利用Matlab解决数学问地的题目
数学建模2021c题解析用matlab

《数学建模2021C题解析用Matlab》一、引言数学建模是一门研究怎样应用数学知识和方法来解决实际问题的学科。
而在数学建模的实际应用中,Matlab是一个常用的数学建模工具。
本文将以2021年C题为例,介绍用Matlab进行数学建模的方法和步骤。
二、题目分析2021年C题的题目是关于某体育场馆的冷却系统优化问题。
通过分析题目,我们可以了解到需要解决以下几个问题:1. 如何建立冷却系统的数学模型?2. 如何优化冷却系统的参数以提高效率?3. 如何利用Matlab进行模拟实验和数据分析?三、建立数学模型在建立数学模型时,我们需要考虑以下因素:1. 建立冷却系统的热传导方程和流体力学方程;2. 考虑不同参数对于冷却系统的影响;3. 建立合适的边界条件和初始条件。
在Matlab中,我们可以通过编写相应的程序来建立数学模型,并进行模拟实验。
我们可以利用Matlab来解决热传导方程和流体力学方程,得到冷却系统的温度分布和流速分布。
我们可以通过改变不同参数,比如冷却系统中的换热器面积、流体的流速等,来观察参数变化对系统性能的影响。
四、优化冷却系统在优化冷却系统时,我们可以利用Matlab来进行参数优化。
通过设置合适的优化目标和约束条件,可以通过Matlab内置的优化函数来优化冷却系统的参数。
我们可以通过最小化能耗或最大化换热效率来优化冷却系统的参数。
在优化过程中,我们还可以利用Matlab来进行灵敏度分析,以了解不同参数对于系统性能的影响程度。
这将有助于我们更好地理解冷却系统的特性,并为优化提供更多的参考信息。
五、个人观点和理解通过上述分析和讨论,我认为Matlab作为数学建模的工具,具有很高的灵活性和可扩展性。
它不仅可以帮助我们建立复杂的数学模型,还可以进行模拟实验、数据分析和参数优化。
我相信在数学建模的实际应用中,Matlab将会发挥越来越重要的作用。
六、总结通过以上分析,我们可以清晰地了解了如何利用Matlab进行数学建模,尤其是在解决冷却系统优化问题时的具体方法和步骤。
运用MATLAB语言解决级数及其相关问题 李娟娟

《MATLAB语言》课程论文运用MATLAB语言解决级数及其相关问题姓名:李娟娟学号:12010245220专业:电子信息工程班级:2010级电子班指导老师:汤全武学院:物理电气信息学院完成日期:2011/12/12运用MATLAB 语言解决级数及其相关问题(李娟娟 12010245220 2010级电子班)[摘要]无穷级数是高等数学中的一个重要组成部分,它是表示函数,研究函数的性质以及进行数值计算的一种工具。
运用MATLAB 语言来求解无穷级数求和、幂级数展开、泰勒级数展开以及研究傅里叶级数提供了方便,并且在复变函数中解决级数问题也可由MATLAB 来完成。
同时运用高等数学中级数来解决日常实际问题的情况也可通过MATLAB 程序来完成。
MATLAB 的运用大大减少工作量、节约时间,同时加深对高等数学、复变函数及MATLAB 语言的理解和学习。
[关键词]MATLAB 语言 无穷级数 级数求和 泰勒级数 傅里叶级数一、问题的提出级数作为高等数学和复变函数中的必学内容,要求我们必须掌握其定理内容及计算方法。
但级数强大的计算量和多字母的表达示让很多人无从下手,加上出错率高,更给级数运算再添麻烦。
为解决这一问题我们现在运用MATLAB 语言来求解高等数学中的级数问题,涉及常系数项级数求和、泰勒级数展开成幂级数以及函数的傅里叶级数的展开等。
二、常数项级数的求和与审敛高数中,一般的,如果给定一个数列123,,,...,...n u u u u则由这数列构成的表达式:123......n u u u u +++++ (1)叫做(常数项)级数,记为1n Un ∞=∑,即1n Un ∞=∑=123......n u uu u +++++其中第n 项n u 叫做级数的一般项。
做(常数项)级数(1)的前n 项和123...n n s u u u u =++++=1ni Ui =∑ (2)n s 称为级数的(1)部分和,当n 依次取1,2,3,……时,他们构成一个新数列 112123123,,,...s u s u u s u u u ==+=++123......,....n n s u u u u =+++++如果这个数列的极限存在,则称该级数收敛,并称级数的部分和(2)为级数的和。
matlab在数学分析中的应用

