上海民办尚德实验学校数学几何模型压轴题检测题(Word版 含答案)
上海民办尚德实验学校数学有理数检测题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.如图,数轴上一动点从原点出发,在数轴上进行往返运动,运动情况如下表(注:表格中的表示2到4之间的数).运动次数运动方向运动路程数轴上对应的数第1次____①_____3-3第2次左____②_____第3次____③_________④_____(1)完成表格;①________;②________;③________;④________.(2)已知第4次运动的路程为 .①此时数轴上对应的数是________;②若第4次运动后点恰好回到原点,则这4次运动的总路程是多少?________【答案】(1)左;;右; .(2)或;解:当时,或-0.5,不符合题意;当时,,,所以这4次运动的总路程是32.【解析】【解答】解:(1)动点从原点运动到点-3,所以是向左运动;再从点-3向左运动,故终点数字是;∵,∴,∴第三次点是向右运动,运动路程是,故答案为:左,,右, .( 2 )①向右运动时,;向左运动时,,故答案为或;【分析】(1)根据始点与终点的数字符号确定第一次运动方向;第一次终点数字与第二次运动路程的差即第二次终点数字;根据第三次终点数字与第二次终点数字的差的符号确定运动方向和运动路程.(2)①分向左或向右两种可能,根据确定第四次移动后最终在数轴上的对应数字;②根据第四次运动后的对应数字确定的值,再计算总路程.3.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。
七年级上册上海民办尚德实验学校数学期末试卷检测题(Word版 含答案)

七年级上册上海民办尚德实验学校数学期末试卷检测题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知直线AB∥CD,直线EF与AB,CD分别相交于点E,F.(1)如图1,若∠1=60°,求∠2,∠3的度数.(2)若点P是平面内的一个动点,连结PE,PF,探索∠EPF,∠PEB,∠PFD三个角之间的关系.①当点P在图(2)的位置时,可得∠EPF=∠PEB+∠PFD请阅读下面的解答过程并填空(理由或数学式)解:如图2,过点P作MN∥AB则∠EPM=∠PEB(________)∵AB∥CD(已知)MN∥AB(作图)∴MN∥CD(________)∴∠MPF=∠PFD (________)∴________=∠PEB+∠PFD(等式的性质)即:∠EPF=∠PEB+∠PFD②拓展应用,当点P在图3的位置时,此时∠EPF=80°,∠PEB=156°,则∠PFD=________度.③当点P在图4的位置时,请直接写出∠EPF,∠PEB,∠PFD三个角之间关系________.【答案】(1)解:∵∠2=∠1,∠1=60°∴∠2=60°,∵AB∥CD∴∠3=∠1=60°(2)两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;∠EPM+∠MPF;124;∠EPF+∠PFD=∠PEB【解析】【解答】(2)①如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等)∵AB∥CD(已知),MN∥AB,∴MN∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠MPF=∠PFD(两直线平行,内错角相等)∴∠EPM+∠MPF=∠PEB+∠PFD(等式的性质)即∠EPF=∠PEB+∠PFD;故答案为:两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;∠EPM+∠MPF;②过点P作PM∥AB,如图3所示:则∠PEB+∠EPM=180°,∠MPF+∠PFD=180°,∴∠PEB+∠EPM+∠MPF+∠PFD=180°+180°=360°,即∠EPF+∠PEB+∠PFD=360°,∴∠PFD=360°﹣80°﹣156°=124°;故答案为:124;③∠EPF+∠PFD=∠PEB.故答案为:∠EPF+∠PFD=∠PEB.【分析】(1)利用对顶角相等,可证∠1=∠2,可求出∠2的度数,再根据两直线平行,同位角相等,就可求出∠3的度数。
上海民办尚德实验学校九年级上册压轴题数学模拟试卷及答案

上海民办尚德实验学校九年级上册压轴题数学模拟试卷及答案一、压轴题1.如图,在平面直角坐标系xOy 中,已知直线AB 经过点A (﹣2,0),与y 轴的正半轴交于点B ,且OA =2OB .(1)求直线AB 的函数表达式;(2)点C 在直线AB 上,且BC =AB ,点E 是y 轴上的动点,直线EC 交x 轴于点D ,设点E 的坐标为(0,m )(m >2),求点D 的坐标(用含m 的代数式表示);(3)在(2)的条件下,若CE :CD =1:2,点F 是直线AB 上的动点,在直线AC 上方的平面内是否存在一点G ,使以C ,G ,F ,E 为顶点的四边形是菱形?若存在,请求出点G 的坐标;若不存在,请说明理由.2.已知抛物线2y ax bx c =++经过原点,与x 轴相交于点F ,直线132y x =+与抛物线交于()()2266A B -,,,两点,与x 轴交于点C ,与y 轴交于点D ,点E 是线段OC 上的一个动点(不与端点重合),过点E 作//EG BC 交BF 于点C ,连接DE DG ,.(1)求抛物线的解析式及点F 的坐标; (2)当DEG ∆的面积最大时,求线段EF 的长;(3)在(2)的条件下,若在抛物线上有一点()4H n ,和点P ,使EHP ∆为直角三角形,请直接写出点P 的坐标.3.如图,A 是以BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,G 是AD 的中点,连接并延长CG 与BE 相交于点F ,连接并延长AF 与CB 的延长线相交于点P . (1)求证:BF =EF ; (2)求证:PA 是圆O 的切线;(3)若FG =EF =3,求圆O 的半径和BD 的长度.4.如图1,在平面直角坐标系中,抛物线与x 轴交于点 A (-1,0) ,B (点A 在点B 的左侧),交y 轴与点(0,-3),抛物线的对称轴为直线x =1,点D 为抛物线的顶点. (1)求该抛物线的解析式;(2)已知经过点A 的直线y =kx +b (k >0)与抛物线在第一象限交于点E ,连接AD ,DE ,BE ,当2ADE ABE S S ∆∆=时,求点E 的坐标.(3)如图2,在(2)中直线AE 与y 轴交于点F ,将点F 向下平移233+个单位长度得到Q ,连接QB .将△OQB 绕点O 逆时针旋转一定的角度α(0°<α<360°)得到OQ B '',直线B Q ''与x 轴交于点G .问在旋转过程中是否存在某个位置使得OQ G '是等腰三角形?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.5.公司经销某种商品,经研究发现,这种商品在未来40天的销售单价1y (元/千克)关于时间t 的函数关系式分别为11602y t =-+(040t <≤,且t 为整数); ()()21030,3033040,20t t t y t t ⎧<≤-+⎪=⎨<≤⎪⎩且为整数且为整数,他们的图像如图1所示,未来40天的销售量m (千克)关于时间t 的函数关系如图2的点列所示.(1)求m 关于t 的函数关系式;(2)那一天的销售利润最大,最大利润是多少?(3)若在最后10天,公司决定每销售1千克产品就捐赠a 元给“环保公益项目”,且希望扣除捐赠后每日的利润不低于3600元以维持各种开支,求a 的最大值(精确到0.01元).6.如图1,梯形ABCD 中,AD ∥BC ,AB=AD=DC=5,BC=11.一个动点P 从点B 出发,以每秒1个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当Q 点到达D 点时,运动结束.设点P 的运动时间为t 秒(t >0).(1)当正方形PQMN 的边MN 恰好经过点D 时,求运动时间t 的值;(2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)如图2,当点Q 在线段AD 上运动时,线段PQ 与对角线BD 交于点E ,将△DEQ 沿BD 翻折,得到△DEF ,连接PF .是否存在这样的t ,使△PEF 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.7.如图,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l .(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与△EAD 相似时,求出BF 的长.8.如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于点,的解析式为,若将抛物线平移,使平移后的抛物线经过点, 对称轴为直线,抛物线与轴的另一个交点是,顶点是,连结.(1)求抛物线的解析式; (2)求证:∽(3)半径为的⊙的圆心沿着直线从点运动到,运动速度为1单位/秒,运动时间为秒,⊙绕着点顺时针旋转得⊙,随着⊙的运动,求的运动路径长以及当⊙与轴相切的时候的值.9.已知:如图,抛物线2134y x x =--交x 正半轴交于点A ,交y 轴于点B ,点()4,C n -在抛物线上,直线l :34y x m =-+过点B ,点E 是直线l 上的一个动点,ACE △的外心是P .(1)求m ,n 的值.(2)当点E 移动到点B 时,求ACE △的面积.(3)①是否存在点E ,使得点P 落在ACE △的边上,若存在,求出点E 的坐标,若不存在,请说明理由.②过点A 作直线AD x ⊥轴交直线l 于点D ,当点E 从点D 移动到点B 时,圆心P 移动的路线长为_____.(直接写出答案)10.如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.(3)如图②,点Q 是线段OB 上一动点,连接BC ,在线段BC 上是否存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形?若存在,求M 的坐标;若不存在,请说明理由.11.如图,在矩形ABCD 中,AB =6,BC =8,点E ,F 分别在边BC ,AB 上,AF =BE =2,连结DE ,DF ,动点M 在EF 上从点E 向终点F 匀速运动,同时,动点N 在射线CD 上从点C 沿CD 方向匀速运动,当点M 运动到EF 的中点时,点N 恰好与点D 重合,点M 到达终点时,M ,N 同时停止运动.(1)求EF的长.(2)设CN=x,EM=y,求y关于x的函数表达式,并写出自变量x的取值范围.(3)连结MN,当MN与△DEF的一边平行时,求CN的长.12.小聪与小明在一张矩形台球桌ABCD边打台球,该球桌长AB=4m,宽AD=2m,点O、E分别为AB、CD的中点,以AB、OE所在的直线建立平面直角坐标系。
