算法分析与设计实验指导书
算法设计与分析实验指导书

算法设计与分析实验指导书. . .. . .算法设计与分析实验指导书东北大学软件学院2012年.. .专业. .目录算法设计与分析 (1)实验指导书 (1)前言 (3)实验要求 (4)实验1 分治法的应用(2学时) (5)1.实验目的 (5)2.实验类型 (5)3.预习要求 (5)4.实验基本要求 (5)5.实验基本步骤 (7)实验2动态规划(2学时) (9)1.实验目的 (9)2.实验类型 (9)3.预习要求 (9)4.实验基本要求 (9)5.实验基本步骤 (10)实验3 回溯法(4学时) (12)1.实验目的 (12)2.实验类型 (12)3.预习要求 (12)4.实验基本要求 (12)5.实验基本步骤 (13)前言《算法设计与分析》是一门面向设计,处于计算机科学与技术学科核心地位的教育课程。
通过对计算机算法系统的学习,使学生理解和掌握计算机算法的通用设计方法,培养对算法的计算复杂性正确分析的能力,为独立设计算法和对算法进行复杂性分析奠定基础。
要求掌握算法复杂度分析、分治法、动态规划法、贪心法、回溯法、分支限界法等算法的设计方法及其分析方法。
能将这些方法灵活的应用到相应的问题中,并且能够用C++实现所涉及的算法,并尽量做到低复杂度,高效率。
通过本课程的实验,使学生加深对课程容的理解,培养学生严密的思维能力,运用所学知识结合具体问题设计适用的算法的能力;培养学生良好的设计风格,激励学生创造新算法和改进旧算法的愿望和热情。
希望同学们能够充分利用实验条件,认真完成实验,从实验中得到应有的锻炼和培养。
希望同学们在使用本实验指导书及进行实验的过程中,能够帮助我们不断地发现问题,并提出建议,使《算法设计与分析》课程成为对大家有益的课程。
实验要求《算法设计与分析》课程实验的目的是为了使学生在课堂学习的同时,通过一系列的实验,使学生加深理解和更好地掌握《算法设计与分析》课程教学大纲要求的容。
在《算法设计与分析》的课程实验过程中,要求学生做到:(1)仔细观察调试程序过程中出现的各种问题,记录主要问题,做出必要说明和分析。
《算法分析与设计》实验指导书(8学时)

计算机科学与技术学院算法分析与设计实验指导书2011年8月于洪编写2015年9月周应华修订目录实验一分治策略排序 (3)实验二减治策略查找顺序表 (5)实验三动态规划求解0/1背包问题 (8)实验四贪心算法求解最短路径问题 (10)附录1 关于文件的操作 (12)附录2 关于如何统计运算时间 (13)实验一分治策略排序实验目的1)以排序问题为例,掌握分治法的基本设计策略;2)熟练掌握合并排序算法的实现;3)熟练掌握快速排序算法的实现;4) 理解常见的算法经验分析方法。
实验环境计算机、C语言程序设计环境实验学时2学时实验内容与步骤1.准备实验数据要求:编写一个函数data-generate,生成2000个在区间[1,10000]上的随机整数,并将这些数输出到外部文件data.txt中。
这些数作为本算法实验的输入数据。
2.实现合并排序算法要求:实现mergesort算法。
输入:待排数据文件data.txt;输出:有序数据文件resultsMS.txt(注:建议将此排好序的数据作为实验二的算法输入);程序运行时间TimeMS。
合并排序算法(类C语言):/* 数组A[] 中包含待排元素;array B[] is a work array */TopDownMergeSort(A[], B[], n){TopDownSplitMerge(A, 0, n, B);}// iBegin is inclusive; iEnd is exclusive (即:A[iEnd]不是待排元素)TopDownSplitMerge(A[], iBegin, iEnd, B[]){if(iEnd - iBegin < 2) // 如果只有1个待排元素,返回。
return;// recursively split runs into two halves until run size == 1,// then merge themiMiddle = (iEnd + iBegin) / 2; // 划分TopDownSplitMerge(A, iBegin, iMiddle, B);TopDownSplitMerge(A, iMiddle, iEnd, B);TopDownMerge(A, iBegin, iMiddle, iEnd, B); // 合并;元素放到数组B中。
2021年《算法设计与分析》实验指导

《算法设计与分析》实验指导《算法分析与设计》实验指导 .1 实验一锦标赛问题 [实验目的] 1. 基本掌握分治算法的原理. 2. 能用程序设计语言求解锦标赛等问题的算法; [预习要求] 1. 认真阅读数据结构教材和算法设计教材,了解分治算法原理; 2. 设计用分治算法求解背包问题的数据结构与程序代码. [实验题] 【问题描述】设有 n=2 k 个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他 n-1 个选手各赛一次;(2)每个选手一天只能参赛一次;(3)循环赛在 n-1 天内结束。
