的最优解
7、: Y =(4,0,9,0,0,0)T
⎪⎪⎪⎭⎫ ⎝⎛611401102
销地 产地 1B 2B 3B 4B 产量 1A 5 10 15 2A 0 10 15 25 3A 5 5 销量 5 15 15 10 销地 产地 1B 2B 3B 4B
1A 10 1 20 11 2A 12 7 9 20 3A
2 14 16 18
四、计算题
1、max(-z)=
''''
123352()x x x x -+-
2、写出对偶问题
maxW=12371114y y y ++
3、解:
4. 解:第一步:构造求对三个企业的最有投资分配,使总利润额最大的动态规划模型。
(1)阶段k :按ABC 的顺序,每投资一个企业作为一个阶段,k =1,2,3,4 (2)状态变量
k x :投资第k 个企业前的资金数。
(3)决策变量k d :对第k 个企业的投资。
(4)决策允许集合:0k k d x ≤≤。
(5)状态转移方程:1k k k x x d +=-。
(6)阶段指标:(,)k k k v x d 见表中所示。
(7)动态规划基本方程:
11()max{(,)()}k k k k k k k f x v x d f x ++=+ 44()0f x = (终端条件) 第二步:解动态规划基本方程,求最有值。
k=4, 44()0f x =
k=3, 334330,d x x x d ≤≤=-
k=2, 22, 322
k=1,
11, 211x x d =-
第三步:回溯求得最优策略 最有解即最优策略巍:
16x =,*14d =;2112x x d =-=,*
21d =;
*3221x x d =-=,*31d =;*
4330
x x d =-=
返回原问题的解,即企业A 投资4千万元,企业B 投资1千万元,企业C 投资1
千万元,最大效益为22千万元。
5.解:假定22C 未知,用位势法求各空格的检验数,如下表:
⎪⎪⎪⎩⎪
⎪⎪⎨⎧≥-≥-≥-≥+≥-0
180
240100
10032222
222222c c c c c 解之得10322≤≤c .所以从22B A →的单位运价22C 在3与10之间变化时,上述最优调运方案不变. (2)假定24C 未知,用位势法求各空格的检验数,如下表:
由24C -17=0可得24C =17.所以当42B A 的单位运价24C 变为17时,有无穷多最优调用方案.。