上海民办尚德实验学校数学一元一次方程检测题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
上海民办师大实验中学数学几何模型压轴题单元培优测试卷

上海民办师大实验中学数学几何模型压轴题单元培优测试卷一、初三数学旋转易错题压轴题(难)1.综合与实践问题情境在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1,MN是过点A的直线,点C为直线MN外一点,连接AC,作∠ACD=60°,使AC=DC,在MN上取一点B,使∠DBN=60°.观察发现(1)根据图1中的数据,猜想线段AB、DB、CB之间满足的数量关系是;(2)希望小组认真思考后提出一种证明方法:将CB所在的直线以点C为旋转中心,逆时针旋转60°,与直线MN交于点E,即可证明(1)中的结论. 请你在图1中作出线段CE,并根据此方法写出证明过程;实践探究(3)奋进小组在继续探究的过程中,将点C绕点A逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:在图2中,线段AB、DB、CB之间满足的数量关系是;在图3中,线段AB、DB、CB之间满足的数量关系是;提出问题(4)智慧小组提出一个问题:若图3中BC⊥CD于点C时,BC=2,则AC为多长?请你解答此问题.【答案】(1)AB+DB=CB;(2)见解析;(3)AB-DB=CB;DB-AB=CB;(4)23【解析】【分析】(1)根据图中数据直接猜想AB+DB=CB(2)在射线AM上一点E,使得∠ECB=60°,证明△ACE≌△DCB,推出EB=CB从而得出(1)中的结论;(3)利用旋转的性质和线段的和差关系以及全等三角形的性质得出线段关系;(4)过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.证明△ACE≌△DCB,得出BC=EC,结合△ECB为等边三角形,得出∠ECA=90°,在Rt△AEC中根据边长计算出AC的长度.【详解】综合与实践(1)AB+DB=CB(2)线段CE如图所示.证明:∵∠ECB=∠ACD=60º,∴∠2+∠ACB=∠1+∠ACB,∴∠2=∠1.∵∠ACD=∠DBN=60º, ∠ABD+∠DBN=180º,∴∠ABD+∠ACD=180º,∴在四边形ACDB中,∠CAB+∠3=180º.∵∠CAB+∠4=180º,∴∠4=∠3.又∵AC=DC,∴△ACE≌△DCB(ASA)∴EA=BD,EC=BC.又∵∠ECB=60°,∴△ECB为等边三角形,∴EB=CB.而EB=EA+AB=DB+AB,∴CB=DB+AB.(3) AB-DB=CB;DB-AB=CB;(4)证明:如图,过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.∵∠DCA=60º∴∠ECB+∠BCA=∠DCA+∠BCA即∠ECA=∠BCD∵∠DBN=120º∴∠DBA=60º又∵∠AFB=∠DFC∴∠EAF=∠BDC又∵AC=DC∴△ACE≌△DCB(ASA)∴BC=EC∴△ECB为等边三角形∴∠CEB=60º∵BC⊥CD∴∠ECA=∠BCD=90º∴在Rt△AEC中,∠CAE=30º∵BC=2,EC=BC∴AC=EC·tan60º= 23 【点睛】本题考查了全等三角形的判定和性质,旋转的性质,根据题中条件适当添加辅助线构造全等三角形,利用全等的性质得出线段关系是本题的关键.2.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示.()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.【答案】(1)详见解析;(2)7,725. 【解析】【分析】 (1)图形经过旋转以后明确没有变化的边长,证明AOC BOD ≅,得出AC=BD , 延长BD 交AC 于E ,证明∠AEB=90︒,从而得到BD AC ⊥.(2) 如图3中,设AC=x ,在Rt △ABC 中,利用勾股定理求出x ,再根据sinα=sin ∠ABC=AC AB即可解决问题【详解】 ()1证明:如图2中,延长BD 交OA 于G ,交AC 于E .∵90AOB COD ∠=∠=,∴AOC DOB ∠=∠,在AOC 和BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD ≅,∴AC BD =,CAO DBO ∠=∠,∵90DBO GOB ∠+∠=,∵OGB AGE ∠=∠,∴90CAO AGE ∠+∠=,∴90AEG ∠=,∴BD AC ⊥.()2解:如图3中,设AC x =,∵BD 、CD 在同一直线上,BD AC ⊥,∴ABC 是直角三角形,∴222AC BC AB +=,∴222(17)25x x ++=,解得7x =,∵45ODC DBO α∠=∠+∠=,45ABC DBO ∠+∠=,∴ABC α∠=∠,∴7sin sin 25AC ABC AB α=∠==. 【点睛】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型.3.如图1,正方形ABCD 与正方形AEFG 的边AB 、AE (AB <AE )在一条直线上,正方形AEFG 以点A 为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE 、DG.(1)当正方形AEFG 旋转至如图2所示的位置时,求证:BE=DG ;(2)当点C 在直线BE 上时,连接FC ,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G 到BE 的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.4.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S 30334+【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22=4,AD AC∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-34)=30334-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(3430334+综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.5.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为222+,此时315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=2+2,此时α=315°.【详解】(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,90OA ODAOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△AOG ≌△DOE , ∴∠AGO=∠DEO , ∵∠AGO+∠GAO=90°, ∴∠GAO+∠DEO=90°, ∴∠AHE=90°, 即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况: (Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时, ∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°, ∵OA ⊥OD,OA ⊥AG′, ∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘, 即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时, 同理可求∠BOG′=30°, ∴α=180°−30°=150°. 综上所述,当∠OAG′=90°时,α=30°或150°. ②如图3,当旋转到A. O 、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=2,∵OG=2OD,∴OG′=OG=2,∴OF′=2,∴A F′=AO+OF′=22+2,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.6.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC=612.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.7.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.8.如图1,点O 是正方形ABCD 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE . (1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.二、初三数学圆易错题压轴题(难)9.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G.(1)如图1,求证:GD=GF;(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;(3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长.【答案】(1)见解析;(2)∠ADF=45°;(3)1810.【解析】【分析】(1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°;(3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m=2,过点N作NS⊥DP于S,连接AF,FK,过点F作FQ⊥AD于点Q,过点F 作FR⊥DK交DK的延长线于点R,通过构造直角三角形,应用解直角三角形方法球得DK.