特高压直流输电工程的特点与应用浅析
探究高压直流输电技术

探究高压直流输电技术高压直流输电技术是一种利用特定设备将交流电转化为直流电,再通过高压输电线路进行远距离传输的技术。
相较于传统的交流输电技术,高压直流输电技术具有输电损耗小、占地面积小、线路电压稳定等优点,因此在长距离、大容量输电方面具有重要的应用价值。
一、高压直流输电技术的原理及特点高压直流输电技术的原理是通过变流器将交流电转化为直流电,再通过高压输电线路进行输送。
其特点主要表现在以下几个方面:1. 输电损耗小在长距离输电过程中,输电线路的电阻以及电感将导致交流电输电损耗增大,而采用高压直流输电技术可以减少这些损耗,提高输电效率,使得输电损耗大幅度降低。
2. 占地面积小相较于交流输电技术,高压直流输电技术所需的输电线路更细、支持结构更简单,因此在占地面积上具有明显的优势。
这也意味着在地理条件复杂的地区,更适合采用高压直流输电技术。
3. 线路电压稳定利用高压直流输电技术进行输电时,线路上的电压波动较小,不容易受到外界因素的干扰,从而能够保证系统的稳定性和可靠性。
在跨国输电方面,由于国家之间的电网互连可能存在电压频率不同和网络不稳定等问题,因此采用高压直流输电技术可以有效地克服这些问题,实现不同国家间的大容量跨国输电。
2. 超高压输电随着我国电力工业的快速发展,超高压输电技术已成为目前电力系统建设的主要方式,超高压直流输电技术因其输电效率高、损耗小等特点,已成为超高压输电线路中的主要选择。
3. 高峰负荷调节在电力系统运行中,高峰时段的负荷调节是一个重要的问题。
采用高压直流输电技术可以实现不同地区之间的电力资源共享,有效平衡各地区的负荷,提高电力系统的运行效率。
三、高压直流输电技术的发展现状与前景为了满足我国不断增长的用电需求,高压直流输电技术在国家战略规划中被赋予了重要的地位。
目前,中国已经建成了世界上最大的±800kV超高压直流输电工程,实现了西部地区大规模电力资源向东部地区输送。
在未来,高压直流输电技术将继续发挥重要作用。
特高压直流输电的技术特点和工程应用

汇报人:
单击输入目录标题 特高压直流输电的技术特点 特高压直流输电的工程应用
特高压直流输电的技术挑战与解决方案
特高压直流输电的未来发展与趋势
添加章节标题
特高压直流输电的技术特点
电压等级与电流模式
电压等级:特高压直流输电 的电压等级通常为±800kV 或更高,能够实现远距离大 容量的电力传输。
添加标题
未来发展趋势:随 着技术的不断进步, 新型材料和制造技 术的应用前景广阔, 未来特高压直流输 电设备将更加高效、
环保、安全。
添加标题
面临的挑战:虽然 新型材料和制造技 术的应用前景广阔, 但也面临着一些挑 战,如技术研发、 设备成本等问题, 需要不断进行研究
和探索。
添加标题
特高压直流输电在新能源领域的应用前景
电流模式:特高压直流输电 采用单极或双极直流输电模 式,通过大地或海底电缆等 实现电力传输。
换流技术及其工作原理
换流技术:采用晶闸管换流器实现直流输电的转换 工作原理:通过控制晶闸管的触发角,实现直流电压的变换和传输 换流器类型:三相桥式、六相桥式、十二相桥式等 换流站设备:换流变压器、平波电抗器、滤波器等
新能源发展对特高压直流输电的需 求
特高压直流输电在新能源领域的技 术挑战与解决方案添加标题添加标题添加标题添加标题
特高压直流输电在新能源领域的应 用现状
特高压直流输电在新能源领域的未 来发展趋势与展望
THANK YOU
汇报人:
容量还将进一步增大。
单击添加标题
智能化和自动化技术的应用: 随着智能化和自动化技术的 不断发展,特高压直流输电 技术也将不断引入这些技术, 提高输电系统的智能化和自 动化水平,提高输电效率和
特高压直流输电技术及其应用

