运筹学线性规划案例

合集下载

第五章运筹学线性规划在管理中的应用案例

第五章运筹学线性规划在管理中的应用案例

第五章线性规划在管理中的应用某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。

管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。

可用的机器设备是限制新产品产量的主要因素,具体数据如下表:司的利润最大化。

1、判别问题的线性规划数学模型类型。

2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。

3、建立该问题的线性规划数学模型。

4、用线性规划求解模型进行求解。

5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。

6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。

解:1、本问题是资源分配型的线性规划数学模型。

2、该问题的决策目标是公司总的利润最大化,总利润为:+ +决策的限制条件:8x1+ 4x2+ 6x3≤500 铣床限制条件4x1+ 3x2≤350 车床限制条件3x1+ x3≤150 磨床限制条件即总绩效测试(目标函数)为:max z= + +3、本问题的线性规划数学模型max z= + +S.T.8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1+ x3≤150x1≥0、x2≥0、x3≥04、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。

5、灵敏度分析目标函数最优值为: 30变量最优解相差值x1 50 0x2 25 0x3 0 .083约束松弛/剩余变量对偶价格1 0 .052 75 03 0 .033目标函数系数范围:变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限.25 .333常数项数范围:约束下限当前值上限1 400 500 6002 275 350 无上限3 150(1)最优生产方案:新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。

线性规划应用案例分析

线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。

它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。

这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。

本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。

某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。

公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。

通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。

某物流公司需要计划将货物从多个产地运输到多个目的地。

公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。

通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。

某投资公司需要将其资金分配给多个不同的投资项目。

每个项目都有不同的预期回报率和风险水平。

公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。

通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。

这些案例展示了线性规划在实践中的应用。

然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。

线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。

线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。

这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。

下面我们将详细讨论线性规划的应用。

线性规划是一种求解最优化问题的数学方法。

它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。

这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。

工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。

管理运筹学-线性规划案例《食用调和油生产计划》

管理运筹学-线性规划案例《食用调和油生产计划》

食用调和油生产计划案例1.问题的提出调和油又称高合油,它是根据使用需要,将两种以上经精炼的油脂(香味油除外)按比例调配制成的食用油。

其原料常选用精炼大豆油、菜籽油、花生油、葵花籽油、棉籽油等,还可配有精炼过的米糠油、玉米胚油、油茶籽油、红花籽油、小麦胚油等特种油酯。

调和油是是目前市场上比较常见的食用油类之一,以其油色澄清、透明,味道香醇可口,营养较纯种食用油更加丰富均衡,逐渐成为市场上的主流。

在调和油制作成本上,厂家可根据配方,以一定的加工工艺将几种油脂混合配制,取代了传统的纯种油脂,从而大大降低了成本和市面价格,更加迎合消费者追求“物美价廉”的消费心理,为企业带来了效益。

但在调和油的生产过程中,伴随着原料的采购、贮存、加工,都必然要有一定资金和设备上的投入。

当然,除了这些必须具备的,以为了保证调和油质量的程序外,如何降低相关原料和设备所受社会和市场因素引起的价格升高,原料过长时间保养带来的负经济利润,从而实现企业生产成本降低,成为生产厂家不得不考虑的一个问题。

2.问题分析在上述的问题中,存在着一个不争的事实。

价格会随着社会和市场的因素的影响而产生变化,其关系即为“经济函数”(通过广泛地进行市场调查并且采集足够的统计资料,分析确定各宗经济变量之间的函数关系)。

而大量低价采购原料又会带来贮存和保鲜方面成本的升高。

相应关系式可概括为:生产成本=原料价格*数量+贮存保鲜费用+加工费(加工成本+工人工资)+机器折损费+产品维护费用。

3.题目要求食油厂精炼两种类型的原料油——菜籽油和花生油,并将精制油混合得到一种调和油产品。

生产流程如下图所示:菜籽油原料油来自两个产地,而花生原料油来自另外三个产地。

据预测,这5种原料油菜籽油1採購菜籽油2採購花生油1採購花生油2採購花生油3採購的价格从一至六月分别为:表1 五种原料油的价格(元/吨)成品调和油售价为11000元/吨。