【详解】解:(1)证明:∵DE⊥AB∴∠BED=90°∴∠A+∠ADE=90°∵∠ADC=90°∴∠GDF+∠ADE=90°∴∠A=∠GDF∵BD BD∴∠A =∠GFD ∴∠GDF =∠GFD ∴GD =GF (2)连接OD 、OF ∵OD =OF ,GD =GF ∴OG ⊥DF ,PD =PF 在△DPH 和△FPB 中PD PF DPH FPB PH PB =⎧⎪∠=∠⎨⎪=⎩∴△DPH ≌△FPB (SAS ) ∴∠FBP =∠DHP =90° ∴∠GBH =90°∴∠DGF =360°﹣90°﹣90°﹣90°=90° ∴∠GDF =∠DFG =45° ∴∠ADF =45°(3)在Rt △ABH 中,∵∠BAH =45°,AB =∴AH =BH =12 ∴PH =PB =6 ∵∠HDP =∠HPD =45° ∴DH =PH =6∴AD =12+6=18,PN =HM =12PH =3,PD =∵∠BFE =∠EBF =45° ∴EF =BE∵∠DAE =∠ADE =45° ∴DE =AE ∴DF =AB =∵四边形ABCD 内接于⊙O ∴∠DAB +∠BCD =180° ∴∠BCD =135° ∴∠BCG =45°=∠CBG ∴GC =GB又∵∠CGP =∠BGP =45°,GP =GP ∴△GCP ≌△GBP (SAS ) ∴∠PCG =∠PBG =90° ∴∠PCD =∠CDH =∠DHP =90° ∴四边形CDHP 是矩形∴CD =HP =6,PC =DH =6,∠CPH =90° 令CN =m ,则PN =6﹣m ,MN =m +3 在Rt △PMN 中,∵PM 2+PN 2=MN 2 ∴32+(6﹣m )2=(m +3)2,解得m =2 ∴PN =4过点N 作NS ⊥DP 于S , 在Rt △PSN 中,PS =SN =22 DS =62﹣22=42SN 221tan DS 242SDN ∠=== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R 在Rt △DFQ 中,FQ =DQ =12 ∴AQ =18﹣12=6 ∴tan 1226FQ FAQ AQ ∠=== ∵四边形AFKD 内接于⊙O , ∴∠DAF +∠DKF =180° ∴∠DAF =180°﹣∠DKF =∠FKR 在Rt △DFR 中,∵DF =1122,tan 2FDR ∠=∴12102410,55FR DR ==在Rt △FKR 中,∵FR =1210tan ∠FKR =2 ∴KR =610∴DK =DR ﹣KR =24106101810=-=.【点睛】本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形.10.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设x BP =,PC y =.(1)求证:PE //DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605R << 【解析】【分析】 ()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据平行线的判定定理即可得到结论;()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,//PH AF ,求得2BF FG GC ===,根据勾股定理得到22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到223PH x =,13BH x =,求得163CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218655PD EC ==-=,根据相切两圆的性质即可得到结论.【详解】 ()1证明:梯形ABCD ,AB CD =,B DCB ∠∠∴=,PB PE =,B PEB ∠∠∴=,DCB PEB ∠∠∴=,//PE CD ∴;()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .梯形ABCD 中,//AD BC ,,BC DG ⊥,BC PH ⊥,∴四边形ADGF 是矩形,//PH AF ,2AD =,6BC DC ==,2BF FG GC ∴===,在Rt ABF 中,22226242AF AB BF =-=-=,//PH AF ,PH BP BH AF AB BF∴==6242x BH ==, 223PH x ∴=,13BH x =, 163CH x ∴=-, 在Rt PHC 中,22PC PH CH =+22221()(6)33y x x ∴=+-2436(09)y x x x =-+<<, ()3解:作//EM PD 交DC 于M .//PE DC ,∴四边形PDME 是平行四边形.PE DM x ∴==,即 6MC x =-,PD ME ∴=,PDC EMC ∠∠=,又PDC B ∠∠=,B DCB ∠=∠,DCB EMC PBE PEB ∠∠∠∠∴===.PBE ∴∽ECM ,PB BE EC MC ∴=,即232663x x x x =--, 解得:185x =, 即125BE =, 1218655PD EC ∴==-=, 当两圆外切时,PD r R =+,即0(R =舍去); 当两圆内切时,-PD r R =,即10(R =舍去),2365R =; 即两圆相交时,3605R <<. 【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.11.如图,已知直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB ,(1)求证:直线AB 是⊙O 的切线;(2)OA ,OB 分别交⊙O 于点D ,E ,AO 的延长线交⊙O 于点F ,若AB =4AD ,求sin ∠CFE 的值.【答案】(1)见解析;(25 【解析】【分析】 (1)根据等腰三角形性质得出OC ⊥AB ,根据切线的判定得出即可;(2)连接OC 、DC ,证△ADC ∽△ACF ,求出AF=4x ,CF=2DC ,根据勾股定理求出35x ,DF=3x ,解直角三角形求出sin ∠AFC ,即可求出答案. 【详解】(1)证明:连接OC ,如图1,∵OA=OB,AC=BC,∴OC⊥AB,∵OC过O,∴直线AB是⊙O的切线;(2)解:连接OC、DC,如图2,∵AB=4AD,∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,∴∠DCF=90°,∵OC⊥AB,∴∠ACO=∠DCF=90°,∴∠OCF=∠ACD=90°﹣∠DCO,∵OF=OC,∴∠AFC=∠OCF,∴∠ACD=∠AFC,∵∠A=∠A,∴△ADC∽△ACF,∴122 AC AD DC xAF AC CF x====,∴AF=2AC=4x,FC=2DC,∵AD=x,∴DF=4x﹣x=3x,在Rt△DCF中,(3x)2=DC2+(2DC)2,解得:DC 35x,∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴DC EC=,∴∠CFE=∠AFC,∴sin∠CFE=sin∠AFC=DCDF=355535xx=.【点睛】本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.12.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=512时,直接写出△FHD与△EFH面积比.【答案】(1)60°;(2)45;(3)①m=2或226【解析】【分析】(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)由题意可知当m=2时,由勾股定理可得:AB=5cos∠ABC 5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB=22AC BC=25,∴cos∠ABC=BCAB =5,∴BH=BC•cos∠ABC=25,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE,∴CE=13m,BE=32m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=32,∴DE=32AC=6,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:62+21m3⎛⎫⎪⎝⎭=m2,∵m>0,∴m=2;综上所述,①当BC=3CE时,m=2或2.②如图4,过F作FG⊥HE于点G,∵CH ⊥AB ,HB =HD ,∴CB =CD ,∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+,∴DF BE =,∴EF ∥BD ,∴FHD EFH S S =DH EF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH 22FG HG +22(5)(12)k k +=13k ,∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k ,∴EF 22FG EG +22(5)k k +26k ,∴FHD EFH SS =26k 26. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.13.如图.在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =,DE 是ABC 的中位线,连结BD ,点F 是边BC 上的一个动点,连结AF 交BD 于H ,交DE 于G .(1)当点F 是BC 的中点时,求DH BH的值及GH 的长 (2) 当四边形DCFH 与四边形BEGH 的面积相等时,求CF 的长:(3)如图2.以CF 为直径作O . ①当O 正好经过点H 时,求证:BD 是O 的切线: ②当DH BH的值满足什么条件时,O 与线段DE 有且只有一个交点.