matlab在数学分析中的应用
MATLAB是运算符编程语言的一种,通过它可以实现快速的数值计算、分析复杂的数据、建立模型以及进行科学研究。
MATLAB在数学方面有着广泛的应用,它已经成为研究数学分析领域不可缺少的工具。
首先,MATLAB能够解决许多复杂的数学问题,其丰富的函数库和应用程序能够适应不同的应用领域,并实现快速的数学表达式运算。
此外,MATLAB代码的灵活性和可读性很大程度上提高了它的可用性,可以实现迭代、微分及积分等复杂函数的计算。
例如,用户可
以用MATLAB来求解低阶微分方程,以及求解轨道动力学中常见的哈莱米随机微分方程。
另一方面,MATLAB函数库中常用函数可以用于梯度优化,求解线性规划问题,以及非线性规划等复杂优化问题;统计学函数可以用来方便的对数据进行计算,如分布率拟合、卡方
检验等。
其次,MATLAB提供了强大的可视化功能,用它可以创作大量的数据可视化图表,帮助研究者更直观地进行数据分析,进一步挖掘结果的秘密,探索数据的规律。
此外,MATLAB将信息处理的功能引入到科学研究中,可以基于许多应用程序进行文本分析、数据库统计,以及决策树的建模等。
用户可以利用MATLAB中的机器学习工具包,
搭建许多数据分析和预测系统,为科学研究提供更多帮助。
总而言之,MATLAB作为一个提供快速数值计算和可视化图表的数学工具,为研究者提供了许多实用的功能和方法,可以为科学家们更好地解决各种复杂的数学分析问题。
数学建模——合理开挖土地问题(附matlab源程序)

本页只是说明,论文从第二页开始,下载后请删除本页即可:论文内容:关于合理开挖土地问题的数学建模竞赛论文(含Matlab源程序)特别申明:本论文版权归百度文库账号dxzsk同学所有,仅限个人下载学习使用,其他人不得转载分享,侵权必究。
以下是本论文原始题目:合理开挖土地问题:A市是一个山区城市,向山要地是A市发展的一个必然的选择,但是如何在一片山地之中选择合适的方位与开挖深度,从而使总的土石方量最小,就是一个十分有意义的课题.A市某工厂为了在一片长度为1500米,宽度为900米的山地之中,开挖出一个800米×600米平坦连续的长方形地块作为工厂的厂房地基,前期已经在本块土地上测量出长、宽每隔30米的网格的对应网格点的海拔高度(详细数据见附件).请你考虑以下几个问题:问题(1):用附件中的数据画出工厂的这片土地的三维图形与等高线图;问题(2):从什么地方,什么海拔高度平整一块800米×600米的连片土地能使总的土石方量最小?问题(3):如果允许平整出来的土地为二层的台阶状地块,要求各地块的长、宽不少于60米,又将从什么地方、什么海拔高度分别开挖,能使总的土石方量最小?提示:在平整土地的过程中,有些地方是要挖山的,但有些地方是要填土的,假设填土的每立方米所需的费用为挖山的每立方米土石方所需费用的1/3.2013**大学金水节第五届研究生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
2003年数学建模b题matlab代码

2003年数学建模b题matlab代码摘要:一、引言1.介绍数学建模竞赛2.简述2003 年数学建模B 题背景和意义二、题目分析1.题目要求2.解题思路三、Matlab 代码实现1.数据处理与分析2.模型建立与求解3.结果展示与分析四、总结与展望1.代码在实际问题中的应用2.对未来相关研究的展望正文:一、引言数学建模竞赛是我国高校广泛参与的一项重要赛事,旨在培养学生运用数学知识解决实际问题的能力。
2003 年的数学建模B 题,以一道具有实际意义的问题为背景,要求参赛者运用相关数学方法进行分析和求解。
本文将结合Matlab 编程,对该题进行深入探讨。
二、题目分析1.题目要求题目要求参赛者针对给定的实际问题,建立相应的数学模型,并利用Matlab 编程实现模型的求解。
具体来说,要求参赛者分析并解决以下问题:2.解题思路为了解决这道题目,我们需要首先对题目背景进行深入研究,理解问题的本质。
在此基础上,根据题目要求,选择合适的数学方法,建立相应的数学模型。
最后,利用Matlab 编程实现模型的求解,并对结果进行分析。
三、Matlab 代码实现1.数据处理与分析在Matlab 中,我们可以通过readtable 函数读取题目给出的数据文件,并对数据进行预处理,如数据清洗、缺失值处理等。
接下来,我们可以利用plot、hist 等函数对数据进行可视化分析,以便更好地理解数据特征。