菜籽油和花生油需要由不同的生产线来精炼。

运筹学线性规划案例

运筹学线性规划案例

运筹学线性规划案例 生产组织与计划问题A B可用资源 设备 原料1 原料2 1 2 2 1 0 1 300台时 400kg 250kg单位利润50 100A, B 各生产多少.可获最大利润?In 资源限制 设备 1 1r 3oo 會对.厦轧A2 1 400千克 0 1 颂千克刃元wo 元Max z = 50 Xi + 100 x 2 s.t.Xl + x? < 300 2 X! + x £< 400 Xj < 250Xi > 0衍> 0得到最优解:x d = 50, X 2 = 250 约束条佚 J - %1/ i fI t / J A B 最优目标值z = 27500目标函数:Max z= 50x1 + 100x2 线性规划模型=约束条件:s.t. xi+ X2 < 3002 Xj+ 勺 W 400 x2 W 250X], x2 $ 0•建模过程1. 理解要解决的问题,了解解题的目标和条件;2. 定义决策变量(X】,X2,…,Xn),每一组值表示一个方案;3. 用决策变量的线性函数形式写出目标函数,确定最大化或最小化目标;4. 用一组决策变量的等式或不等式表示解决问题过程中必须遵循的约束条件• 一般形式目标函数:Max (Min) z = c】x^ + c? x?+…约束条件:s.t. dll X1 + 62X2+ …+dln Xn W ( =, D ) bl02]衍 + 022七+…+匕5石 W ( =?) b2dml X] + 如2 旳+ …+ dmn % W ( =?) b mXj , X],・••,X n 0(1) 分别取决策变量X】,X2为坐标向量建立直角坐标系。

在直角坐标系里,图上任意一点的坐标代表了决策变量的一组值,题中的每个约束条件都代表一个半平面。

(2) 对每个不等式(约束条件),先取其等式在坐标系中作直线,然后确定不等式所决定的半平面。

运筹学应用案例

运筹学应用案例

运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。

运筹学的应用范围非常广泛,涉及到各个领域。

以下是一个关于运筹学应用的实际案例。

某公司是一家制造业企业,主要生产产品A和产品B。

这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。

公司的目标是最大化利润。

产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。

产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。

物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。

同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。

另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。

为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。

首先,公司需要确定目标函数。

由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。

假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。

那么公司的目标函数可以定义为:Z=10A+8B。

然后,公司需要确定约束条件。

根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。

由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。

最后,公司需要使用线性规划算法来求解最优解。

线性规划算法可以通过求解目标函数的最大值来找到最优解。

在这个案例中,可以使用单纯形法来求解最优解。

通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。

对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。

运筹学教学案例:Cases1(线性规划案例答案1)

运筹学教学案例:Cases1(线性规划案例答案1)