特高压直流输电技术及其应用一、概述特高压直流输电技术是一种高效能、低损耗、远距离长输、抗干扰能力强且可靠性高的电力输电技术。
特高压直流输电技术的应用不仅可以改善电网的无功角,提高稳定性,而且还可以优化电网的结构布局,提高电能利用率。
二、技术原理特高压直流输电技术是利用电力电子器件对交流电进行整流、变换、滤波处理后,形成直流电,再通过输电线路对直流电进行传输的一项新技术。
特高压直流输电系统主要由换流站、高压直流输电线路和终端换流站等组成。
电源通过换流站的交流侧接入,变为直流电后经过高压直流输电线路输送到接收站,再通过终端换流站变为交流电接入电网。
三、优点1. 低损耗:采用直流输电可避免交流输电过程中会产生的电抗、电流互感等损失。
2. 远距离高效能输电:直流输电线路作为可替代交流输电的新型电网架构,其输送长度远高于交流输电,可在远距离长距离输送电力。
3. 抗干扰能力强:特高压直流输电技术在功率变化、相位跳跃、短时间过载、负载波动以及输电线路受到外来干扰等情况下仍能保证良好的电能传输和供应。
4. 可靠性高:通过对换流站、输电线路、终端换流站等设备进行可靠性设计,并采取智能化技术,可确保特高压直流输电系统的稳定性和安全性。
四、应用1. 遥远地区电力输送:特高压直流输电技术能够长距离超远距离输送电力,为遥远地区的电力需求提供解决方案,并充分利用负载率,实现对电力资源的优化利用。
2. 解决电网瓶颈问题:特高压直流输电技术具有抗干扰能力强和输电长度远的特点,可以有效解决传统交流输电在电网瓶颈问题上的限制。
3. 可再生能源输送:随着可再生能源发电技术的不断发展,特高压直流输电技术可以用于传输风力发电、太阳能发电等可再生能源的电力。
4. 铝、铜资源集中地输电:利用特高压直流输电技术,可以将铝、铜等原材料在世界范围内集中输电,进一步实现资源优化布局。
五、发展前景特高压直流输电技术是未来电力送输的主要方向。
作为一项领先的电力技术,其优越的性能和可靠性,将推动电力输送的新型模式。
特高压直流输电工程的特点与应用

特高压直流输电工程的特点与应用国网甘肃省电力公司超高压公司2甘肃省兰州市730070摘要:随着我国经济以及科学技术的不断进步和发展,我国在生活以及生产方面对电力的需求量不断地加大,这也促进电力行业的发展以及壮大。
但是这也为现阶段的输电工程提出更高的要求,需要电力输送工程具有更高的输电能力以及效率,保障经济、安全、合理以及可靠的进行电力运输,其中特高压电网的建设主要是为大核电站、可再生能源基地以及大煤电等进行电力输送,从而满足这些基地的用电需求。
关键词:特高压直流输电;技术特点;应用引言:特高压直流输电技术是一项先进技术,可以满足长距离、大容量运输需求。
例如我国电力资源存在地区分布不均的情况,为了实现优化配置要采用特高压直流输电技术。
在建设特高压直流输电工程时,要综合考虑地理环境、气候条件等因素,才能保证电力资源安全、稳定输送,对于社会经济发展具有重要意义。
1.特高压输电技术概述特高压直流输电在很多行业及远程电力输送中有重要应用,随着电力电子技术快速发展,高压直流电源性能不断提高,其技术也不断得到更新发展。
相对于传统交流输电方式而言,高压直流输电用于远距离或超远距离输电中具有更大经济效益,其除了具有常规直流输电调节速度快、运行可靠等优点外,经济性也非常显著。
首先,高压直流输电只需两根导线,线路造价低,有效节约电缆费用。
其次,高压直流输电运行电能损耗小,传输节能效果佳。
直流输电导线根数少,电阻发热损耗小,没有感抗和容抗的无功损耗,且传输功率的增加使单位损耗降低,大大提高了电力传输中的节能效果。
此外,高压直流输电线路占地面积小,节约土地。
特高压直流电源是一种将工频电网电能转变为特种形式的电子仪器设备。
按输出电压极性进行分类,高压直流电源主要分为正极性、负极性两种类型。
