运筹学中线性规划实例汇总

合集下载

管理运筹学第二章 线性规划的图解法

管理运筹学第二章 线性规划的图解法

B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)

-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0

线性规划应用案例分析

线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。

它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。

这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。

本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。

某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。

公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。

通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。

某物流公司需要计划将货物从多个产地运输到多个目的地。

公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。

通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。

某投资公司需要将其资金分配给多个不同的投资项目。

每个项目都有不同的预期回报率和风险水平。

公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。

通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。

这些案例展示了线性规划在实践中的应用。

然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。

线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。

线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。

这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。

下面我们将详细讨论线性规划的应用。

线性规划是一种求解最优化问题的数学方法。

它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。

这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。

工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。

【运筹学】2第二章线性规划图解法

【运筹学】2第二章线性规划图解法

(7, 0)
56
78
9 10
x1
Example 1: Graphical Solution
x2
• Optimal Solution
8 7 6 5 4 3 2 1
12
Objective Function 5x1 + 7x2 = 46
Optimal Solution (x1 = 5, x2 = 3)
34
56
78
9 10
x1
•画图求解 •2)Max z= 7x1 + 5x2 •3)Max z= 5x1 + 10x2 •4)Max z= 5x1 + 5x2
Example 1: Graphical Solution
x2
• Optimal Solution
8 7 6 5 4 3 2 1
12
Objective Function 5x1 + 7x2
第2章 线性规划图解法
第2章 线性规划图解法
2.1 线性规划问题 2.2 图解法 2.3 极点和最优解 2.4 计算机求解 2.5 最小化问题 2.6 特例
2.1 线性规划问题
• 在一定的约束条件(限制条件)下,使得 某一目标函数取得最大(或最小)值,当 规划问题的目标函数与约束条件都是线性 函数,便称为线性规划。 •Linear programming (LP)
2.2 图解法
•唯一解 •无穷多个最优解 •无界解 •无可行解
Example 1: A Maximization Problem
• LP Formulation • •
Max z= 5x1 + 7x2

s.t.
x1

第二章 线性规划应用举例

第二章 线性规划应用举例

2.17 有 A, B 两种产品,都须经过两道化学反应过程。 每一单位产品 A 需要在前一工序中花去 2 小时和在后 道工序中花去 3 小时; 每一单位产品 B 需要在前一工 序中花去 3 小时和在后道工序中花去 4 小时。 可供利 用的前一工序的时间为 200 小时, 后道工序的时间为 240 小时。每生产 1 个单位的产品 B 同时也能得到 2 个单位的副产品 C。出售产品 A 每单位能获利 5 元, 产品 B 每单位能获利 10 元,副产品 C 每单位能获利 3 元。卖不出去的产品 C 必须销毁,单位销毁费用是 1 元。 由市场预测知, 最多出售出 10 个单位的产品 C。 试问如何安排生产计划,可使获得的利润最大。
解:定义决策变量为产品中所含原料数量。令 xij 表示第 j 种产品中 i 种原料的 数量(公斤),i=A, B, C, D;j=1, 2, 3。由于产品 3 不含有 C,故 xC 3 0 。
化简后可得:
目标是使利润最大,这里就是总销售收入与原料的总成本之差为最大。
目标函数为:
该问题的LP模型可归纳如下:
2.18 某造纸厂生产宽度为 3 米的卷筒 纸,再将这种大卷筒切成宽度分别为 1.6m, 1.lm 和 0.7m 的小卷筒。 市场对这 三种小卷筒的需求分别是 100、200 和 400 个。问应以怎样的方法切割,可使 耗用的大卷筒最少而又能满足市场的 需要。最优切割方案是否唯一?
2.19一家化工厂生产洗衣粉和洗涤剂。 生产原料可以从市场上以 每公斤5元的价格买到。 处理1公斤原料可生产0.55公斤普通洗衣 粉和0.35公斤普通洗涤剂。 普通洗衣粉和普通洗涤剂可分别以每 公斤8元和12元的价格在市场上出售。市场对普通洗衣粉的最低 需求是每天1000公斤。工厂设备每天最多可处理10吨原料,每 加工1公斤原料的成本为 1.5元。为生产浓缩洗衣粉和高级洗涤 剂,工厂还可继续对普通洗衣粉和普通洗涤剂进行精加工。处 理1公斤普通洗衣粉可得0.6公斤浓缩洗衣粉,处理1公斤普通洗 涤剂可得0.3公斤高级洗涤剂。浓缩洗衣粉和高级洗涤剂的市场 价格分别为每公斤24元和55元。每公斤精加工产品的加工成本 为3元。如果原料供应没有限制且各类产品畅销,问该工厂如何 生产能使其利润最大?

运筹学线性规划ppt课件

运筹学线性规划ppt课件

16
例3
化如下的线性规划问题模型
min z 3x1 2 x 2 x3 x1 2 x 2 3x3 2 2 x1 3x 2 2 x3 2 x 0, x 无约束, x 0 2 3 1
为标准形式。
(1 )变量 x1 是非正的,所以要将模型中的所有 x1 都用 x1 x1 0 代替,其中 x1
运筹学建模步骤:
识别问题
定义决策变量
建立约束条件
建立目标函数
6
2.2 线性规划模型的一般形式和标准形式
2.2.1 线性规划的一般模型
为了讨论一般的线性规划问题的求解。我们先给出线性规 划模型的一般形式如下: max( 或 min) z c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (或 ,或 )b1 a21x1 a22 x2 a2 n xn (或 ,或 )b2 s.t. a x a x a x (或 ,或 )b mn n m m 1 m2 2 x1 , x2 ,..., xn 0
(5)约束条件2是“”型的,因此需要在左边加上一个松弛变量
x5 使它化为等式: 2 x1 3x 2 2 x3 x5 2 也就是
3x2 3x2 2 x3 x5 2 2 x1
18
从而得到模型的标准形式为
2 x2 2 x2 x3 max z 3x1 2 x2 2 x 2 3x3 x 4 2 x1 3x2 3x2 2 x3 x5 2 2 x1 x , x , x , x , x , x 0 1 2 2 3 4 5