2.1a) In this case, we have two decision variables: the number of Family Thrillseekers we should assemble and the number of Classy Cruisers we should assemble. We also have the following three constraints:1. The plant has a maximum of 48,000 labor hours.2. The plant has a maximum of 20,000 doors available.3. The number of Cruisers we should assemble must be less than or equal to 3,500.4567D Resources Used=SUMPRODUCT(B6:C6,Production)=SUMPRODUCT(B7:C7,Production)1011FTotal Prof it=SUMPRODUCT(UnitProf it,Production)Rachel’s plant should assemble 3,800 Thrillseekers and 2,400 Cruisers to obtain a maximum profit of $26,640,000.b) In part (a) above, we observed that the Cruiser demand constraint was not binding.Therefore, raising the demand for the Cruiser will not change the optimal solution.The marketing campaign should not be undertaken.c) The new value of the right-hand side of the labor constraint becomes 48,000 *1.25 = 60,000 labor hours. All formulas and Solver settings used in part (a)remain the same.Rachel’s plant should now assemble 3,250 Thrillseekers and 3,500 Cruisers to achieve a maximum profit of $30,600,000.d) Using overtime labor increases the profit by $30,600,000 – $26,640,000 =$3,960,000. Rachel should therefore be willing to pay at most $3,960,000 extra for overtime labor beyond regular time rates.e) The value of the right-hand side of the Cruiser demand constraint is 3,500 * 1.20= 4,200 cars. The value of the right-hand side of the labor hour constraint is48,000 * 1.25 = 60,000 hours. All formulas and Solver settings used in part (a) remain the same. Ignoring the costs of the advertising campaign and overtimelabor,Rachel’s plant should produce 3,000 Thrillseekers and 4,000 Cruisers for amaximum profit of $32,400,000. This profit excludes the costs of advertising and using overtime labor.f) The advertising campaign costs $500,000. In the solution to part (e) above, weused the maximum overtime labor available, and the maximum use of overtime labor costs $1,600,000. Thus, our solution in part (e) required an extra $500,000 + $1,600,000 = $2,100,000. We perform the following cost/benefit analysis:Profit in part (e): $32,400,000Advertising and overtime costs: $ 2,100,000$30,300,000We compare the $30,300,000 profit with the $26,640,000 profit obtained in part (a) and conclude that the decision to run the advertising campaign and use overtime labor is a very wise, profitable decision.g) Because we consider this question independently, the values of the right-handsides for the Cruiser demand constraint and the labor hour constraint are the same as those in part (a). We now change the profit for the Thrillseeker from $3,600 to $2,800 in the problem formulation. All formulas and Solver settings used in part(a) remain the same.Rachel’s plant should assemble 1,875 Thrillseekers and 3,500 Cruiser s to obtain a maximum profit of $24,150,000.h) Because we consider this question independently, the profit for the Thrillseekerremains the same as the profit specified in part (a). The labor hour constraint changes. Each Thrillseeker now requires 7.5 hours for assembly. All formulas and Solver settings used in part (a) remain the same.Rachel’s plant should assemble 1,500 Thrillseekers and 3,500 Cruisers for amaximum profit of $24,300,000.i) Because we consider this question independently, we use the problem formulationused in part (a). In this problem, however, the number of Cruisers assembled has to be strictly equal to the total demand. The formulas used in the problemformulation remain the same as those used in part (a).The new profit is $25,650,000, which is $26,640,000 – $25,650,000 = $990,000 less than the profit obtained in part (a). This decrease in profit is less than$2,000,000, so Rachel should meet the full demand for the Cruiser.j) We now combine the new considerations described in parts (f), (g), and (h). In part (f), we decided to use both the advertising campaign and the overtime labor.The advertising campaign raises the demand for the Cruiser to 4,200 sedans, and the overtime labor increases the labor hour capacity of the plant to 60,000 labor hours. In part (g), we decreased the profit generated by a Thrillseeker to $2,800.In part (h), we increased the time to assemble a Thrillseeker to 7.5 hours. The formulas and Solver settings used for this problem are the same as those used in part (a).Rachel’s plant should assemble 2,120 Thrillseekers and 4,200 Cruisers for amaximum profit of $28,616,000 – $2,100,000 = $26,516,000.。

运筹学线性规划灵敏度分析教学案例

运筹学线性规划灵敏度分析教学案例
2020/8/1
多个资源系数同时变动分析
例如,将 1 个小时的用工时间从3车间移到2车间,对总利润 产生什么影响?
总利润增加 3650 - 3600 = 50 元, 而目标系数未变,所以最优解肯定 发生变化,
2020/8/1
百分之百法则
如果约束右端值同时变动,计算出每一变动占允许变动量的 的百分比,如果所有的百分比之和不超过100%,那么,影子 价格依然有效;否则,就无法确定。
2020/8/1
灵敏度分析的概念
LP 问题的系数有 aij、bi 、 cj,这些系数往往是估计值 或预测值。
市场条件变化, cj 值就会变化;工艺条件和技术水平改 变, aij 就变化; bi 是根据资源投入后的经济效果决定的一种 选择,市场供应条件发生变化时,亦会改变。
提出问题:
• 当 LP 问题的系数有一个或几个发生变化时,已求得的最优 解会有什么变化; • 这些系数在什么范围内变化时,LP 问题的最优解不会变化。
再改变参数
最优解变了
2020/8/1
那么,保持最优解不变的价值系数允许 变化范围?
改变最优解的临界值是什么呢?
敏感性报告
在“规划求解结果”中 选定“敏感性报告”。 得到一个工作表:
2020/8/1
敏感性报告
最优解
目标函数系数
“递减成本” --- 表示目标函数的系数必须改变多少,才能使 决策变量有正数解。 “允许的增量”和“允许的减量” --- 给出最优解不变的范围。 如门的系数范围: 0≤c1≤750;窗的系数范围:c2≥200
2020/8/1
资源数量变化的分析
考虑只有一个右段值 bi 改变:2 车间可用工时由原来的 12小 时增加到 13 小时,最优解如何变化呢?再变化呢?