随着电力行业快速发展,高压直流电源被广泛应用于各行各业,在农业领域也有重要应用。
在具体应用环节,该项技术具有较为显著的节能效果。
相较于传统电流计算而言,高压直流电源通常能够节能约20%~30%。
特高压交直流输电技术特点及应用场合浅析

Research and Exploration |研究与探索•探讨与创新特高压交直流输电技术特点及应用场合浅析王赛彖,占小猛,李良权(平高集团有限公司,河南平顶山467001 )摘要:输电技术快速发展,我国已进入特高压输电广泛应用的时代。
本文分析了特高压交、直流输电技术的主要特点,并对其技术经济性进行简要对比。
在此基础上,对特高压输电技术在我国的应用场合进行了探讨。
关键词:特高压交流输电;特高压直流输电;可靠性;经济性;应用场合中图分类号:TM723 文献标识码:A 文章编号:1671-0711 (2017) 09 (上)-0166-02推进特高压电网建设已成为国家发展战略。
我国 电网特点是资源和负荷的地理分布极不平衡,客观上 存在长距离、大容量电力输送需求。
从2009年1100kV 特高压变流输电示范线路“晋东南一南阳一荆门”,到 2010年±800k V云南一广东特高压直流电输电示范工 程的成功投运,标志着我国特高压输电大规模应用时代 拉开帷幕。
特高压电网是指1100k V级交流和±800k V级直流的输电电网。
我国发展特高压输电技术,是为更经济、更可靠地解决当前大规模、远距离输电问题。
经济性是 特高压输电的重要基础。
我国特高压输电技术的试验能力和工程实践水平 提升迅速,对于特高压交、直流两种输电方式的应用 前景,是工程技术人员关心的问题。
本文从对特高压 交、直流输电技术特点入手,探讨其适用场合及经济性。
1特高压交流输电技术特点1.1大容量输送能力自然功率是评价线路输电能力的一项重要指标。
线路输送自然功率时,电感吸收的无功和电容发出的无 功保持平衡。
大容量输电线路通常装设高压电抗器或串 联补偿装置,以解决无功平衡和过电压问题。
据测算,采取相同并联补偿度时,1100k V输电线路的自然功率 是550k V线路的4.2倍。
1.2长距离输送能力阻抗与电压平方成反比,1100k V特高压线路阻抗 折算到550k V线路,约为后者的1/4。
特高压直流输电的技术特点和工程应用解读

地电位升高
周围金属的腐蚀
变压器直流偏磁
±800KV电磁环境指标
•地面合成场强 30KV/m
(临近民房,50%测量值不超过15KV/m,最大 值不超过25KV/m)
•输电线路下方,离子流密度100nA/m2
•无线电干扰
58dBμ V/m
(线投影外侧20m处,0.5MHz)
•噪声 50dBA(人口稠密地区按45dBA控制)
带旁路开关的双12脉冲阀组串接结构
800KV
400KV
带旁路开关的双12脉冲阀组运行图
带平波电抗器等设备的配置图
+800KV
-800KV
双12脉冲阀全电压运行图
+800KV
-800KV
双12脉冲阀一极全压、一极半压运行图
2、换流站主设备研发
换流 变压器 换流变阀 侧套管 换流阀 穿墙套管 平波 电抗器 旁路 开关 电压 分压器 电容器 隔离 开关 直流线路
相应的直流电流达:3125A、4000A
送电距离远
云广直流:1500公里
溪洛渡、向家坝水电站送华东:2000公里
±800KV直流面临的技术挑战
①设备制造难度大
②设备外绝缘要求高
③换流站主接线和基本结构复杂
④电磁环境的要求
⑤接地极入地的电流大(4000A,3125A)
⑥极闭锁故障对电力系统的冲击
①设备制造难度大
4、±800KV过电压水平
绝缘水平
位置 换流变压器阀侧 高压极顶侧 高压直流母线
SLWL (KV)
LIWL (KV)
1600
1800
1600
1800
1600
1900
绝缘裕度
特高压直流输电的技术特点与工程应用