2.模型建立与求解针对题目要求,我们需要建立一个合适的数学模型。
在Matlab 中,我们可以通过symbolic computation、optimization 等工具箱,对模型进行求解。
具体来说,可以先通过fmincon 函数求解优化问题,然后利用相关算法求解对应的微分方程。
3.结果展示与分析在得到模型结果后,我们可以利用Matlab 的plot、table 等函数,对结果进行可视化展示。
同时,结合题目背景,对结果进行分析,以验证模型的有效性和正确性。
如何使用Matlab解决数学问题

如何使用Matlab解决数学问题使用Matlab解决数学问题引言:数学作为一门基础学科,广泛应用于各个学科领域。
而Matlab作为一款数学软件,拥有强大的计算能力和丰富的函数库,成为了数学问题解决的得力工具。
本文将介绍如何使用Matlab解决数学问题,并通过实例来展示其强大的功能和灵活性。
一、Matlab的基本使用方法1. 安装和启动Matlab首先,我们需要从官方网站下载并安装Matlab软件。
安装完成后,打开软件即可启动Matlab的工作环境。
2. 变量和运算符在Matlab中,变量可以用来存储数据。
我们可以通过赋值运算符“=”将数值赋给一个变量。
例如,可以使用“a=5”将数值5赋给变量a。
Matlab支持常见的运算符,如加、减、乘、除等,可以通过在命令行输入相应的表达式进行计算。
3. Matirx和向量的操作Matlab中,Matrix和向量(Vector)是常用的数据结构。
我们可以使用方括号将数值组成的矩阵或向量输入Matlab,比如“A=[1 2; 3 4]”可以创建一个2x2的矩阵。
4. 函数和脚本Matlab提供了丰富的内置函数和函数库,可以通过函数来解决各种数学问题。
同时,我们还可以自己编写函数和脚本。
函数用于封装一段可复用的代码,而脚本则是按照特定的顺序执行一系列的命令。
二、解决线性代数问题1. 线性方程组求解Matlab提供了“solve”函数用于求解线性方程组。
例如,我们可以使用“solve([2*x + y = 1, x + 3*y = 1], [x, y])”来求解方程组2x + y = 1和x + 3y = 1的解。
2. 矩阵运算Matlab提供了丰富的矩阵运算函数,如矩阵的加法、乘法、转置等。
通过这些函数,我们可以快速进行矩阵运算,解决线性代数问题。
三、解决数值计算问题1. 数值积分对于某些无法解析求解的积分问题,Matlab可以通过数值积分方法求得近似解。
Matlab提供了“integral”函数用于数值积分,我们只需要给出被积函数和积分区间即可。
勘查技术与工程《MATLAB语言及应用》教学方法探索

勘查技术与工程《MATLAB语言及应用》教学方法探索在勘查技术与工程的基础教学中,MATLAB语言的应用主要是解决数学问题和数据分析问题。
学生在进行学习时,可以通过MATLAB语言进行数据的输入,处理和分析,给学生提供更多的操作实践机会。
比如在地层勘探领域,学生可以利用MATLAB语言对地球物理勘探数据进行处理和分析,如地震勘探数据处理、重力勘探数据分析等。
这样能够加深学生对地质勘查方法和原理的理解和掌握,提高学生的实际操作能力。
MATLAB语言还可以用于解决地质数学问题,比如地震波传播、地震地震数据处理、曲线拟合、数据插值等。
教师可以设计相关的MATLAB编程实验,让学生自己编程实现一些基本的数学模型,通过实践来深入理解地质勘查中的一些复杂数字问题,提高学生的计算水平和编程能力。
在勘查技术与工程的项目教学中,MATLAB语言有着更为广泛的应用。
学生可以通过MATLAB语言编程实现一些地震勘查数据预处理、特征提取、数据融合等工作,真实模拟地质勘查中的数据处理过程,提高学生对地质勘查中数据处理方法的理解和应用能力。
学生也可以通过MATLAB语言编程实现地下水资源的评价和优化配置,并通过仿真观察地下水资源开发对地下水位变化的影响,让学生能够深入理解地下水资源的变化规律和效果。
三、MATLAB语言及应用在勘查技术与工程中的创新实践中的应用在创新实践中,学生还可以借助MATLAB语言开发一些勘查技术与工程中的相关应用软件,如数据处理软件、模拟平台等,培养学生的软件开发能力。
通过这些创新实践,学生能够更好地将MATLAB语言的应用与实际的勘查技术与工程相结合,提高学生的实际应用能力和创新水平。