运筹学案例分析

运筹学案例分析

运筹学案例分析⼀.案例描述西兰物业公司承担了正⼤⾷品在全市92个零售店的⾁类、蛋品和蔬菜的运送业务,运送业务要求每天4点钟开始从总部发货,必须在7:30前送完货(不考虑空车返回时间)。

这92个零售点每天需要运送货物吨,其分布情况为:5千⽶以内为A区,有36个点,从总部到该区的时间为20分钟;10千⽶以内5千⽶以上的为B区,有26个点,从总部到该区的时间为40分钟;10千⽶以上的为C区,有30个点,从总部到该区的时间为60分钟;A区各点间的运送的时间为5分钟,B区各点间的运送时间为10分钟,C区各点间的运送时间为20分钟,A区到B区的运送时间为20分钟,B区到C 区的运送时间为20分钟,A区到C区的运送时间为40分钟。

每点卸货、验收时间为30分钟。

该公司准备购买规格为2吨的运送车辆,每车购价5万元。

请确定每天的运送⽅案,使投⼊的购买车辆总费⽤为最少。

⼆.案例中关键因素及其关系分析关键因素:1.⾸先针对⼀辆车的运送情况作具体分析,进⽽推⼴到多辆车的运送情况;2.根据案例中的关键点“零售点每天需要运送货物吨”及“规格为2吨的运送车辆”可知就⼀辆车运送⽽⾔,可承担4个零售点的货物量;3.根据案例中的“运送业务要求每天4点钟开始从总部发货,必须在7:30前送完货(不考虑空车返回时间)”可知每天货物运送的总时间为210分钟,超过该时间的运送⽅案即为不合理;4.如下表以套裁下料的⽅法列出所有可能的下料防案,再逐个分析。

三、模型构建1、决策变量设置设已穷举的12个⽅案中⽅案i所需的车辆数为决策变量Xi (i=1,2…12),即:⽅案1的运送车台数为X1;⽅案2的运送车台数为X2;⽅案3的运送车台数为X3;⽅案4的运送车台数为X4;⽅案5的运送车台数为X5;⽅案6的运送车台数为X6;⽅案7的运送车台数为X7;⽅案8的运送车台数为X8;⽅案9的运送车台数为X9;⽅案10的运送车台数为X10;⽅案11的运送车台数为X11;⽅案12的运送车台数为X12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学线性规划案例生产组织与计划问题解
某公司由于生产需要,共需要A,B两种原料至少350吨(A,B两种材料有一定替代性),其中A原料至少购进125吨。

但由于A,B两种原料的规格不同,各自所需的加工时间也是不同的,加工每吨A原料需要2个小时,加工每吨B原料需要1小时,而公司总共有600个加工小时。

又知道每吨A原料的价格为2万元,每吨B原料的价格为3万元,试问在满足生产需要的前提下,在公司加工能力的范围内,如何购买A,B两种原料,使得购进成本最低?
目标函数:Min Z= 2x1 + 3 x2
约束条件:s.t. x1 + x2 ≥350
x1 ≥125
2 x1 + x2 ≤600
x1 , x2 ≥0
解:目标函数:Min Z= 2x1 + 3 x2
约束条件:
s.t. x1 + x2 ≥350
x1 ≥125
2 x1 + x2 ≤600
x1 , x2 ≥0
采用图解法。

如下图:得Q点坐标(250,100)为最优解。

x2。

相关文档
最新文档