特高压直流输电的技术特点与工程应用摘要:特高压直流输电在电力系统中有着广泛应用,对电力输送效率起着极大影响,直接关系到电力企业经济效益的高低,提高特高压直流输电应用水平是众多电力企业的重要要求。
本文就通过对特高压直流输电技术的分析,探讨其技术特点和实际应用,来促进特高压直流输电技术应用水平的提升。
关键词:特高压直流输电;技术特点;工程应用;1特高压直流输电的技术特点特高压直流输电技术不仅具有高压直流输电技术的所有特点,而且能将直流输电技术的优点更加充分发挥。
直流输电的优点主要有:1.1输送相同功率时,线路造价低对于架空线路,交流输电通常采用3根导线,而直流只需1根(单极)或两根(双极)导线。
输送功率相同时,直流输电所用线材仅为交流输电的三分之二至二分之一。
另外,直流输电在线路走廊、铁塔高度、占地面积等方面,比交流输电优越。
对于电缆线路,直流电缆与交流电缆相比,其投资费和运行费都更为经济,这就是越来越多的大城市供电采用地下直流电缆的原因。
1.2线路损耗小由于直流架空线路仅用1根或2根导线,所以导线上的有功损耗较小。
同时,由于直流线路没有感抗和容抗,在线路上也就没有无功损耗。
另外,由于直流架空线路具有“空间电荷”效应,其电晕损耗和无线电干扰均比交流架空线路要小,直流输电没有集肤效应,导线的截面利用充分。
1.3没有系统稳定问题交流输电系统中,所有连接在电力系统中的同步发电机必须保持同步运行。
系统稳定是指在系统受到扰动后所有互联的同步发电机具有保持同步运行的能力。
如果采用直流线路连接两个交流系统,由于直流线路没有电抗,所以不存在同步运行稳定问题,即直流输电不受输电距离的限制。
另外,由于直流输电与系统频率、系统相位差无关,所有直流线路可以连接两个频率不相同的交流系统。
能限制系统的短路电流。
用直流输电线路连接两个交流系统时,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大,有利于实现交流系统的互联。
特高压直流的优缺点

特高压直流输电的线路走廊较窄,能够减少土地资源的占用。同时,这种输电方 式在运行过程中产生的电磁辐射较小,对环境的影响也较小。
运行方式灵活
总结词
特高压直流输电系统具有灵活的运行方式,能够实现快速调 节和优化资源配置。
详细描述
特高压直流输电系统可以根据电力需求的变化进行快速调节 ,实现电力资源的优化配置。同时,这种输电方式还可以通 过多回线路并联运行,提高电网的稳定性和可靠性。
提高稳定性
控制系统升级
升级特高压直流的控制系统,提高其快速响应和抗干扰能力,确保输电的稳定性和可靠性。
加强运维管理
建立完善的运维管理制度和流程,加强设备的日常检查和维护,确保特高压直流输电系统的长期稳定运行。
感谢您的观看
THANKS
城市供电
• 城市供电:在城市供电领域,特高压直流输电技术有助于提 高供电的可靠性和稳定性。它能够降低因输电线路故障导致 的停电风险,保障城市居民和企业的正常用电需求。此外, 特高压直流输电还有助于优化城市电网结构,提升电网运行 效率。
04
未来发展
技术创新
持续研发
特高压直流技术仍需在材料、设 备、控制等方面进行持续研发, 以提升其性能和稳定性。
03
应用场景
跨区域输电
• 跨区域输电:特高压直流输电技术适用于大容量、远距离的电 力传输,尤其在跨区域输电场景中表现出色。它能有效地将电 能从发电丰富的地区输送到需求大的地区,优化资源配置,缓 解区域间的电力供需矛盾。
分布式能源并网
• 分布式能源并网:特高压直流输电技术能够实现分布式能源的高效并网。通过特高压直流输电,各种可再生能源(如风能、 太阳能)可以方便地接入电网,提高能源利用效率和可再生能源的消纳能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特高压直流输电工程的特点与应用浅析