【答案】(1)12DH BH =,13GH =;(2)83CF =;(3)①见解析;②当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【解析】【分析】(1)根据题意得H 为ABC 的重心,即可得DH BH的值,由重心和中位线的性质求得16=GH AF ,由勾股定理求得AF 的长,即可得GH 的长; (2)根据图中面积的关系得S 四边形DCFG =DEB S,列出关系式求解即可得CF 的长; (3)根据O 与线段DE 有且只有一个交点,可分两类情况讨论:当O 与DE 相切时,求得DH BH 的值;当O 过点E ,此时是O 与线段DE 有两个交点的临界点,即可得出O 与线段DE 有且只有一个交点时DH BH 满足的条件. 【详解】解:(1)∵DE 是ABC 的中位线,∴,D E 分别是,AC AB 的中点,//DE BC ,又∵点F 是BC 的中点,∴BD 与AF 的交点H 是ABC 的重心,:1:2DH BH ∴=,即12DH BH =;:1:2=HF AH , ∴13=HF AF , 在ACF 中,D 为AC 中点,//DE BC ,则//DG CF ,∴DG 为ACF 的中位线,G 为AF 的中点,12∴=GF AF ,111236∴=-=-=GH GF HF AF AF AF , 在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =, 22221068BC AB AC ∴=-=-=,则142==CF BC , 222264213AF AC CF ∴=+=+=,11321363∴=⨯=GH ; (2)∵四边形DCFH 与四边形BEGH 的面积相等, ∴S 四边形DCFH +DGH S=S 四边形BEGH +DGH S , 即S 梯形DCFG =DEB S ,∵6AC =,8BC =,DE 是ABC 的中位线, ∴3CD =,4DE =,∵1143622=⋅⋅=⨯⨯=DEB S DE CD , 设2CF a =,∵DG 为ACF 的中位线, ∴12==DG CF a , 则S 梯形DCFG ()3(2)622+⋅==+=DG CF CD a a , 解得:43a =, 823∴==CF a ; (3)①证明:如图2,连结、CH OH ,CF 为O 的直径,O 经过点H ,90∴∠=︒FHC ,∴90∠=∠=︒AHC FHC ,AHC 为直角三角形,D 为AC 的中点,12∴==DH AC CD , ∠∠∴=DCH DHC .又OC OH =,∴∠=∠OCH OHC ,∴∠+=∠+OCH DCH OHC DHC ,即90∠=∠=︒DHO ACB ,∴BH BD ⊥,即BD 是O 的切线;②如图3-1,当O 与DE 相切时,O 与线段DE 有且只有一个交点,设O 的半径为r ,圆心O 到DE 的距离为d ,∴当r=d 时,O 与DE 相切, ∵//DE CF ,90ACB ∠=︒,3CD =,∴两平行线、DE CF 之间的距离为3CD =,∴3r =,则6CF =,1862,32=-=-===BF BC CF DG CF , 由//DE CF 得:DGH BFH ,32DH DG BH BF ∴==; 如图3-2,当O 经过点E 时,连接OE 、OG ,设O 的半径为r ,即==OE OC r ,∵G 为AF 的中点,O 为CF 的中点,∴//OG CD ,∴四边形COGD 为平行四边形,又∵90ACB ∠=︒,∴四边形COGD 为矩形,∴90∠=︒DGO ,则90∠=︒OGE ,OGE 为直角三角形, ∴=3=OG CD ,==DG OC r ,则4=-=-GE DE DG r ,由勾股定理得:222+=OG GE OE ,即2223(4)+-=r r , 解得:258r =,则258==OE OC ,2524==CF r 257258,448∴=-=-===BF BC CF DG OC ,由//DE BC 得:DGH BFH ,252514874∴===DH DG BH BF , 则当2514DH BH >时,O 与线段DE 有且只有一个交点; 综上所述,当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【点睛】本题属于圆综合题,考查了切线的性质与判定、中位线的性质等知识,解题的关键是灵活添加常用的辅助线,属于中考压轴题.14.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(2)3(3)51+和22 【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O 作OP ⊥AB ,垂足为点P ;OQ ⊥BC ,垂足为点Q ,∵BO 平分∠ABC ,∴OP=OQ ,∵OP ,OQ 分别是弦AB 、BC 的弦心距,∴AB= BC ;(2)∵OA=OB ,∵CD=CB ,∴∠CDB =∠CBD ,∴∠A+∠AOD =∠CBO +∠OBD ,∴∠AOD =∠CBO ,∵OC=OB ,∴∠C =∠CBO ,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD ,∵AO ⊥OB ,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D 作DH ⊥AO ,垂足为点H ,∴∠AHD=∠DHO=90°,∴tan ∠AOD =HD OH ∵∠AHD=∠AOB=90°,∴HD ‖OB , ∴D AOB H AH O = , ∵OA=OB ,∴HD=AH ,∵HD ‖OB ,∴3AH HD OH O AH DB H ===; (3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO=, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴;若OE = EB 时,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=22EB OB =, ∵OB=2,∴EB =2 ,∵OE 过圆心,OE ⊥BC ,∴BC =2EB =22.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.15.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度【答案】(1)证明见解析;(2)证明见解析;(3)24105MN =. 【解析】【分析】(1)由垂径定理即可证明; (2)利用等弧所对的圆周角相等和三角形外角性质即可得到结论;(3)由∠MPC=∠NQD 可得:∠BGL=∠BLG ,BL=BG ,作BR ⊥MN ,GT ⊥AF ,HK ⊥AB ,证明:GH 平分∠AGT ,利用相似三角形性质和角平分线性质求得△AGT 三边关系,再求出HK 与GH ,OS ⊥MN ,再利用相似三角形性质求出OS ,利用勾股定理求MN 即可.解:()1证明:∵BC BD =,AB 为直径,∴AB ⊥CD∴∠AEC=90°;()2连接,OM ON ,∵点M 是弧AC 的中点,点N 是弧DF 的中点,∴AM CM =,FN DN =,∴,OM AC ON FD ⊥⊥,∵OM=ON ,∴M N ∠=∠,∵90M MPC N NQB ∠+∠=∠+∠=︒,MPC NQD ∴∠=∠;()3如图3,过G 作GT ⊥AF 于T ,过H 作HK ⊥AB 于K ,过B 作BR ⊥MN 于R ,过O 作OS ⊥MN 于S ,连接OM ,设BG=m ,∵△ABH 的面积等于8,AG=6∴HK=166m +, ∵BC BD =,∴∠BAC=∠BFD ,由(2)得∠MPC=∠NQD∴∠AGM=∠FLN∴∠BGL=∠BLG∴BL=BG ,∴∠ABR=∠FBR∵GH ⊥MN∴GH ∥BR∴∠AGH=∠ABR∵AB 是直径,GT ⊥AF∴∠AFB=∠ATG=90°∴GT ∥BF ,又∵GH ∥BR∴∠TGH=∠FBR∴∠AGH=∠TGH ,又∵HK ⊥AG ,HT ⊥GT ,∴HT=HK=166m +, ∵FH=BG=m , ∴FT=16(8)(2)66m m m m m +--=++, ∵GT ∥BF , ∴AT AG FT BG=, ∴6(8)(2)(6)m m AT m m +-=+,616m AH m -=,48(6)(38)m KG TG m m ==+-, ∵222AT TG AG +=,代入解得:m=4;∴AB=10,OM=5,GK=245,HK=85,OG=1∴, ∵OS ⊥MN∴∠OSG=∠GKH=90°,GH ∥OS∴∠HGK=∠GOS∴△HGK ∽△GOS , ∴OS GK OG GH=,∴OS =∴MG =∴24105MN =; 【点睛】 本题考查了圆的性质,圆周角定理,垂径定理,相似三角形判定和性质,勾股定理等,综合性较强,尤其是第(3)问难度很大,计算量大,解题的关键是熟练掌握所学的知识,正确作出辅助线,运用数形结合的思想进行解题.16.如图,在O 中,AB 为直径,过点A 的直线l 与O 相交于点C ,D 是弦CA 延长线上一点,BAC ∠,BAD ∠的平分线与O 分别相交于点E ,F ,G 是BF 的中点,过点G 作MNAE ,与AF ,EB 的延长线分别交于点M ,N .(1)求证:MN 是O 的切线; (2)若24AE =,18AM =. ①求O 的半径;②连接MC ,求tan MCD ∠的值. 【答案】(1)见解析;(2)①13;②2741 【解析】【分析】(1)如图1,连接 GO 、GA ,先根据角平分线的定义证明∠MAE=12(∠BAC+∠BAD )=90°,由圆周角定理和同圆的半径相等得∠OGA=∠FAG ,则OG ∥AM ,所以∠MGO=180-∠M=90,从而得结论;(2)①延长GO 交AE 于点P ,证明四边形 MGPA 为矩形,得GP=MA=18,∠GPA=90°,设OA=OG=r ,则OP=18-r ,根据勾股定理列方程解出即可;②如图3,过M 作MH ⊥l ,连接BC ,延长NE 交l 于I ,连接GO 交延长交AE 于P ,tan ∠MAH=tan ∠ABE=tan ∠BIA=125,BI=2BE=20,根据三角函数计算MH ,AH ,CI 的长,最后计算MH 和HC 的长,代入tan ∠MCD=MH HC,可得结论. 【详解】(1)证明:如图1,连接GO ,GA ,。
上海民办尚德实验学校数学平面图形的认识(一)检测题(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE(1)若∠COF=20°,则∠BOE=________°(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.【答案】(1)40(2)解:∵∴∴(3)解:存在.理由如下:∵设∴∵∴∴∴∴【解析】【解答】⑴∴∵OF平分∠AOE,∴∴∴故答案为:40。