请按此要求将比赛日程表设计成有 n 行和 n-1 列的一个表。
在表中的第 i 行,第 j 列处填入第 i 个选手在第 j 天所遇到的选手。
其中 1≤i≤n,1≤j≤n-1。
[实验提示] 我们可以按分治策略将所有的选手分为两半,则 n 个选手的比赛日程表可以通过 n/2个选手的比赛日程表来决定。
递归地用这种一分为二的策略对选手进行划分,直到只剩下两个选手时,比赛日程表的制定就变得很简单。
这时只要让这两个选手进行比赛就可以了。
1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 2 1 4 3 6 7 8 5 3 4 1 2 7 8 5 6 1 2 3 4 3 2 1 8 5 6 7 1 2 3 4 5 6 7 8 1 4 3 2 1 2 1 4 3 6 5 8 7 2 1 4 3 1 2 3 4 1 2 7 8 5 6 3 2 1 4 2 1 4 3 2 1 8 7 6 5 4 3 2 1 (1)(2)(3)图 1 2 个、4 个和 8 个选手的比赛日程表图 1 所列出的正方形表(3)是 8 个选手的比赛日程表。
其中左上角与左下角的两小块分别为选手 1 至选手 4 和选手 5 至选手 8 前 3 天的比赛日程。
据此,将左上角小块中的所有数字按其相对位置抄到右下角,又将左下角小块中的所有数字按其相对位置抄到右上角,这2 样我们就分别安排好了选手 1 至选手 4 和选手 5 至选手 8 在后 4 天的比赛日程。
算法设计与分析课程实验指南

《算法设计与分析》课程实验指南(适合于非计算机科学与技术专业)实验项目1 串匹配问题1.实验题目给定一个文本,在该文本中查找并定位任意给定字符串。
2.学时安排2个学时。
3.实验目的(1)深刻理解并掌握蛮力法的设计思想;(2)提高应用蛮力法设计的技能;(3)理解这样一个观点:用蛮力法设计的算法,一般来说,经过适度的努力后,都可以对算法的第一个版本进行一定程度的改良,改进其时间性能。
4.实验要求(1)实现BF算法;(2)实现BF算法的改进算法:KMP算法;(3)对上述2个算法进行时间复杂性分析,并设计实验程序验证分析结果。
实验项目2 最近对问题1.实验题目设p1=(x1,y1),p2=(x2,y2),…,pn=(xn,yn)是平面上n个点构成的集合S,设计算法找出集合S中距离最近点对。
2.学时安排2个学时。
3.实验目的(1)进一步掌握递归算法的设计思想以及递归程序的调试技术;(2)理解这样一个观点:分治与递归经常同时应用在算法设计之中。
4.实验要求(1)分别用蛮力法和分治法求解最近对问题;(2)分析算法的时间性能,设计实验程序验证分析结论。
实验项目3 八枚硬币问题1.实验题目在8枚外观相同的硬币中,有一枚是人民币假币,并且已知假币与真币的重量不同,但不知道假币与真币相比较轻还是较重。
可以通过一架天平来任意比较两组硬币,设计一个高效的算法来测出这枚假币。
2.学时安排2个学时。
3.实验目的(1)深刻理解并掌握减治法的设计思想;(2)提高应用减治设计算法的技能;(3)理解这样一个观点:建立正确的模型对于问题的求解是非常重要的。
4.实验要求(1)设计减治算法实现8枚硬币问题;(2)设计测试数据,写出程序文档。
实验项目4 0/1背包问题1.实验题目给定n种物品和一个容量为C的背包,物品i的重量是wi,其价值为vi,0/1背包问题是如何选择装入背包的物品(物品不可分割),使得装入背包中物品总价值最大。
2.学时安排2个学时。
算法分析实验指导书(王红梅)

《算法设计与分析》实验指导书计算机科学与技术学院石少俭实验一分治法1、实验目的(1)掌握设计有效算法的分治策略。
(2)通过快速排序学习分治策略设计技巧2、实验要求(1)熟练掌握分治法的基本思想及其应用实现。
(2)理解所给出的算法,并对其加以改进。
3、分治法的介绍任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
而当n较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
分治法的适用条件(1)该问题的规模缩小到一定的程度就可以容易地解决;(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
(3)利用该问题分解出的子问题的解可以合并为该问题的解;(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
《算法分析与设计》实验指导书

计算机算法分析与设计实验指导书
杨红云
适用专业:软件工程
江西农业大学软件学院
计算机算法分析与设计实验指导书
