运筹学实验 线性规划
运筹学线性规划实验报告

《管理运筹学》实验报告5.输出结果如下5.课后习题: 一、P31习题1某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元.约束条件:问题:(1)甲、乙两种柜的日产量是多少?这时最大利润是多少?答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。
.0,0,6448,120126;240200 z max ≥≥≤+≤++=y x y x y x y x(2)图中的对偶价格13.333的含义是什么?答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。
(3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。
答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。
(4)若甲组合柜的利润变为300,最优解不变?为什么?答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。
二、学号题约束条件:学号尾数:56 则:约束条件:无约束条件(学号)学号43214321432143214321 0 0,309991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=无约束条件43214321432143214321 0 0,3099912445376413432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-≥-+-=-++-+++=⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⨯-≥⨯-⨯-⨯-⨯-⨯-7606165060~5154050~414)30(40~313)20(30~21210 20~11 10~1)(学号)(学号)(学号学号学号)(学号不变学号规则3.运算过程实验结果报告与实验总结:输出结果分析:答:由输出结果可得:最优解为352元,具体排班情况为:11点到12点的时段安排8个临时工;13点到14点的时段再安排1个临时工;14点到15点的时段安排1个临时工;16点到17点时段安排5个临时工;18点到19点安排7个临时工。
运筹学实验报告线性规划及其灵敏度分析

数学与计算科学学院实验报告
实验项目名称线性规划及其灵敏度分析
所属课程名称运筹学B
实验类型综合
实验日期2014年10月24日
班级数学1201班
学号************
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色. 6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。
运筹学实验报告-线性规划

商学院课程实验报告课程名称 运筹学 专业班级 金融工程班 姓 名 指导教师 成 绩2018年 9 月 20日学号:表2 所需营业员统计表星期一二三四五六日需要人数300 300350400480600 5503.建立线性规划模型设x j(j=1,2,…,7)为休息2天后星期一到星期日开始上班的营业员数量,则这个问题的线性规划问题模型为minZ=x1+x2+x3+x4+x5+x6+x7{x1+x4+x5+x6+x7≥300 x1+x2+x5+x6+x7≥300 x1+x2+x3+x6+x7≥350 x1+x2+x3+x4+x7≥400 x1+x2+x3+x4+x5≥480x2+x3+x4+x5+x6≥600x3+x4+x5+x6+x7≥550x≥0,j=1,2,…,7(二)操作步骤1.将WinQSB安装文件复制到本地硬盘,在WinQSB文件夹中双击setup.exe。
图1 WinQSB文件夹2.指定安装软件的目标目录,安装过程中输入用户名和单位名称(任意输入),安装完毕之后,WinQSB菜单自动生成在系统程序中,熟悉软件子菜单内容和功能,掌握操作命令。
图2 目标目录3.启动线性规划和整数规划程序。
点击开始→程序→WinQSB→Linear and Lnteger Programming,屏幕显示如图3所示的线性规划和整数规划界面。
图3 线性规划4.建立新问题或打开磁盘中已有文件。
按图3所示操作建立或打开一个LP问题,或点击File→New Problem建立新问题。
点击File→Load Problem打开磁盘中的数据文件,点击File→New Problem,出现图4所示的问题选项输入界面。
图4 建立新问题5.输入数据。
在选择数据输入格式时,选择Spreadsheet Matrix Form则以电子表格形式输入变量系统矩阵和右端常数矩阵,是固定格式,如图5所示。
选择Normal Model Form则以自由格式输入标准模型。
运筹学-线性规划-第一次

课内实验报告
课程名:运筹学
任课教师:邢光军
专业:
学号:
姓名:
2012/2013学年第 2 学期
南京邮电大学经济与管理学院
x1+x2+x3+x6+x7>=31
x1+x2+x3+x4+x7>=28
x1,x2,x3,x4,x5,x6,x7>=0
1.计算过程
用excel软件进行计算,过程如下:
先在工具中加载宏,然后按题设填好表格再进行规划求解,如下图
得到如下最优解
所以最优解为x1=12,x2=0,x3=11,x4=1,x5=4,x6=4,x7=4,min w=36
2.结果分析
在实际问题中,通常数据较多而复杂,约束条件也比较繁琐,利用excel软件大大提高了效率,并且降低了错误率。
我们应该将excel软件最大程度的应用到现实生活中,很多生产厂商很需要这样的软件来制定最优计划,提高工作效率
成绩评定:。
运筹学实验指导书

运筹学实验指导书-CAL-FENGHAI.-(YICAI)-Company One1实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。
通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。
要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。
二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。
2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。
3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。
4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。
三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。
近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。
为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。
2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。
该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。
20000辆和22000辆。
为1600万元。
根据以上情况,该公司应如何制定1999年度总体经济效益最优的生产计划方案(二)线性规划建模设X j表示生产M j型摩托车的数量(j=1,2,…,9),则总利润最大的摩托车产品生产计划数学模型为:MaxZ=×+×+×+×+×+×+×+×+×=++++++++满足 X1+X2+X3≤50000 (1)X4+X5+X6≤60000 (2)X7+X8+X9≤10000 (3)++++++++≤4000×5 (4)X3≤20000 (5)X6≤22000 (6)×(X1+X2+X3)+×(X4+X5+X6)+×3(X7+X8+X9)≤3000 (7)++++++++≤1600(8)X j≥0(j=1,2,3,4…9)模型说明:约束(1)、(2)、(3)分别表示三种系列摩托车的最大生产能力限制;约束(4)表示摩托车的生产受流动资金的限制;约束(5)和(6)表示M3和M6两种车产量受发动机供应量限制;约束 (7)表示未销售的产量受库存能力的限制;约束(8)表示未销售产品占用资金的限制。
运筹学线性规划实验报告