上海民办尚德实验学校七年级数学压轴题专题
上海民办尚德实验学校七年级数学压轴题专题一、七年级上册数学压轴题1.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D =30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.①此时t的值为;(直接填空)②此时OE是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.2.已知数轴上的A、B、C、D四点所表示的数分别是a、b、c、d,且(a+16)2+(d+12)2=﹣|b ﹣8|﹣|c﹣10|.(1)求a、b、c、d的值;(2)点A,B沿数轴同时出发相向匀速运动,4秒后两点相遇,点B的速度为每秒2个单位长度,求点A的运动速度;(3)A,B两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,C 点以每秒1个单位长度的速度向数轴正方向开始运动,若t秒时有2AB=CD,求t的值;(4)A,B两点以(2)中的速度从起始位置同时出发,相向而行当A点运动到C点时,迅速以原来速度的2倍返回,到达出发点后,保持改变后的速度又折返向C点运动;当B点运动到A点的起始位置后停止运动.当B点停止运动时,A点也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.3.已知实数a,b,c在数轴上所对应的点分别为A,B,C,其中b是最小的正整数,且a,b,c满足()2520-++=.两点之间的距离可用这两点对应的字母表示,如:点Ac a b与点B之间的距离可表示为AB.(1)a=,b=,c=;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B以每秒2个单位长度的速度向右运动,点C以每秒5个单位长度的速度向右运动,假设运动时间为t秒,则AB=,BC=;(结果用含t的代数式表示)这种情况下,BC AB-的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值;(3)若A ,C 两点的运动和(2)中保持不变,点B 变为以每秒n (0n >)个单位长度的速度向右运动,当3t =时,2AC BC =,求n 的值.4.数轴上有A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如:数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“关联点”.回答下列问题:(1)若点A 表示数-2,点B 表示数1.下列各数-1,2,4,6所对应的点是1C 、2C 、3C .其中是点A ,B 的“关联点”的是______.(2)点A 表示数4,点B 表示数10,P 为数轴上一个动点:①若点P 在点B 的左侧,且点P 是点A ,B 的“关联点”,则此时点P 表示的数是多少? ②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P 表示的数.5.阅读绝对值拓展材料:a 表示数a 在数轴上的对应点与原点的距离如:5表示5在数轴上的对应点到原点的距离而550=-,即50-表示5、0在数轴上对应的两点之间的距离,类似的,有:()5353+=--表示5、3-在数轴上对应的两点之间的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 之间的距离可表示为a b -. 回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示1和3-的两点之间的距离是 ;(2)数轴上表示x 和1-的两点A 和B 之间的距离是 ,如果A 、B 两点之间的距离为2,那么x = .(3)2x +可以理解为数轴上表示x 和 的两点之间的距离.(4)23x x -+-可以理解为数轴上表示x 的点到表示 和 这两点的距离之和.21x x ++-可以理解为数轴上表示x 的点到表示 和 这两点的距离之和. (5)23x x -+-最小值是 ,21x x ++-的最小值是 .6.阅读理解:定义:A ,B ,C 为数轴上三点,若点C 到点A 的距离是它到点B 的时距离的n (n 为大于1的常数)倍,则称点C 是(A ,B )的n 倍点,且当C 是(A ,B )的n 倍点或(B ,A )的n 倍点时,我们也称C 是A 和B 两点的n 倍点.例如,在图1中,点C 是(A ,B )的2倍点,但点C 不是(B ,A )的2倍点.(1)特值尝试.①若2n =,图1中,点________是(D ,C )的2倍点.(填A 或B )②若3n =,如图2,M ,N 为数轴上两个点,点M 表示的数是2-,点N 表示的数是4,数________表示的点是(M ,N )的3倍点. (2)周密思考:图2中,一动点P 从N 出发,以每秒2个单位的速度沿数轴向左运动t 秒,若P 恰好是M 和N 两点的n 倍点,求所有符合条件的t 的值.(用含n 的式子表示) (3)拓展应用:数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的M 和N 两点的所有n 倍点P 均处于点N 的“可视距离”内,请直接写出n 的取值范围.(不必写出解答过程)7.如图,在数轴上,点O 是原点,点A ,B 是数轴上的点,已知点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足25(6)03a b b ++-=.(1)在数轴上标出点A ,B 的位置. (2)在数轴上有一个点C ,满足92CA CB -=,则点C 对应的数为________. (3)动点P ,Q 分别从A ,B 同时出发,点P 以每秒6个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴向左匀速运动设运动时间为t 秒(0t >). ①当t 为何值时,原点O 恰好为线段PQ 的中点.②若M 为AP 的中点,点N 在线段BQ 上,且13BN BQ =,若3MN =时,请直接写出t 的值.8.定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是[],A B 的美好点.例如;如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[,]A B 的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距高是2,那么点D 就不是[,]A B 的美好点,但点D 是[,]B A 的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2.(1)点E ,F ,G 表示的数分别是3-,6.5,11,其中是[,]M N 美好点的是________;写出[,]N M 美好点H 所表示的数是___________.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,点P 恰好为M 和N 的美好点?9.已知,一个点从数轴上的原点开始.先向左移动6cm 到达A 点,再从A 点向右移动10cm 到达B 点,点C 是线段AB 的中点. (1)点C 表示的数是 ;(2)若点A 以每秒2cm 的速度向左移动,同时C 、B 两点分别以每秒1cm 、4cm 的速度向右移动,设移动时间为t 秒,①运动t 秒时,点C 表示的数是 (用含有t 的代数式表示); ②当t =2秒时,CB •AC 的值为 .③试探索:点A 、B 、C 在运动的过程中,线段CB 与AC 总有怎样的数量关系?并说明理由.10.如图,两条直线AB 、CD 相交于点O ,且∠AOC=∠AOD ,射线OM (与射线OB 重合)绕O 点逆时针方向旋转,速度为15°/s ,射线ON (与射线OD 重合)绕O 点顺时值方向旋转,速度为12°/s ,两射线,同时运动,运动时间为t 秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON 的度数为_____,∠BON 的度数为_____,∠MOC 的度数为_____;(2)当0<t <12时,若∠AOM=3∠AON -60°,试求出t 的值. (3)当0<t <6时,探究72COM BONMON∠+∠∠的值,在t 满足怎样的条件是定值,在t 满足怎样的条件不是定值.11.如图,已知120AOB ∠=︒,COD △是等边三角形(三条边都相等、三个角都等于60︒的三角形),OM 平分BOC ∠.(1)如图1,当30AOC ∠=︒时,DOM ∠=_________; (2)如图2,当100AOC ∠=︒时,DOM ∠=________;(3)如图3,当()0180AOC αα∠=<︒<︒时,求DOM ∠的度数,请借助图3填空. 解:因为AOC α∠=,120AOB ∠=︒, 所以120BOC AOC AOB α∠=∠-∠=-︒, 因为OM 平分BOC ∠,所以MOC ∠=________BOC ∠=_________(用α表示), 因为COD △为等边三角形, 所以60DOC ∠=︒,所以DOM MOC DOC ∠=∠+∠=_______(用α表示).(4)由(1)(2)(3)问可知,当()0180AOC ββ∠=︒<<︒时,直接写出DOM ∠的度数(用β来表示,无需说明理由)12.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.13.如图,O 为直线AB 上的一点,过点O 作射线OC ,∠AOC=30°,将一直角三角板(∠M=30°),的直角顶点放在O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,OM 恰好平分∠BOC ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 平分∠MOB ?请画出图并说明理由.14.如果两个角的差的绝对值等于60°,就称这两个角互为“伙伴角”,其中一个角叫做另一个角的“伙伴角”(本题所有的角都指大于0°小于180°的角),例如180∠=,220∠=,|12|60-=∠∠,则1∠和2∠互为“伙伴角”,即1∠是2∠的“伙伴角”,2∠也是1∠的“伙伴角”.