计算机算法分析与设计是面向设计的,它是计算机科学和软件工程应用的核心。
无论是计算机系统、系统软件和解决计算机的各种应用课题都可归结为算法的设计。
通过本课程的学习,使学生掌握计算机领域中许多常用的非数值的精确的描述:分治法、贪心法、动态规划、回溯法等。
并掌握算法分析的方法。
从而将学生分析问题和解决问题的能力提高到高层理论的高度。
前期课程为程序设计语言、数据结构、高等数学,即学生应该具备一门高级语言程序设计编程基础,学习基本的数据结构知识,还要求学生掌握较好的数学基础。
实验学时:16学时。
算法设计与分析实验指导书

<<算法设计与分析>>实验指导书实验一、回溯法一、实验目的掌握回溯法求解问题的思想,学会利用其原理求解相关问题。
二、实验内容及要求1、八皇后问题八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。
该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
要求对用C实现的回溯法进行验证,并使其能扩展到任意的皇后数的情况,同时对源程序给出详细的注释。
三、实验步骤1. 理解算法思想和问题要求;2. 编程实现题目要求;3. 上机输入和调试自己所编的程序;4. 验证分析实验结果;5. 整理出实验报告。
四、实验源代码1、八皇后问题(回溯法实现)#define QUEENNO 8#define MAXNO 32#include <stdio.h>#include <stdlib.h>int X[MAXNO];char D[MAXNO][MAXNO];int count=0;void initiate(int n);void nqueen(int n);void display(int n);main(){int queenno=QUEENNO;initiate(queenno);nqueen(queenno);printf("共有%d个解,解已经保存在D盘文件result.txt中\n",count); }void initiate(int n){int i;for(i=0;i<n;i++)X[i]=-1;return;}void nqueen(int n){ int k;X[0]=0;k=0;while(k>=0){X[k]++;while(X[k]<=n&&!place(k)){X[k]++;}if(X[k]<=n){ if(k==n-1) display(n);else {k++;X[k]=0;}}else{ k--;}}}int place(int k){int i;i=0;while(i<k){if((X[i]==X[k])||(abs(X[i]-X[k])==abs(i-k)))return 0;i++;}return 1;}void display(int n){FILE *fw;int i,j;count++;fw=fopen("D:\\result.txt","a");for(i=0;i<n;i++)for(j=0;j<n;j++)D[i][j]='o';for(i=0;i<n;i++)D[i][X[i]-1]='*';fprintf(fw,"%d\n",count);fprintf(fw,"-------------------------\n");for(i=0;i<n;i++)for(j=0;j<n;j++){if(j==n-1)fprintf(fw,"%c \n",D[i][j]);else fprintf(fw,"%c ",D[i][j]); }fprintf(fw,"-------------------------\n");fclose(fw);return;}实验二:分治法(2学时)问题陈述:对所给元素存储于数组中和存储于链表中两中情况,写出自然合并排序算法.解题思路:将待排序元素分成大小大相同的两个集合,分别对两个集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合.自然排序是通过一次扫描待排元素中自然排好序的子数组,再进行子数组的合并排序.程序代码:#include <iostream.h>const int N=100;void ScanTarget(int target[], int n, int head[], int tail[]);int CountHead(int head[]);void MergeSort(int a[], int head[], int tail[], int m);void MergePass(int x[], int y[], int s, int a[], int b[], int m);void Merge(int c[], int d[], int l, int m, int r);void main(){char a;do{int target[N],head[N],tail[N];int i=0,n,m;for(; i<N; i++){head[i]=-1;tail[i]=-1;}cout<<"请输入要排序的总数:"<<endl;cin>>n;cout<<"请输入要排序的数列:" <<endl;for(i=0; i<n; i++)cin>>target[i];ScanTarget(target,n,head,tail);m=CountHead(head);MergeSort(target,head,tail,m);cout<<"排序后:"<<endl;for(i=0; i<n; i++)cout<<target[i]<<" ";cout<<endl;cout<<"是否继续(y/n):"<<endl;cin>>a;}while(a!