MATLAB语言在勘查技术与工程中有着广泛的应用前景,它能够帮助学生更好地掌握地质勘查中的数据处理和分析方法,提高学生的计算和编程能力,同时也能够激发学生的创新意识和实践能力。
在勘查技术与工程的教学中应用MATLAB语言是非常有必要的,教师可以通过设计相关的教学内容和实践环节,让学生更好地掌握MATLAB语言的应用,从而更好地理解和运用勘查技术与工程中的相关知识和技术。
2018年高教社杯数学建模c题matlab

2018年高教社杯数学建模C题Matlab一、背景介绍2018年高教社杯全国大学生数学建模竞赛是由我国高等教育学会主办的一项全国性学科竞赛。
该竞赛以促进大学生数学建模能力的培养和提高为宗旨,得到了全国各地高校的广泛参与和支持。
其中,C题是该竞赛中的一个重要环节,涉及使用Matlab进行数学建模,要求参赛选手具备一定的编程和数学建模能力。
二、竞赛题目2018年高教社杯数学建模C题的具体内容是基于某一物理问题,通过建立数学模型并利用Matlab编程分析解决相应问题。
题目要求参赛选手熟练掌握Matlab的基本语法和数学建模方法,能够灵活应用各种算法和技巧解决实际问题。
三、题目分析该竞赛题目所涉及的物理问题可能涉及到动力学、流体力学、热传导等多个领域,因此参赛选手需要具备较强的物理基础知识和数学建模能力。
利用Matlab进行编程要求选手具备一定的计算机编程基础和数值计算能力。
四、Matlab应用在解决数学建模问题时,Matlab是一种非常优秀的数学建模工具,它具有强大的数学计算能力和丰富的绘图函数,能够有效地帮助选手分析和解决复杂的数学问题。
Matlab还支持各种算法的实现和优化,能够帮助选手提高数学建模的效率和精度。
五、比赛经验共享参加2018年高教社杯数学建模C题的竞赛选手,可以共享自己在数学建模和Matlab编程过程中的经验和收获。
他们可以讲述自己在解题过程中所遇到的困难和挑战,以及如何克服这些困难,找到合适的解题方法。
他们可以展示自己对数学建模和Matlab编程的独特见解和理解,这对其他竞赛选手也是一种宝贵的学习和借鉴。
六、总结2018年高教社杯数学建模C题的竞赛不仅考察了选手在数学建模和Matlab编程方面的能力,还促进了选手之间的学习和交流。
通过共享各自的经验和思考,可以帮助选手更好地提高自己在数学建模和Matlab应用方面的能力,促进全国范围内大学生数学建模水平的提高。
这也为相关领域的研究和教育提供了一个重要的交流评台,促进了学术研究和创新成果的产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用Matlab 解决数学问题一、线性规划求解线性规划的Matlab 解法单纯形法是求解线性规划问题的最常用、最有效的算法之一。
单纯形法是首先由 George Dantzig 于1947年提出的,近60年来,虽有许多变形体已被开发,但却保持着同样的基本观念。
由于有如下结论:若线性规划问题有有限最优解,则一定有某个最优解是可行区域的一个极点。
基于此,单纯形法的基本思路是:先找出可行域的一个极点,据一定规则判断其是否最优;若否,则转换到与之相邻的另一极点,并使目标函数值更优;如此下去,直到找到某一最优解为止。
这里我们不再详细介绍单纯形法,有兴趣的读者可以参看其它线性规划书籍。
下面我们介绍线性规划的Matlab 解法。
中线性规划的标准型为b Ax xc T x ≤ such that min基本函数形式为linprog(c,A,b),它的返回值是向量x 的值。
还有其它的一些函数调用形式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如:[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X 0,OPTIONS)这里fval 返回目标函数的值,Aeq 和beq 对应等式约束beq x Aeq =*,LB 和UB 分别是变量x 的下界和上界,0x 是x 的初始值,OPTIONS 是控制参数。
例2 求解下列线性规划问题321532m ax x x x z -+=⎪⎩⎪⎨⎧≥≥+-=++0,,10527321321321x x x x x x x x x解 (i )编写M 文件c=[2;3;-5];a=[-2,5,-1]; b=-10;aeq=[1,1,1];beq=7;x=linprog(-c,a,b,aeq,beq,zeros(3,1))value=c'*x(ii )将M 文件存盘,并命名为。