(1)如图1.O 为直线AB 上一点,90AOC EOD ∠=∠=,60∠AOE=,则AOE ∠的“伙伴角”是_______________.(2)如图2,O 为直线AB 上一点,AOC 30∠=,将BOC ∠绕着点O 以每秒1°的速度逆时针旋转得DOE ∠,同时射线OP 从射线OA 的位置出发绕点O 以每秒4°的速度逆时针旋转,当射线OP 与射线OB 重合时旋转同时停止,若设旋转时间为t 秒,求当t 何值时,POD ∠与POE ∠互为“伙伴角”.(3)如图3,160AOB ∠=,射线OI 从OA 的位置出发绕点O 顺时针以每秒6°的速度旋转,旋转时间为t 秒170(0)3t <<,射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.问:是否存在t 的值使得AOI ∠与POI ∠互为“伙伴角”?若存在,求出t 值;若不存在,请说明理由.15.已知将一副三角尺(直角三角尺OAB 和OCD )的两个顶点重合于点O ,90AOB ∠=︒,30COD ∠=︒(1)如图1,将三角尺COD 绕点O 逆时针方向转动,当OB 恰好平分COD ∠时,求AOC ∠的度数;(2)如图2,当三角尺OCD 摆放在AOB ∠内部时,作射线OM 平分AOC ∠,射线ON 平分BOD ∠,如果三角尺OCD 在AOB ∠内绕点O 任意转动,MON ∠的度数是否发生变化?如果不变,求其值;如果变化,说明理由.16.如图,∠AOB =150°,射线OC 从OA 开始,绕点O 逆时针旋转,旋转的速度为每秒6°;射线OD 从OB 开始,绕点O 顺时针旋转,旋转的速度为每秒14°,OC 和OD 同时旋转,设旋转的时间为t 秒(0≤t≤25). (1)当t 为何值时,射线OC 与OD 重合; (2)当t 为何值时,∠COD =90°;(3)试探索:在射线OC 与OD 旋转的过程中,是否存在某个时刻,使得射线OC 、OB 与OD 中的某一条射线是另两条射线所夹角的角平分线?若存在,请直接写出所有满足题意的t 的取值,若不存在,请说明理由.17.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”.如图为一量角器的平面示意图,O 为量角器的中心.作射线OA ,OB ,OC ,并将其所对应的量角器外圈刻度分别记为a ︒,b ︒,m ︒.(1)若射线OA ,OB ,OC 为“共生三线”,且OC 为AOB ∠的角平分线. ①如图1,0a =,80b =,则m =______;②当40a =,150b =时,请在图2中作出射线OA ,OB ,OC ,并直接写出m 的值; ③根据①②的经验,得m =______(用含a ,b 的代数式表示).(2)如图3,0a =,60b m ==.在0︒刻度线所在直线上方区域内,将OA ,OB ,OC 按逆时针方向绕点O 同时旋转,旋转速度分别为每秒12︒,6︒,8︒,若旋转t 秒后得到的射线OA ',OB ',OC '为“共生三线”,求t 的值.18.(阅读理解)∠BOC,则我们称射线OC是射线OA关射线OC是∠AOB内部的一条射线,若∠COA=12∠BOC,则称射线OC是射线OA关于于∠AOB的伴随线.例如,如图1,若∠AOC=12∠COD,则称射线OD是射线OB关于∠BOC的伴随线.∠AOB的伴随线;若∠BOD =12(知识运用)如图2,∠AOB=120°.(1)射线OM是射线OA关于∠AOB的伴随线.则∠AOM=_________°(2)射线ON是射线OB关于∠AOB的伴随线,射线OQ是∠AOB的平分线,则∠NOQ的度数是_________°.(3)射线OC与射线OA重合,并绕点O以每秒2°的速度逆时针旋转,射线OD与射线OB 重合,并绕点O以每秒3°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止.①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由.②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线组成的角的一边的伴随线.19.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②125︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板∠)的顶点与60︒角画出了直线EF,然后将一副三角板拼接在一起,其中45︒角(AOB(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.∠时,求旋转角度α;①当OB平分EOD②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 20.已知:AOD 160∠=︒,OB 、OM 、ON ,是AOD ∠ 内的射线.(1)如图 1,若 OM 平分 AOB ∠, ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠ 内旋转时,MON ∠= 度.(2)OC 也是AOD ∠内的射线,如图2,若BOC 20∠=︒ ,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOC ∠内旋转时,求MON ∠的大小.(3)在(2)的条件下,当射线OB 从边OA 开始绕O 点以每秒2︒的速度逆时针旋转t秒,如图3,若AOM DON 23∠∠=::,求t 的值.【参考答案】***试卷处理标记,请不要删除一、七年级上册数学压轴题1.(1)①3,②是,理由见解析;(2)t =5秒或69秒时,OC 平分∠DOE ;理由见解析;(3)经秒时,OC 平分∠DOB .画图说明理由见解析. 【分析】(1)①根据题意可直接求解; ②根据题意易得∠C解析:(1)①3,②是,理由见解析;(2)t =5秒或69秒时,OC 平分∠DOE ;理由见解析;(3)经21011秒时,OC 平分∠DOB .画图说明理由见解析. 【分析】(1)①根据题意可直接求解;②根据题意易得∠COE =∠AOE ,问题得证;(2)根据题意先求出射线OC 绕点O 旋转一周的时间,设经过x 秒时,OC 平分∠DOE ,然后由题意分类列出方程求解即可;(3)由(2)可得OD 比OC 早与OB 重合,设经过x 秒时,OC 平分∠DOB ,根据题意可列出方程求解. 【详解】(1)①∵∠AOC =30°,∠AOB =180°, ∴∠BOC =∠AOB ﹣∠AOC =150°, ∵OD 平分∠BOC ,∴∠BOD =12BOC =75°, ∴t =907535︒-︒=; 故答案为3; ②是,理由如下:∵转动3秒,∴∠AOE =15°, ∴∠COE =∠AOC ﹣∠AOE =15°, ∴∠COE =∠AOE , 即OE 平分∠AOC .(2)三角板旋转一周所需的时间为=3605=72(秒),射线OC 绕O 点旋转一周所需的时间为3608=45(秒), 设经过x 秒时,OC 平分∠DOE , 由题意:①8x ﹣5x =45﹣30, 解得:x =5,②8x ﹣5x =360﹣30+45, 解得:x =125>45,不合题意,③∵射线OC 绕O 点旋转一周所需的时间为3608=45(秒),45秒后停止运动, ∴OE 旋转345°时,OC 平分∠DOE , ∴t =3455=69(秒), 综上所述,t =5秒或69秒时,OC 平分∠DOE . (3)如图3中,由题意可知,OD 旋转到与OB 重合时,需要90÷5=18(秒),OC 旋转到与OB 重合时,需要(180﹣30)÷8=3184(秒),所以OD 比OC 早与OB 重合, 设经过x 秒时,OC 平分∠DOB ,由题意:8x ﹣(180﹣30)=12(5x ﹣90), 解得:x =21011, 所以经21011秒时,OC 平分∠DOB .【点睛】本题主要考查角的和差关系及角平分线的定义,关键是根据线的运动得到角的等量关系,然后根据题意列出式子计算即可.2.(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.【分析】(1)根据解析:(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是703秒或265秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.【分析】(1)根据平方和绝对值的非负性即可求出结论;(2)设点A的运动速度为每秒v个单位长度,根据题意,列出一元一次方程即可求出结论;(3)根据题意,画出对称轴,然后用t表示点A、B、C表示的数,最后分类讨论列出方程即可求出结论;(4)求出B点运动至A点所需的时间,然后根据点A和点B相遇的情况分类讨论,列出方程求出t的值即可求出结论.【详解】(1)∵(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|,(a+16)2+(d+12)2+|b﹣8|+|c﹣10|=0,∴a=﹣16,b=8,c=10,d=﹣12;(2)设点A的运动速度为每秒v个单位长度,4v+4×2=8+16,v=4,答:点A的运动速度为每秒4个单位长度;(3)如图1,t秒时,点A表示的数为:﹣16+4t,点B表示的数为:8+2t,点C表示的数为:10+t.∵2AB=CD,①2[(﹣16+4t)﹣(8+2t)]=10+t+12,2(﹣24+2t)=22+t,﹣48+4t=22+t,3t=70,t703 =;②2[(8+2t)﹣(﹣16+4t)]=10+t+12,2(24﹣2t)=22+t,5t=26,t265 =,综上,t的值是703秒或265秒;(4)B点运动至A点所需的时间为()8162--=12(s),故t≤12,①由(2)得:当t=4时,A,B两点同时到达的点表示的数是﹣16+4×4=0;②当点A从点C返回出发点时,若与B相遇,由题意得:10164+=6.5(s),10168+=3.25(s),∴点A到C,从点C返回到出发点A,用时6.5+3.25=9.75(s),则2×4×(t﹣6.5)=10﹣8+2t,t=9<9.75,此时A,B两点同时到达的点表示的数是8﹣9×2=﹣10;③当点A第二次从出发点返回点C时,若与点B相遇,则8(t﹣9.75)+2t=16+8,解得:t=10.2;综上所述:A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.【点睛】此题考查的是一元一次方程的应用、数轴与动点问题,掌握平方、绝对值的非负性、行程问题公式和分类讨论的数学思想是解决此题的关键.3.