='n' && a!='N');}void ScanTarget(int target[], int n, int head[], int tail[])//扫描待排数组;{int i,j=0,k=0;head[k]=0;k++;for(i=1;i<n;i++){if(target[i-1]>target[i]){tail[j++]=i-1;head[k++]=i;}}tail[j]=n-1;}int CountHead(int head[])//求长度;{int i(0);while(head[i]!=-1){i++;}return i;}void MergeSort(int a[], int head[], int tail[], int m){int b[N];int s=1;while(s<m){MergePass(a,b,s,head,tail,m);s+=s;MergePass(b,a,s,head,tail,m);s+=s;}}void MergePass(int x[], int y[], int s, int a[], int b[], int m){int i=0;while(i <= m-2*s){Merge(x,y,a[i],b[i+s-1],b[i+2*s-1]);i=i+2*s;}if(i+s < m){Merge(x,y,a[i],b[i+s-1],b[m-1]);}else{for(int j=i; j<m; j++)for(int k=a[j]; k<=b[j]; k++)y[k]=x[k];}}void Merge(int c[], int d[], int l, int m, int r){int i,j,k;i=l;j=m+1;k=l;while((i<=m) && (j<=r)){if( c[i] <= c[j] )d[k++]=c[i++];else d[k++]=c[j++];}if( i>m ){for(int q=j; q<=r; q++)d[k++]=c[q];}else{for(int q=i; q<=m; q++)d[k++]=c[q];}}时间复杂度:通常情况下用自然合并排序所需要的合并次数较少。
算法分析与设计》实验指导与报告书

《算法分析与设计》实验指导与报告书实验目录实验1 求最大公约数 (1)实验2 斐波那契数列 (3)实验3 最近对问题 (6)实验4 堆排序 (7)实验5 霍纳法则和二进制幂 (8)实验6 字符串匹配问题 (9)实验7 Warshall算法和Floyd算法 (10)实验8 最优二叉查找树 (11)实验9 Huffman编码* (12)实验10 求解非线性方程* (13)实验11 投资问题* (14)注:(1)实验4和实验5为变治法应用,二选一;(2)实验7和实验8为动态规划法应用,二选一;(3)带*号的实验为选做实验,根据课时及学生实验完成情况机动安排。
实验1 求最大公约数{c = a;a = b;b = c;}while(a % b != 0){c = a % b;a = b;b = c;}printf("%d", b);return 0;}连续整数检测算法最大公约数算法:#include <stdio.h>int main(){int a,b,t;printf("Please input two integers: ");scanf("%d %d",&a,&b);if(a<b)t=a;elset=b;while(t>=1){if((a%t==0)&&(b%t==0))break;t--;}printf("%d",t);return 0;}相减循环:#include<stdio.h>int main(){int m,n;printf("Please input two integers: ");scanf("%d%d",&m,&n);while(m!=n)if(m>n) m=m-n;else n=n-m;printf("%d",m);return 0;}教师评分实验2 斐波那契数列实验目的(1)求斐波那契数列;(2)区分递归和递推思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法分析与设计》实验指导书本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。
