运筹学模拟题及答案新

合集下载

运筹学例题及答案

运筹学例题及答案
cj zj 0 0 1/3 4/3 0 0 1
继续迭代;得表7
表7
cj 3 2 0 0 0 0 4 cB xB b x1 x2 x3 x4 x5 x6 x7 2 x2 4/3 0 1 2/3 1/3 0 0 0 3 x1 3 1 0 0 1/2 0 1/2 0 0 x5 5/3 0 0 1/3 1/2 1 2 0 4 x7 1/3 0 0 1/3 1/6 0 1/2 1
即新解为 x(1,2,2,0,0,0)T
b 将cj的改变反应到最终单纯形表上;得表4
cj 2 5 0 0 0 0 cB xB b x1 x2 x3 x4 x5 x6 5 x2 4/3 0 1 2/3 1/3 0 0 2 x1 10/3 1 0 1/3 2/3 0 0 0 x5 3 0 0 1 1 1 0 0 x6 2/3 0 0 2/3 1/3 0 1
x2
x3
x4
x5
21210
10401
62300
1 1/2 1 1/2 0 0 1/2 3 1/2 1 01330
cj
cB xB b
6
x1 4
2
x2 6
cj zj
62300
x1
x2
x3
x4
x5
10401
01612
00922
达到最优解;且最优解唯一
2 用大M或两阶段法解LP问题
max z 2 x 1 x 2 2 x 3
x1 3 x2 x4 8
2 x1
x2
6
s.t. x 2 x 3 x4 6
x1
x2
x3
9
x1, x2, x3, x4 0
要求:a写出对偶问题;b已知原问题最有解
X*=2;2;4;0;用互补松弛性求出对偶问题的最 优解

运筹模拟试题及答案

运筹模拟试题及答案

运筹模拟试题及答案
一、选择题
1. 进行运筹学研究时,下列哪种不是需要考虑的因素?
A. 成本
B. 时间
C. 资源
D. 颜色
答案:D
2. 运筹学中常用的优化方法包括以下哪种?
A. 贪心算法
B. 冒泡排序
C. 快速排序
D. 二分查找
答案:A
3. 下列哪种不是传统运筹学方法的代表性问题?
A. 线性规划
B. 背包问题
C. 旅行商问题
D. 贪心算法
答案:D
二、填空题
1. 运筹学最早是在(古代/近代)开始发展的。

答案:近代
2. 线性规划是运筹学中经典的(优化/排列)方法。

答案:优化
3. 旅行商问题是求解搜索过程中的最短(路径/时间)问题。

答案:路径
三、解答题
1. 请简要说明什么是线性规划,以及线性规划的基本原理。

答:线性规划是一种数学优化方法,用于找到使某种目标函数达到
最优的变量取值。

其基本原理是通过建立数学模型,确定决策变量和
约束条件,然后求解最优解,以达到最大化或最小化某项指标的目的。

2. 请简要介绍一下运筹学中的模拟方法以及其应用领域。

答:运筹学中的模拟方法是通过模拟系统的运行过程来进行决策分析和优化设计。

其应用领域包括生产调度、物流管理、金融风险分析等领域,在实际问题中具有广泛的应用。

以上为运筹模拟试题及答案,希望对您的学习和工作有所帮助。

如果还有其他问题,欢迎随时与我们联系。

祝您学习进步!。

运筹学试卷及答案完整版

运筹学试卷及答案完整版

《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。

)1. 图解法提供了求解线性规划问题的通用方法。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。

( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。

( )4. 满足线性规划问题所有约束条件的解称为基本可行解。

( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。

( )6. 对偶问题的目标函数总是与原问题目标函数相等。

( )7. 原问题与对偶问题是一一对应的。

( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。

( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )三、填空题1. 图的组成要素;。

2. 求最小树的方法有、。

3. 线性规划解的情形有、、、。

4. 求解指派问题的方法是。

5. 按决策环境分类,将决策问题分为、、。

6. 树连通,但不存在。

四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。

1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。

运筹学试题及详细答案

运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。

答案:多,竞争。

运筹学复习习题

运筹学复习习题

运筹学学习与考试指导模拟考试试题(一)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分.每小题2分,共10分)1。