(iii )在Matlab 指令窗运行example1即可得所求结果。
例3 求解线性规划问题32132 m in x x x z ++=⎪⎩⎪⎨⎧≥≥+≥++0,,62382432121321x x x x x x x x解 编写Matlab 程序如下:c=[2;3;1];a=[1,4,2;3,2,0];b=[8;6];[x,y]=linprog(c,-a,-b,[],[],zeros(3,1))二、整数规划整数规划问题的求解可以使用Lingo 等专用软件。
对于一般的整数规划规划问题,无法直接利用Matlab 的函数,必须利用Matlab 编程实现分枝定界解法和割平面解法。
但对于指派问题等特殊的10-整数规划问题或约束矩阵A 是幺模矩阵时,有时可以直接利用Matlab 的函数linprog 。
例8 求解下列指派问题,已知指派矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1096109532485724679278310283 解:编写Matlab 程序如下:c=[3 8 2 10 3;8 7 2 9 7;6 4 2 7 58 4 2 3 5;9 10 6 9 10];c=c(:);a=zeros(10,25);for i=1:5a(i,(i-1)*5+1:5*i)=1;a(5+i,i:5:25)=1;b=ones(10,1);[x,y]=linprog(c,[],[],a,b,zeros(25,1),ones(25,1))求得最优指派方案为151********=====x x x x x ,最优值为21。
三、非线性规划Matlab 中非线性规划的数学模型写成以下形式)(min x f⎪⎪⎩⎪⎪⎨⎧=≤=⋅≤0)(0)(x Ceq x C Beq x Aeq B Ax , 其中)(x f 是标量函数,Beq Aeq B A ,,,是相应维数的矩阵和向量,)(),(x Ceq x C 是非线性向量函数。
Matlab 中的命令是X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)它的返回值是向量x ,其中FUN 是用M 文件定义的函数)(x f ;X0是x 的初始值;A,B,Aeq,Beq 定义了线性约束Beq X Aeq B X A =≤*,*,如果没有等式约束,则A=[],B=[],Aeq=[],Beq=[];LB 和UB 是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[],如果x 无下界,则LB=-inf ,如果x 无上界,则UB=inf ;NONLCON 是用M 文件定义的非线性向量函数)(),(x Ceq x C ;OPTIONS 定义了优化参数,可以使用Matlab 缺省的参数设例2 求下列非线性规划问题⎪⎪⎩⎪⎪⎨⎧≥=+--≥-++=.0,0208)( min 212212212221x x x x x x x x x f (i )编写M 文件function f=fun1(x);f=x(1)^2+x(2)^2+8;和M 文件function [g,h]=fun2(x);g=-x(1)^2+x(2);h=-x(1)-x(2)^2+2; %等式约束(ii )在Matlab 的命令窗口依次输入options=optimset;[x,y]=fmincon('fun1',rand(2,1),[],[],[],[],zeros(2,1),[], ...'fun2', options)就可以求得当1,121==x x 时,最小值10=y 。
四、图论两个指定顶点之间的最短路径问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。
以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。
对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。
G 的子图的权是指子图的各边的权和。
问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。
这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。