一、特高压直流输电工程概念、组成、运行方式
1、概念:特高压直流输电工程是一个复杂的自成体系的工程系统,指±800kV (±750kV)及以上电压等级的直流输电及相关技术。
2、基本组成:特高压直流输电系统由送端换流站、受端换流站、直流输电线路以及两端的接地极和接地极线路组成。
特高压直流输电设备组成:主要包括:换流阀、换流变压器、平波电抗器、交流滤波器、直流滤波器、直流避雷器、交流避雷器、无功补偿设备、控制保护装置和远动通信设备等。
特高压直流线路组成:由两组导线组成,分为正极和负极,每极由六根导线组成,称之为六分裂,以增大输送容量;就其基本结构而言,直流输电线路可分为架空线路、电缆线路以及架空—电缆混合线路三种类型。
3、运行方式:主要有双极运行和单极运行两大类,双极运行方式下,两极导线分别带有极性相反的电流,形成完整回路;而单极运行时,线路仅有一极导线携带电流,而极性相反的电流则通过接地极线路和接地极接入大地,形成完整回路。
二、特高压直流输电工程特点
1、特高压直流输电的主要特点是:输送容量大、输电距离远、电压高,可用于电力系统非同步联网,主要应用于跨区大容量电力传输,相对于传统的高压直流输电,特高压直流输电的直流侧电压更高、容量更大,因此对换流阀、换流变压器、平波电抗器、直流滤波器和避雷器等设备提出了更高的要求。
2、特高压直流输电工程优点:对于远距离输电,直流输电方案是最为经济的选择;对于异步互联系统,直流输电方案是唯一的选择;能够通过地下或海底电缆进行远距离输电;能够通过给定的输电走廊获得最大功率。
3、特高压直流输电的接线方式:一般采用高可靠性的双极两端中性点接线方式。
4、特高压直流输电的主要技术特点。
与特高压交流输电技术相比,特高压直流输电的主要技术特点为:
(1)UHVDC系统中间不落点,可点对点、大功率、远距离直接将电力输送至负荷中心;
(2)UHVDC控制方式灵活、快速,可以减少或避免大量过网潮流,按照送、受两端运行方式变化而改变潮流;
(3)UHVDC的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电;
(4)在交直流混合输电的情况下,利用直流有功功率调制可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,提高交流系统的动态稳定性;
(5)当发生直流系统闭锁时,UHVDC两端交流系统将承受很大的功率冲击。
三、特高压直流输电工程与交流输电工程的区别与联系
1、设计流程方面
常规设计流程一般为可行性研究、初步设计、施工图设计、竣工图设计四个阶段;直流设计流程为可行性研究、预初步设计(增加功能规范书)、初步设计(增加成套设计)、施工图设计、竣工图设计五个阶段。
2、投资方面
直流换流站投资大于交流变电站投资;直流线路投资小于交流线路投资;在传输距离超过盈亏平衡点距离时,直流输電比交流输电经济。
3、线路技术方面
(1)直流输电线路工程是两极直流输送,线路导线为二相,分为正极和负极,运行方式主要有双极运行和单极运行两大类;而交流输电线路是A、B、C三相输送,运行方式不分单双极。
导线选型主要考虑输送容量、电磁环境限值及机械强度等三个方面。
对于特高压直流输电线路而言,电磁环境要求是主要约束条件。
包括场强、无线电干扰和可听噪声限值,直流线路还需考虑离子流密度问题。
(2)直流输电线路可以单极运行,而交流输送电线路则不能单相运行;
(3)直流输电线路如果单极运行,只要增加接地极工程,而交流输电线路则无此项;
(4)直流输电线路工程经济输送距离是1000公里以上,交流输电线路工程的经济输送距离小于1000公里,且输送容量大于交流;
(5)输送过程中,二者均需要架设地线;基础型式与交流基本相类似;铁塔型式也与交流相似;绝缘子安装、架线方式也基本相同;施工工艺与交流类似。