博弈论中,局中人从一个博弈中得到的结果常被称为( ): A. 效用; B. 支付; C. 决策; D 。

利润。

2.设线性规划的约束条件为⎪⎩⎪⎨⎧≥=++=++0,,,4223421421321x x x x x x x x x则基本可行解为( ). A 。

(0,0,4,3) B.(3,4,0,0) C 。

(2,0,1,0) D 。

(3,0,4,0) 3.minZ=3x1+4x2, x1+x2≥4, 2x1+x2≤2, x1、x2≥0,则( ). A.无可行解B 。

有唯一最优解C 。

有多重最优解D 。

有无界解4.互为对偶的两个线性规划问题的解存在关系( ). A.原问题无可行解,对偶问题也无可行解 B 。

对偶问题有可行解,原问题也有可行解 C.若最优解存在,则最优解相同D.一个问题有无界解,则另一个问题无可行解5.下列图形中阴影部分构成的集合是凸集的是( ):二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

每小题2分,共20分)1。

线性规划问题的每一个基本可行解对应可行域的一个顶点。

( )2. 如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。

( )3. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。

4.可行解集非空时,则在极点上至少有一点达到最优值。

( ) 5.原问题具有无界解,则对偶问题不可行。

( )6.互为对偶问题,或者同时都有最优解,或者同时都无最优解。

( ) 7.加边法就是避圈法.( )8.一对正负偏差变量至少一个大于零.( ) 9.要求不超过目标值的目标函数是minZ=d+。

( )10.求最小值问题的目标函数值是各分枝函数值的下界。

( ) 三、填空(1分/空,共5分)1.原问题的第1个约束方程是“="型,则对偶问题相应的变量是 变量. 2.若原问题可行,但目标函数无界,则对偶问题 。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学模拟试题及答案

运筹学模拟试题及答案

一、选择题(本题共5小题,每小题3分,满分15分,把答案填在题后括号内.) 1.使用人工变量法求解极大化线性规划问题时,当所有的检验数0j σ≤,在基变量中仍含有非零的人工变量,表明该线性规划问题( C )A. 有唯一的最优解;B. 有无穷多个最优解;C. 无可行解;D. 为无界解 2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中( D ) A .b 列元素不小于零 B .检验数都大于零C .检验数都不小于零D .检验数都不大于零3、对于线性规划问题,下列说法正确的是( D )A 线性规划问题可能没有可行解B 在图解法上,线性规划问题的可行解区域都是“凸”区域C 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D 上述说法都正确4、如果要使目标规划实际实现值不超过目标值。

则相应的偏离变量应满足( B )A. 0d +> B. 0d += C. 0d -= D. 0,0d d -+>>5、下列说法正确的为( D )A .如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B .如果线性规划的对偶问题无可行解,则原问题也一定无可行解C .在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可 行解的目标函数值都一定不超过其对偶问题可行解的目标函数D .如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解 二、判断题:正确的在括号内打“√”,错误的打“×”。

(本题共5小题,每小题3分,满分15分,) 1、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。

( √ ) 2、单纯形法计算中,如不按最小比列原则选取换出变量,则在下一个解中至少有一个基变量的值为负。

( √ ) 3、任何线性规划问题存在并具有惟一的对偶问题。

( √ ) 4、目标规划模型中,应同时包含绝对约束与目标约束。

( × )5、如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南理工大学网络教育学院 2014–2015学年度第一学期期末考试 《 运筹学 》试卷(模拟题)
教学中心: 专业层次:
学 号: 姓 名: 座号: 注意事项:1. 本试卷共 三 大题,满分100分,考试时间90分钟,闭卷;
2. 考前请将以上各项信息填写清楚;
3. 所有答案直接做在试卷上,做在草稿纸上无效;
1、关于线性规划模型的可行解区域,叙述正确的为 ( C ) A .可行解区域必有界
B .可行解区域必然包括原点
C .可行解区域必是凸的
D .可行解区域内必有无穷多个点 2、如图,图2是图1的(C )
a,支撑树,但不是最小支撑树. b,支撑子图,但不是支撑树. c,支撑树,也是最小支撑树. d,是支撑树,不是支撑子图.
v 66
v
图1 图2
3、如果某两个点之间有两条链的话,图G ( B ) A.是一个树 B.就含有圈 C.全是孤立点
D. 以上都不对
4、次为0的点,称为( B )
A.悬挂点
B.孤立点
C.奇点
D.偶点
5、田忌赛马中齐宣王的赢得矩阵为A,不正确的表述是( C )
311111
131111
113111
111311
111131
111113
A
-
⎡⎤
⎢⎥
-
⎢⎥
⎢⎥
-
=⎢⎥
-⎢⎥
⎢⎥
-
⎢⎥
-
⎣⎦
A. 齐宣王的最大赢得函数值为3.
B. 田忌的最大赢得函数值为1.
C. 此对策有鞍点.
D. 此对策无鞍点.
二、判断题(本大题20分,每小题4分)
1、任何形式线性规划问题,均可变换为标准形式。