实验报告一、实验名称:线性规划问题二、实验目的:通过本实验,能掌握Spreadsheet方法,会熟练应用Spreedsheet建模与求解方法。
在Excel(或其他)背景下就所需解决的问题进行描述与展平,然后建立线性规划模型,并用Excel的命令与功能进行运算与分析。
三、实验设备计算机、Excel 四、实验内容1、线性规划其中,目标函数为求总利润的最大值。
B11=SUMPRODUCT(B6:C6,B9:C9);B14=SUMPRODUCT(B3:C3,$B$9:$C$9); B15=SUMPRODUCT(B4:C4,$B$9:$C$9); B16=SUMPRODUCT(B5:C5,$B$9:$C$9); D14=D3; D15=D4; D16=D5; 用规划求解工具求解:目标单元格为B11,求最大值,可变单元格为$B$9:$C$9,约束条件为B14:B16<=D14:D16。
在【选项】菜单中选择“采用线性模型”“假定非负”。
即可进行求解得结果,即确定产品A的产量为20,产品B的产量为24,可实现最大总利润为428。
2、灵敏度分析在【可变单元格】表中:在【可变单元格】表中:“终值”表示最优解,即产品A 产量为20,产品B 产量为24。
“递减成本”表示产品的边际收入与按影子价格折算的边际成本的差,当递减成本小于0时,表示不应该安排该产品的生产,在表中的情况反映了产品A 产品、B 都进行生产,因为在产品A 与产品B 产量增加的同时利润也是在增加的。
产量增加的同时利润也是在增加的。
“目标式系数”是在目标函数中变量的系数,也是产品A 与产品B 的单位利润。
的单位利润。
“允许的增量”“允许的增量”和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,单个目标系数可变的单个目标系数可变的上下限。
也就是说,在目标函数中,产品A 的价值系数在(3.6,9.6】内,产品B 的价值系数不变,或者产品A 的价值不变,产品B 的价值系数在【23.3,8.75】内,最有的生产方案依旧为产品A 产量为20,产品B 产量为24,以达到最大利润。
运筹学实验指导书

实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。
通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。
要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。
二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。
2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。
3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。
4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。
三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。
近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。
为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。
2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。
该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。
在市场调查的1999年该集团可供摩托车生产的流动资金总量为4000万元,年周转次数为5次,生产各种型号摩托车资金占用情况如下表2经预测三种系列摩托车1999年产销率及仓储面积占用情况如下表3公司1999年可提供的最大仓储能力为3000个仓储单位,库存产品最大允许占用生产资金为1600万元。
运筹学实验总结

运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。
在这学期的运筹学课程中,我们进行了一系列实验。
这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。
在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。
实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。
我选择了一个典型的生产调度问题作为实验题目。
通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。
通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。
实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。
在这个实验中,我选择了货物配送路线问题作为研究对象。
通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。
这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。
实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。
在这个实验中,我们学习了动态规划的基本原理和设计思想。
我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。
这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。
实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。
在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。
通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。
实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。
在这个实验中,我选择了装箱问题作为研究对象。
通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。
这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一:实验目的
1)熟练掌握运筹学软件LINDO的相关使用操作
2)利用软件建立模型,解决最优值问题
二:实验内容,上机问题
(1)利用lindo软件,解决如下问题
一个资源利用问题的数学模型如下
MAX z=100x1+180x2+70x3
S.T. 40x1+50x2+60x3<=10000
3x1+6x2+2x3<=600
x1 <=130
x2 <=80
x3<=200
x1>=0
x2>=0
x3>=0
用LINDO软件包解之,并从LINDO的输出表中回答下列问题:
(1)在现有资源的约束条件下,企业管理者应如何组织生产,使利润最大?
(2)为改善现状,以获取更大利润,管理者应该如何做?
(3)若希望增加某种资源的供应量,需支付额外费用,这笔费用应控制在什么范围内,对企业才是有利的?此时(即增加某些资源供应量,同时支付相应的额外费用),企业的总利润的增量是多少?
(2)对偶问题如下
MIN -10000 W1 + (-600) W2 + (-130) W3 + (-80) W4 + (-200) W5
S.T.
-40 W1 + (-3) W2 + (-1) W3 <= -100
-50 W1 + (-6) W2 + (-1) W4 <= -180
-60 W1 + (-2) W2 + (-1) W5 <= -70
W1 >= 0
W2 >= 0
W3 >= 0
W4 >= 0
W5 >= 0
END
三.实验过程:介绍程序,分析结果得结论
1.建立模型如下
2.运行模型,分析如下
由图可知:最优值z=20003.8 3.分析结果如下
由图可知:最优解x1=130, x2=11.538462, x3=70.384613 4.对偶问题的模型建立如下
5.分析模型
6.结果如下
由图可知:对偶问题的最优解为:w1=0.230769 w2=28.076923 w3=6.5384762 w4=w5=0
第二问的结论如下:
企业每增加1个单位的第1种资源,将增加利润130;每增加1个单位的第2种资源,将增加利润11.538462;同理第三种资源若增加1个单位也将有70.384613 的利润增加。
但第4、5种资源的增加不会带来利润。
所以企业要增加前三种资源的供应量。
第三问的结论如下:
当增加第i种资源时,需要增加额外费用为d(i),i=1,2,3,只有使d(i)<w(i)时,才对企
业有利,这时,前三种资源的每增加1个单位,总利润的增量为∑[w(i)-d(i)]。