运筹学实例分析及lingo求解讲解

运筹学实例分析及lingo求解讲解

运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。

各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。

解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。

ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。

目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai; Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000 C( W1, V7) 5.000000 0.000000C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000 X( W1, V3) 0.000000 5.000000X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000 X( W6, V7) 3.000000 0.000000Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。

运筹学课件 第二章线性规划

运筹学课件 第二章线性规划

2020/11/23
广东工业大学管理学院
10
配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
投资问题:如何从不同的投资项目中选出一个投资方案, 使得投资的回报达到最大。



A B C 加工费
x11 60%以上 x12 20%以下 x13 0.50
x21 15%以上 x22 60%以下 x23 0.40
x31 x32 50%以下 x33 0.30
售价
3.40
2.85
2.25
原料成本 2.00 1.50 1.00
限制用量 2000 2500 1200
设该厂每月生产甲品牌糖果(x11 x12 x13)千克,其中用原料A x11千克,用原料B x12千克,用原料C x13千克; 生产乙品牌糖果(x21 x22 x23)千克,其中用原料A x21千克,用原料B x22千克,用原料C x23千克; 生产丙品牌糖果(x31 x32 x33)千克,其中用原料A x31千克,用原料B x32千克,用原料C x33千克。
设一共植了y棵树,男生中有x1人挖坑, x2人栽树, x3人浇水; 女生中有x4人挖坑, x5人栽树, x6人浇水.
max z y
20x1 10x4 y 0 30x2 20x5 y 0
s.t.
25x3
x1
x2
15x6 x3
y 30
0
x4
x5
x6
20
x1, x2 , x3 , x4 , x5 , x6 , y 0
松弛变量
xs 2 (2x1 3x2 x3)

运筹学 线性规划应用案例

运筹学 线性规划应用案例

约束条件-线路通过能力的限制
• P0ij+P0jiMij Mij—线路ij的通过能力。 • 其他约束 • P0ij、P0ji、Pij、Pji0,P0ij×P0ji=0,
Pij×Pji=0 • 如果解出最优分配Pij=Pji=0,则说明ij线路 不必架设。
例: 规划目的是寻找节点6新电厂接入系统 最优方案。
模型的目标函数反映的是平均收 益率最大,前四个约束分别是对投资 年限、平均收益率、风险系数和增长 潜力的限制。最后一个约束是全部投 资比例的总和必须等于1.
最优解:X1=0.57143 X3=0.42857 平均年收益率=17% 即: 投资国库券=0.57143*50=29万元 投资房地产=0.42857*50=21万元 投资年限=4.28571年 平均年收益率=17% 风险系数=4 增长潜力=12.8571%
以配煤最低成本为目标函数,以 单煤的成本,煤质参数和锅炉的燃烧 品质参数的临界值为约束条件,构造 线性规划模型如下:
式中:aij——第j种煤第i个指标 • Xj——第j种煤相对于锅炉设计煤种 消耗量的比例% • bi,Bi—混煤第j种性能指标的限定值 • n——煤的性能指标的个数,包括硫 份、水份、灰份、热值、挥发份等 • m—单煤的种类数量 • Smin—混煤的最低成本 • Cj—单煤的最低成本
最低 功率 级 (MW)
最高 功率 级 (MW)
最低功 率级的 每小时 费用 (元)
类型1
850
2000 1750 4000
超过最 启动费 低功率 用(元) 级的每 兆瓦小 时费用 (元) 1000 2 2000
1.3 3 1000 500
类型2 1250 类型3 1500
2600 3000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称:运筹学导论
实验名称:线性规划问题实例分析专业名称:信息管理与信息系统
指导教师:刘珊
团队成员:邓欣(20112111
蒋青青(20114298
吴婷婷(20112124
邱子群(20112102
熊游(20112110
余文媛(20112125
日期:2013-10-25
成绩:___________
1.案例描述
南部联盟农场是由以色列三个农场组成的联合组织。

该组织做出了一个关于农场农作物的种植计划,如下:
每一个农场的农业产出受限于两个量,即可使用的灌溉土地量和用于灌溉的水量。

数据见下表:
适合本地区种植的农作物包括糖用甜菜、棉花和高粱。

这三种作物的差异在于它们每亩的期望净收益和水的消耗量不同。

另外农业部门已经制定了南部联盟农场作物总亩数的最大配额,见下表:
作物的任何组合可以在任何农场种植,技术部门的任务是找出一个种植方案使南部联盟农场的净收益最大化。

2.建立模型
决策变量为Xi(i=1,2,……,9,表示每个农场每种作物的种植量。

MAX Z=1000(X1+X2+X3+750(X4+X5+X6+250(X7+X8+X9
约束条件:
(1)每一个农场使用的土地
X1+X4+X7≤400
X2+X5+X8≤600
X3+X6+X9≤300
(2每一个农场的水量分布
3X1+2X4+X7≤600
3X2+2X5+X8≤800
3X3+2X6+X9≤375
(3每一种作物的总种植量
X1+X2+X3≤600
X4+X5+X6≤500
X7+X8+X9≤325
非负约束Xi≥0 , i=1,2, (9)
3.计算机求解过程
步骤1.生成表格
步骤2.输入数据
步骤3.求解结果
输出分析:
最优解为(0, 133.33,125, 300, 200, 0, 0, 0,0)最优值为Z=633333.33。

相关文档
最新文档