(1)-2,1,5;(2)不变,值为1;(3)或【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)用关于解析:(1)-2,1,5;(2)不变,值为1;(3)136或212【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)用关于t 的式子表示BC 和AB 即可求解;(3)分别求出当t=3时,A 、B 、C 表示的数,得到AC 和BC ,根据AC=2BC 列出方长,解之即可.【详解】解:(1)∵()2520c a b -++=,b 是最小的正整数,∴c-5=0,a+2b=0,b=1,∴a=-2,b=1,c=5,故答案为:-2,1,5;(2)∵点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴t 秒后,A 表示的数为-t-2,B 表示的数为2t+1,C 表示的数为5t+5,∴BC=5t+5-(2t+1)=3t+4,AB=2t+1-(-t-2)=3t+3,∴BC-AB=3t+4-(3t+3)=1,∴BC-AB 的值不会随着时间t 的变化而改变,BC-AB=1;(3)当t=3时,点A 表示-2-3=-5,点B 表示1+3n ,点C 表示5+5×3=20,∴AC=20-(-5)=25,BC=2013n --=193n -,∵AC=2BC ,则25=2193n -,则25=2(19-3n ),或25=2(3n-19),解得:n=136或212. 【点睛】此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB ,BC 的变化情况是关键.4.(1)C1,C3;(2)①-2或6或8;②16或22或13【分析】(1)根据题意求得CA 与BC 的关系,得到答案;(2)①根据PA=2PB 列方程求解;②分当P 为A 、B 关联点、A 为P 、B 关联点、解析:(1)C 1,C 3;(2)①-2或6或8;②16或22或13【分析】(1)根据题意求得CA 与BC 的关系,得到答案;(2)①根据PA=2PB 列方程求解;②分当P 为A 、B 关联点、A 为P 、B 关联点、B 为A 、P 关联点、B 为P 、A 关联点四种可能列方程解答.【详解】解:(1)∵点A 表示数-2,点B 表示数1,C 1表示的数为-1,∴AC1=1,BC1=2,∴C1是点A、B的“关联点”;∵点A表示数-2,点B表示数1,C2表示的数为2,∴AC2=4,BC1=1,∴C2不是点A、B的“关联点”;∵点A表示数-2,点B表示数1,C3表示的数为4,∴AC3=6,BC3=3,∴C3是点A、B的“关联点”;∵点A表示数-2,点B表示数1,C4表示的数为6,∴AC4=8,BC4=5,∴C4不是点A、B的“关联点”;故答案为:C1,C3;(2)①若点P在点B的左侧,且点P是点A,B的“关联点”,设点 P 表示的数为 x(Ⅰ)当点P在A的左侧时,则有:2PA=PB,即2(4-x)=10-x,解得,x=-2;(Ⅱ)当点P在A、B之间时,有2PA=PB或PA=2PB,即有2(x-4)=10-x或x-4=2(10-x),解得,x=6或x=8;因此点P表示的数为-2或6或8;②若点P在点B的右侧,(Ⅰ)若点P是点A、B的“关联点”,则有,2PB=PA,即2(x-10)=x-4,解得,x=16;(Ⅱ)若点B是点A、P的“关联点”,则有,2AB=PB或AB=2PB,即2(10-4)=x-10或10-4=2(x-10),得,x=22或x=13;(Ⅲ)若点A是点B、P的“关联点”,则有,2AB=PA,即2(10-4)=x-4,解得,x=16;因此点P表示的数为16或22或13.【点睛】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:关联点表示的数是与前面的点A的距离是到后面的数B的距离的2倍,列式可得结果.5.(1)3,4;(2)|x+1|,x=1或-3;(3)-2;(4)2,3,-2,1;(5)1,3【分析】(1)根据两点之间的距离公式计算即可;(2)根据两点之间的距离公式计算即可;(3)根据绝解析:(1)3,4;(2)|x+1|,x=1或-3;(3)-2;(4)2,3,-2,1;(5)1,3【分析】(1)根据两点之间的距离公式计算即可;(2)根据两点之间的距离公式计算即可;(3)根据绝对值的意义可得;(4)根据绝对值的意义可得;(5)分别得出23x x -+-和21x x ++-的意义,再根据数轴的性质可得.【详解】解:(1)数轴上表示2和5的两点之间的距离是3,数轴上表示1和-3的两点之间的距离是4;(2)数轴上表示x 和-1的两点A 和B 之间的距离是|x+1|,如果|AB|=2,即|x+1|=2,∴x=1或-3;(3)|x+2|可以理解为数轴上表示x 和-2的两点之间的距离;(4)|x-2|+|x-3|可以理解为数轴上表示x 的点到表示2和3这两点的距离之和, |x+2|+|x-1|可以理解为数轴上表示x 的点到表示-2和1这两点的距离之和;(5)由(4)可知:当x 在2和3之间时,|x-2|+|x-3|最小值是1,当x 在-2和1之间时,|x+2|+|x-1|的最小值是3.【点睛】本题考查的是绝对值的问题,涉及到数轴应用问题,只要理解绝对值含义和数轴上表示数值的关系(如:|x+2|表示x 与-2的距离),即可求解.6.(1)①B ;②或7;(2)或或;(3)【分析】(1)①直接根据新定义的概念即可得出答案;②根据新定义的概念列绝对值方程求解即可得出答案;(2)设点P 所表示的数为,再根据新定义的概念列方程求解析:(1)①B ;②52或7;(2)31n +或31n n +或31n n -;(3)54n ≥ 【分析】(1)①直接根据新定义的概念即可得出答案;②根据新定义的概念列绝对值方程求解即可得出答案;(2)设点P 所表示的数为42t -,再根据新定义的概念列方程求解即可;(3)分31t n =+,31n t n =+,31n t n =-三种情况分别表示出PN 的值,再根据PN 的范围列不等式组求解即可.【详解】(1)①由数轴可知,点A 表示的数为1-,点B 表示的数为2,点C 表示的数为1,点D 表示的数为0,1AD ∴=,2AC =,12AD AC ∴=, 数点A 不是【D ,C 】的2倍点,2BD ∴=,1BC =,2BD BC ∴=,∴点B 是【D ,C 】的2倍点,故答案为:B .②若点C 是点【M ,N 】的3倍点,3CM CN ∴=,设点C 表示的数为x ,|2|CM x ∴=+,|4|CN x =-,|2|3|4|x x ∴+=-,即23(4)x x +=-或23(4)x x +=--,解得7x =或52x =, ∴数52或7表示的点是【M ,N 】的3倍点. (2)设点P 所表示的数为42t -,点P 是M ,N 两点的n 倍点,∴当点P 是【M ,N 】的n 倍点时,PM nPN =,|422|2t n t ∴-+=⨯,622t nt ∴-=或262t nt -=, 解得31t n =+或31t n=-, 1n >,31t n∴=+, 当点P 是【N ,M 】的n 倍点时,,PN nPM =,2|422|t n t =⨯-+,2(62)t n t ∴=⨯-或2(26)t n t =-,解得31n t n =+或31n t n =-, ∴符合条件的t 的值为31n +或31n n +或31n n -. (3)2PN t =, 当31t n =+时,61PN n =+, 当31n t n =+时,61n PN n =+, 当31n t n =-时,61n PN n =-, 点P 均在点N 的可视点距离之内,30PN ∴≤6301630163011n n n n n n ⎧≤⎪+⎪⎪≤⎪∴+⎨⎪≤⎪-⎪⎪>⎩,解得54n ≥, n ∴的取值范围是54n ≥. 【点睛】本题考查了n 倍点的概念,解题的关键是掌握n 倍点的两种不同情况.7.(1)见解析;(2);(3)①时,点O 恰好为线段PQ 的中点;②当MN=3时 ,的值为或秒.【分析】(1)由绝对值和偶次方的非负性质得出,,得出,,画出图形即可;(2)设点C 对应的数为x ,分两解析:(1)见解析;(2)14;(3)①43t =时,点O 恰好为线段PQ 的中点;②当MN=3时 ,t 的值为194或134秒. 【分析】(1)由绝对值和偶次方的非负性质得出503a b +=,60b -=,得出10a =-,6b =,画出图形即可;(2)设点C 对应的数为x ,分两种情况,画出示意图,由题意列出方程,解方程即可; (3)①分相遇前和相遇后两种情况,画出示意图,由题意列出方程,解方程即可; ②根据题意得到点Q 、点N 对应的数,列出绝对值方程即可求解.【详解】(1)∵25(6)03a b b ++-=, ∴503a b +=,60b -=, ∴10a =-,6b =,点A ,B 的位置如图所示:(2)设点C 对应的数为x ,由题意得:C 应在A 点的右侧,∴CA=()10x --=10x +,①当点C 在线段AB 上时,如图所示:则CB=6x -,∵CA-CB=92, ∴()91062x x +--=, 解得:14x =; ②当点C 在线段AB 延长线上时,如图所示:则CB=6x -,∵CA-CB=92, ∴()91062x x +--=,方程无解; 综上,点C 对应的数为14; 故答案为:14; (3)①由题意得:6AP t =,3BQ t =,分两种情况讨论:相遇前,如图:106OP t =-,63OQ t =-,∵点O 恰好为线段PQ 的中点,∴10663t t -=-,解得:43t =; 相遇后,如图:610OP t =-,36OQ t =-,∵点O 恰好为线段PQ 的中点,∴61036t t -=-,解得:43t =,此时,468103AP =⨯=<,不合题意;故43t =时,点O 恰好为线段PQ 的中点; ②当运动时间为t 秒时,点P 对应的数为(610t -),点Q 对应的数为(63t -),∵M 为AP 的中点,点N 在线段BQ 上,且13BN BQ =, ∴点M 对应的数为6t 10103t 102--=-, 点N 对应的数为()663t 66t 3---=-,∵3MN =, ∴()3t 106t 3---=,∴4316t =±+, ∴194t =或134, 答:当t 的值为194或134秒时,3MN =. 【点睛】 本题考查了一元一次方程的应用、绝对值和偶次方的非负性以及数轴,解题的关键是根据题意正确画出图形,要考虑全面,分类讨论,不要遗漏.8.