上机实验一般应包括以下几个步骤:(1)、准备好上机所需的程序。
手编程序应书写整齐,并经人工检查无误后才能上机。
(2)、上机输入和调试自己所编的程序。
一人一组,独立上机调试,上机时出现的问题,最好独立解决。
(3)、上机结束后,整理出实验报告。
实验报告应包括:1)问题分析2)算法描述3)运行结果、4)算法性能分析。
实验一实验名称:贪心算法应用及设计实验学时:6学时实验类型:验证实验目的:1.理解贪心算法的基本思想2.掌握利用贪心算法求解问题的求解步骤实验容1.活动选择问题(2学时)问题描述:设有11个会议等待安排,用贪心法找出满足目标要求的会议集合,这些会议按结束时间的非减序排列如下表。
实验实现提示:1)数据结构设计:将会议开始时间存储在数组B中,结束时间存储在数组E中,数组下标为会议的代码。
结果存储在数组A中,其元素A[i]==true,表示会议i被选中。
2)算法:void GreedySelect(int n, struct time B[], struct time E[], bool A[]){int i,j;A[1]=true;j=1; i=2;while( i<=n)if (B[i]>=E[j]){ A[i]=true; j=i;}elseA[i]=false;}思考题:证明所得的解是最优解?2.单源点最短路径问题。
(2学时)问题描述如图所示的有向带权图中,求源点0到其余顶点的最短路径及最短路径长度。
并对算法进行性能分析。
实现提示1)数据结构设计:将图存储在邻接矩阵C中,结点个数为n,源点编号为u, 源点u到其余顶点的最短路径长度存储在dist[],最短路径存储在p[]。
2) 算法void Dijkstra(int C[n][n], int n,int u,float dist[],int p[]){ bool s[n];for( int i=1; i<=n; i++){ dist[i]=C[u][i];s[i]=false;if (dist[i]=∞)p[i]=-1;elsep[i]=u;}p[u]=-1;s[u]=true;for( i=1; i<=n; i++){ int temp= ∞;int t=u;for( int j=1;j<=n;j++)if ((!s[j])&& dist[j]<temp){ t=j; temp=dist[j];}if (t==u) break;s[t]=true;for( j=1; j<=n;j++)if((!s[j])&& C[t][j]< ∞)if(dist[j]>(dist[t]+C[t][j]){ dist[j]= dist[t]+C[t][j]; p[j]=t;}}}思考题:算法在何种情况下得不到原问题的解3.最小生成树问题(2学时)问题描述任选一种贪心算法(Prim或Kruskal)对图所示的无向连通带权图构造一棵最小生成树。
并对算法进行复杂性分析实现提示1)数据结构a. Prim算法:图用带权邻接矩阵C来存储,设置数组closest[]存储U中的最近邻接顶点和lowcost[]存储U中的所有顶点的最短边的权值,即边(j,closest[j])的权值。
b. Kruskal算法图用带权邻接矩阵C来存储,设置数组bian[]存储图边的权值(按权值从小到大排好序)2)算法void Prim( int n, int u0, int c[n][n]){ bool s[n];int closest[n];double lowcost[n];for ( int i=0; i<n; i++)if (i!=u0){ lowcost[i]=c[u0][i];closest[i]=u0;s[i]=false;}for(i=0; i<n; i++){ double temp=∞;int t=u0;for ( int j=0;j<n;j++)if ((!s[j])&& lowcost[j]<temp){ t=j; temp=lowcost[j];}if (t==u0) break;s[t]=true;for( j=0;j<n; j++)if ((!s[j])&& c[t][j]<lowcost[j]){ lowcost[j]= c[t][j];closest[j]=t;}}}void Kruskal( int n, struct edge bian[], int c[n][n]){ int nodeset[n];int count=1; bool flag[n+1];if (n==1)return;for ( int i=1; i<=n; i++){ nodeset[i]=i; flag[i]=false;for (int j=1; j<=n; j++){ if( c[i][j]<∞){ bian[count].u=i; bian[count].v=j;bian[count].weight=c[i][j];count++;}}sort( bian+1,bian+count);count=1; int edgeset=0; int w=0;while (edgeset<(n-1)){if(!flag[bian[count].u])&&(flag[bian[count].v])){ w+=bian[count].weight; edgeset++;flag[bian[count].u]=true;nodeset[bian[count].u]=nodeset[bian[count].v];}else if(flag[bian[count].u])&&(!flag[bian[count].v])) { w+=bian[count].weight; edgeset++;flag[bian[count].v]=true;nodeset[bian[count].v]=nodeset[bian[count].u];}else if(!flag[bian[count].u])&&(!flag[bian[count].v])){ w+=bian[count].weight; edgeset++;flag[bian[count].u]= flag[bian[count].v]=true;nodeset[bian[count].u]=nodeset[bian[count].v];}elseif(nodeset[bian[count].u]!=nodeset[bian[count].v]){ w+=bian[count].weight; edgeset++;int tmp= nodeset[bian[count].v];for( int i=1; i<=n; i++)if (nodeset[i]==tmp)nodeset[i]=nodeset[bian[count].u];}count++;}}实验二实验名称:分治法算法应用及设计实验学时:4学时实验类型:验证实验目的:1.理解分治法算法的基本思想2.掌握利用分治法算法求解问题的求解步骤实验容1.二分检索(2学时)问题描述:设a[0:n-1]是一个已排好序的数组。
请改写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素的位置i和大于x的最小元素位置j。
当搜索元素在数组中时,i和j相同,均为x在数组中的位置。
实验实现提示:1)数据结构设计:将待查数据集合存储在数组data中,用l表示查找围的下界,h表示查找围的上界。
注意查找失败的条件设置:即查找空间为空区间。
2)二分搜索算法:int besearch(int l,int h,int data[],int key){int m; //m=l与h的中点if(l>h)return 失败;if(data[m]==key)return h;if(data[m]>key)return besearch(l,m-1,data,key);//在l至m-1找elsereturn besearch(m+1,l,data,key); //在m+1至h找}思考题:如何将递归算法改为非递归算法?2.快速排序(2学时)问题描述:利用分治法,实现对n个元素进行排序的算法,在计算机上编程实现,同时进行时间复杂性分析。
实验实现提示:1)数据结构设计:将待排序数据集合存储在数组data中,用l表示待排序围的下界,h表示待排序围的上界。
注意排序结束的条件设置:即待排序空间为空区间。
2)算法:int Partion(int l,int h,int data[]){int i=l,j=h,pivot=data[l];//data[l]为划分基准元素while ( i<j){while( i<j && data[j]>=pivot)j--;if( i<j){ swap(data[i],data[j]); //交换data[i],data[j]i++;}while( i<j && data[i]<=pivot)i++;if( i<j){ swap(data[i],data[j]); //交换data[i],data[j]j--;}}return j;}void QuickSort( int l,int h; int data[]){int pivotpos;if( l<h){pivotpos=Pation(l,h,data);QuickSort(l,pivotpos-1,data);QuickSort(pivotpos+1,h,data);}}思考题:本算法的空间的复杂度?实验三实验名称:动态规划算法应用及设计实验学时:6学时实验类型:验证实验目的:1.理解动态规划算法的基本思想2.掌握利用动态规划算法求解问题的求解步骤实验容1.矩阵连乘问题(2学时)问题描述给定n个矩阵{A1,A2,A3,…,An},其中Ai与Ai+1(i=1,2,3, …,n-1)是可乘的。
用加括号的方法表示矩阵连乘的次序,不同加括号的方法所对应的计算次序是不同的。