(√)
2、线性规划问题标准型型如
(√)
3、次为1的点为悬挂点.(√)
4、含有有向边的称为有向图。

(×)
5、在矩阵对策中局中人都采取最优纯策略才是理智的行动. (√)
三、解答题(计算或者证明题:本大题50分,每小题10分)
1、用图解法解线性规划问题
12
12
12
12
max43
326
..318
,0
z x x
x x
s t x x
x x
=+
-+≤


-+≥

⎪≥

2、用单纯形法求解
123 123
123
123
max2 23215
1
520 3
,,0
Z x x x
x x x
x x x
x x x
=++
-+≤



++≤



⎪⎩
3、有一项工程,要埋设电缆将中央控制室与15个控制点连通,下图标出了允许挖电缆沟的地点和距离(单位:百米)。

若电缆线100元/米,挖电缆沟(深1米,宽0.6米)土方30元/立方米,其他建材和施工费用50元/米,请作出该项工程预算的最小费用。

8
v
4. 某厂使用一台设备,在每年初,您作为厂长就要决定是购置新的,还是继续使用旧的。

若置新的,就支付一定的购置费用;若继续使用旧的,则要支付一定的维修费。

问题是如何制定一个几年之内的设备更新计划,使得总的支付费用最少,以五年为一个计划期,若已知该设备在各年初的价格预计为:
使用不同时间设备所需的维修费用为:
5、在我国航空市场,价格战一直都是航空公司之间开展市场竞争的手段之一,目的就是以降价来使产品能够被更多的消费者接受,打压竞争对手,占领更多的市场份额。

现假设在从A-B-C的航线市场中甲乙两家航空公司存在价格竞争。

(1)若双方遵守自律协议,则收益均为0;(2)在一方降价而另一方不降价时,消费者都选择降价的公司,其因航空运输特定的规模效应而获得数值为2的正效益,不降价的公司因需要承担昂贵的设备折旧,客户流失以及市场地位受损等无形资产损失,得到数值为-8的负收益。

(3)在双方都降价时,双方都
要蒙受损失,因其营业收入至少可以弥补部分固定成本,因而各自取得数值为-3的负收益。

要求:(1)试建立该问题中加航空公司的赢得矩阵;(2)通过赢得矩阵,求双方各自的最优策略。

附:参考答案:一、C C B B C,二、√√√×√
三、1、可行域无界,无最优解
2、解先化为标准形式
123
1234
1235
12345
max2
23215
1
520 3
,,,,0
Z x x x
x x x x
x x x x
x x x x x
=++
-++=⎧


+++=




,再列单纯形表计算如下
得到最优解为
35145 25,,0,0,0,max
33
T
X Z
⎛⎫
==

⎝⎭
3、3+4+2+5+5+4+4+5+4+3+5+2+7+4+5=62百米,6200×150+6200×0.6×30=1041600,
v 8
4、解 用i v 代表第i 年初购置一台新设备(加设一点6v 理解为第五年年底),从i v 到1i v +,…,
6v 各画一条弧,弧(),i j v v 表示第i 年初购置设备并一直使用到第j 年初(或第j-1年年底)
.
v 6
v 1
5v 到6v 的最短路径长为18135=+
4v 到6v 的最短路径长为{}24min 1718,24=+ 3v 到6v 的最短路径长为{}33min 1724,2418,33=++ 2v 到6v 的最短路径长为{}43min 1633,2324,3218,43=+++ 1v 到6v 的最短路径长为{}2333356min 2164324,,,4318,61++=++
方案一:第1年,第3年各购一台新设备总费用23+33=56 方案二:第1年,第4年各购一台新设备总费用32+24=56
(或者用Dijkstra 方法,从1v 开始标号()0,0,2v 标号1(,16)v ,3v 标号()1,23v ,4
v 标号()1,32v ,5v 标号()1,43v ,6v 标号()23/,56v v )
v6 v1
甲航空公司的赢得矩阵
32
80
-
⎛⎫

-⎝⎭

11
,3
a v=-。

相关文档
最新文档