求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。
为避免重复并保留每一步的计算信息,采用了标号算法。
下面是该算法。
(i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。
(ii) 对每个i S v ∈(i i S V S \=),用)}()(),({min uv w u l v l iS u +∈ 代替)(v l 。
计算)}({min v l iS v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S Y 。
(iii). 若1||-=V i ,停止;若1||-<V i ,用1+i 代替i ,转(ii)。
算法结束时,从0u 到各顶点v 的距离由v 的最后一次的标号)(v l 给出。
在v 进入i S 之前的标号)(v l 叫T 标号,v 进入i S 时的标号)(v l 叫P 标号。
算法就是不断修改各项点的T 标号,直至获得P 标号。
若在算法运行过程中,将每一顶点获得P 标号所由来的边在图上标明,则算法结束时,0u 至各项点的最短路也在图上标示出来了。
例9 某公司在六个城市621,,,c c c Λ中有分公司,从i c 到j c 的直接航程票价记在下述矩阵的),(j i 位置上。
(∞表示无直接航路),请帮助该公司设计一张城市1c 到其它城市间的票价最便宜的路线图。
⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞055252510550102025251001020402010015252015050102540500 用矩阵n n a ⨯(n 为顶点个数)存放各边权的邻接矩阵,行向量pb 、1index 、2index 、d 分别用来存放P 标号信息、标号顶点顺序、标号顶点索引、最短通路的值。
其中分量⎩⎨⎧=顶点未标号当第顶点已标号当第i i i pb 01)(; )(2i index 存放始点到第i 点最短通路中第i 顶点前一顶点的序号;)(i d 存放由始点到第i 点最短通路的值。
求第一个城市到其它城市的最短路径的Matlab 程序如下:clear;clc;M=10000;a(1,:)=[0,50,M,40,25,10];a(2,:)=[zeros(1,2),15,20,M,25];a(3,:)=[zeros(1,3),10,20,M];a(4,:)=[zeros(1,4),10,25];a(5,:)=[zeros(1,5),55];a(6,:)=zeros(1,6);a=a+a';pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a)); d(1:length(a))=M;d(1)=0;temp=1;while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;index1=[index1,temp];index=index1(find(d(index1)==d(temp)-a(temp,index1)));if length(index)>=2index=index(1);endindex2(temp)=index;endd, index1, index2每对顶点之间的最短路径计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra 算法。
具体方法是:每次以不同的顶点作为起点,用Dijkstra 算法求出从该起点到其余顶点的最短路径,反复执行n 次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。
这种算法的时间复杂度为)(3n O 。
第二种解决这一问题的方法是由Floyd R W 提出的算法,称之为Floyd 算法。
假设图G 权的邻接矩阵为0A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A ΛM ΛM M ΛΛ2122221112110 来存放各边长度,其中: 0=ii a n i ,,2,1Λ=;∞=ij a j i ,之间没有边,在程序中以各边都不可能达到的充分大的数代替; ij ij w a = ij w 是j i ,之间边的长度,n j i ,,2,1,Λ=。