(6)直流架空线路与交流架空线路相比,在机械结构的设计和计算方面,并没有显著差别。
但在电气方面,则具有许多不同的特点,需要进行专门研究。
对于特高压直流输电线路的建设,尤其需要重视以下三个方面的研究:
a.电晕效应。
直流输电线路在正常运行情况下允许导线发生一定程度的电晕放电,由此将会产生电晕损失、电场效应、无线电干扰和可听噪声等,导致直流输电的运行损耗和环境影响。
特高压工程由于电压高,如果设计不当,其电晕效应可能会比超高压工程的更大。
通过对特高压直流电晕特性的研究,合理选择导线型式和绝缘子串、金具组装型式,降低电晕效应,减少运行损耗和对环境的影响。
b 绝缘配合。
直流输电工程的绝缘配合对工程的投资和运行水平有极大影响。
由于直流输电的“静电吸尘效应”,绝缘子的积污和污闪特性与交流的有很大不同,由此引起的污秽放电比交流的更为严重,合理选择直流线路的绝缘配合对于提高运行水平非常重要。
c. 电磁环境影响。
采用特高压直流输电,对于实现更大范围的资源优化配置,提高输电走廊的利用率和保护环境,无疑具有十分重要的意义。
但与超高压工程相比,特高压直流输电工程具有电压高、导线大、铁塔高、单回线路走廊宽等特点,其电磁环境与±500 千伏直流线路的有一定差别,由此带来的环境影响必然受到社会各界的关注。
同时,特高压直流工程的电磁环境与导线型式、架线高度等密切相关。
因此,认真研究特高压直流输电的电磁环境影响,对于工程建设满足环境保护要求和降低造价至关重要。
4、变电技术方面
(1)换流站所用设备和交流变电站所用设备差别很大。
换流站场地主要分站前区、阀厅和换流变区域、交流开关场、直流场、交流滤波器场等五个区域,主要设备有换流变压器、直流滤波器、平波滤波器;交流站场地主要分主变压器区、各配电装置区、主控制区、各保护小室等,主要设备有变压器、断路器、隔离开关。
(2)换流站重点就是“换”,即将直流电换成交流电;变电站重点就是“变”,即将高电压变成低电压或将低电压变成高电压;
(3)均需要无功补偿装置,如电抗器、电容器等;需要继电保护装置。
四、特高压直流工程发展与应用
从上世纪90年代开始,国内先后开展了葛沪直流、三广直流和三沪直流、德宝直流等±500kV的直流工程建设。
2005年起开展了±800kV的直流工程建设,包括向上、锦苏线等西南水电外送工程。
同时根据输送容量以及所在区域的海拔等因素,先后完成了±660kV宁青直流和±400kV格拉直流工程的建设。
2014年之前,±800kV锦苏直流是世界上已正式投运的输送容量最大、电压等级最高的直流工程。
2014年1月27日,世界上输送功率最大的直流输电工程——哈密南—郑州±800千伏特高压直流输电工程正式投入运行,该工程起于新疆哈密南换流站,止于河南郑州换流站,全长2192千米,额定电压±800千伏,額定输送功率800万千瓦,代表了世界直流输电技术的最高应用水平。
2014年7月3日,溪洛渡左岸-浙江金华±800千伏特高压直流输电工程(以下简称“溪浙工程”)正式投运。
溪浙工程是目前世界上输送容量最大的直流输电工程。
溪浙工程充分验证了特高压直流工程提升容量的技术可行性和安全可靠性,在世界上首次实现单回直流工程800万千瓦连续运行和840万千瓦过负荷输电运行,创造了超大容量直流输电的新纪录。
截至目前,特高压电网累计送电近2000亿千瓦时,实现了能源大范围优化配置,保障了清洁能源送出和消纳,有效解决了弃水弃风弃光等问题,有力满足了全面建成小康社会的用电需求。
随着国民经济的持续、高速增长,电力需求日益旺盛,电力工业的发展迅速加快,在这种背景下,特高压发展迎来新的机遇。
下一步,国家电网公司将加快推进特高压直流工程建设,努力为经济社会发展提供更安全、更经济、更清洁、可持续的电力供应。