(1)G ,-4或-16;(2)1.5或3或9【分析】(1)根据美好点的定义,结合图2,直观考察点E ,F ,G 到点M ,N 的距离,只有点G 符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N 的距离解析:(1)G ,-4或-16;(2)1.5或3或9【分析】(1)根据美好点的定义,结合图2,直观考察点E ,F ,G 到点M ,N 的距离,只有点G 符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据美好点的定义,分情况分别确定P 点的位置,进而可确定t 的值.【详解】解:(1)根据美好点的定义,结合图2,直观考察点E ,F ,G 到点M ,N 的距离,只有点G 符合条件,故答案是:G .结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,点N 的右侧不存在满足条件的点,点M 和N 之间靠近点M 一侧应该有满足条件的点,进而可以确定-4符合条件.点M 的左侧距离点M 的距离等于点M 和点N 的距离的点符合条件,进而可得符合条件的点是-16.故答案是:-4或-16.(2)根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分6种情况, 第一情况:当P 为【M ,N 】的美好点,点P 在M ,N 之间,如图1,当MP =2PN 时,PN =3,点P 对应的数为2-3=-1,因此t =1.5秒;第二种情况,当P 为【N ,M 】的美好点,点P 在M ,N 之间,如图2,当2PM =PN 时,NP =6,点P 对应的数为2-6=-4,因此t =3秒;第三种情况,P 为【N ,M 】的美好点,点P 在M 左侧,如图3,当PN =2MN 时,NP =18,点P 对应的数为2-18=-16,因此t =9秒;综上所述,t 的值为:1.5或3或9.【点睛】本题考查实数与数轴、美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.9.(1)-1;(2)①﹣1+t ;②121;③线段CB 与AC 相等,理由详见解析.【分析】(1)依据条件即可得到点A 表示﹣6,点B 表示﹣6+10=4,再根据点C 是线段AB 的中点,即可得出点C 表示的数;解析:(1)-1;(2)①﹣1+t ;②121;③线段CB 与AC 相等,理由详见解析.【分析】(1)依据条件即可得到点A 表示﹣6,点B 表示﹣6+10=4,再根据点C 是线段AB 的中点,即可得出点C 表示的数;(2)依据点C 表示的数为﹣1,点以每秒1cm 的速度向右移动,即可得到运动t 秒时,点C 表示的数是﹣1+t ;②依据点A 表示的数为﹣6﹣2×2=﹣10,点B 表示的数为4+4×2=12,点C 表示的数是﹣1+2=1,即可得到CB •AC 的值;③依据点A 表示的数为﹣6﹣2t ,点B 表示的数为4+4t ,点C 表示的数是﹣1+t ,即可得到点A 、B 、C 在运动的过程中,线段CB 与AC 相等.【详解】解:(1)∵一个点从数轴上的原点开始,先向左移动6cm 到达A 点,再从A 点向右移动10cm 到达B 点,∴点A 表示﹣6,点B 表示﹣6+10=4,又∵点C 是线段AB 的中点,∴点C 表示的数为642-+=﹣1, 故答案为:﹣1.(2)①∵点C 表示的数为﹣1,点以每秒1cm 的速度向右移动,∴运动t 秒时,点C 表示的数是﹣1+t ,故答案为:﹣1+t ;②由题可得,当t =2秒时,点A 表示的数为﹣6﹣2×2=﹣10,点B 表示的数为4+4×2=12,点C 表示的数是﹣1+2=1,∴当t =2秒时,AC =11,BC =11,∴CB •AC =121,故答案为:121;③点A 、B 、C 在运动的过程中,线段CB 与AC 相等.理由:由题可得,点A 表示的数为﹣6﹣2t ,点B 表示的数为4+4t ,点C 表示的数是﹣1+t , ∴BC =(4+4t )﹣(﹣1+t )=5+3t ,AC =(﹣1+t )﹣(﹣6﹣2t )=5+3t ,∴点A 、B 、C 在运动的过程中,线段CB 与AC 相等.【点睛】本题考查数轴上动点问题,整式的加减,与线段有关的动点问题.(1)理解数轴上线段的中点表示的数是两个端点所表示的数的和除以2;(2)掌握数轴上两点之间的距离求解方法是解决问题的关键,数轴上两点之间对应的距离等于它们所表示的数差的绝对值. 10.(1)4;144°,114°,60°;(2)s 或10s ;(3),当0<t <时,的值不是定值,当<t <6时,的值是3【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定 解析:(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON ∠+∠∠的值是3 【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t <12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t 的值;(3)先判断当∠MON 为平角时t 的值,再以此分两种情况讨论:当0<t <103时,当103<t <6时,分别计算72COM BON MON ∠+∠∠的值,根据结果作出判断即可. 【详解】解:(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,。
上海民办风范中学数学几何模型压轴题单元练习(Word版 含答案)
上海民办风范中学数学几何模型压轴题单元练习(Word 版 含答案)一、初三数学 旋转易错题压轴题(难)1.已知抛物线y=ax 2+bx-3a-5经过点A(2,5)(1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7)①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1,),F 1(-8,33-4+),G 2(8,-8),F 2(218,-4) 【解析】【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出1t =,2t =,分两类讨论,分别求出G 、F 坐标。
【详解】解:(1)把A (2,5)代入y=ax 2+bx-3a-5得4a+2b-3a-5=5∴a+2b=10∴a 和b 之间的数量关系是a+2b=10(2)①设直线AD 的解析式为y=kx+c∵直线AD 与y 轴交于(0,-7),A (2,5)∴2k c 5{c -7+==解得k 6{c -7==即直线AD 的解析式为y=6x-7 联立抛物线y=ax 2+bx-3a-5与直线AD :y=6x-7 得2y ax +bx-3a-5{y 6x-7== 消去y 得ax 2+(b-6)x-3a+2=0∵抛物线与直线AD 有两个交点∴由韦达定理可得:x A +x D =b-6-a =2a 2a +,x A x D =-3a 2a + ∵A (2,5)∴x A =2即x D =2a -22a +∵x D =b -2a =a-104a ∴2a -22a +=a-104a 解得a=2∴b=10-a 2= 4 ∴此时抛物线的解析式为y= 2x 2+4x-11②如图所示:作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t )∵A (2,5),∴AI=2,BJ=5-t∵AB 绕点B 顺时针旋转90°,得到线段BH∴AB=BH ,∠ABH=90°,∠AIB=∠BJH=90° ∵∠IAB+∠IBA=90°,∠ABH+∠IBA+∠JBH=180°∴∠IBA+∠JBH=90°即∠IAB=∠JBH∴△AJB ≌△BJH 即AI=BJ=2,BI=IH=5-t∴H (5-t ,t-2)∵D (-1,-13)∴y B -y D =t+13同理可得:C (t+13,t-1)设DH 的解析式为y=k 1x+b 1∴1111-k b -13{5-t k b t-2+=+=()解得11t 11k 6-t {t 11b -13-t-6+=+= 即直线AD 的解析式为t 1111y x-13-66t t t ++=-- ∵D 、H 、C 三点共线∴把C (t+13,t-1)代入AD t 1111y x-13-66t t t ++=--得:t 1111t-1t 13-13-66t t t ++=+--() 整理得2t 2+31t+82=0解得131305t -4+=,231-305t -4= 由图可知:①当131305t -4+=如图1所示: 此时H (51305+,39305-+) ,C (305-21-,35305-+) ∵点G 为DH 中点,点F 为BC 中点∴G 1(473058+,91305-8+) ,F 1(305-21-8,33305-4+) 由图可知:当231-305t -=如图2所示: 此时H (51-305,39-305-) ,C (30521+,35-305-) ∵点G 为DH 中点,点F 为BC 中点∴G 2(47-305,91-305-) ,F 2(30521+,33-305-) (14分) ∴综上所述:G 1(47305+,91305-+) ,F 1(305-21-,33305-+) G 2(47-305,91-305-) ,F 2(30521+,33-305-)。
上海民办尚德实验学校数学轴对称填空选择检测题(Word版 含答案)
上海民办尚德实验学校数学轴对称填空选择检测题(Word 版 含答案)一、八年级数学全等三角形填空题(难)1.如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,C ,D ,E 三点在同一条直线上,连接BD ,则下列结论正确的是___________.①ABD ACE ∆≅∆②45ACE DBC ∠+∠=︒③BD CE ⊥④180EAB DBC ∠+∠=︒【答案】①②③④【解析】【分析】根据全等三角形的判定和性质,以及等腰三角形的性质解答即可.【详解】解:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即:∠BAD=∠CAE ,∵AB=AC ,AE=AD ,∴△BAD ≌△CAE (SAS ),故①正确;∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,故②正确;∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD ⊥CE ,故③正确;∵90BAC DAE ∠=∠=︒,∴∠BAE+∠DAC=180°,∵∠ADB=∠E=45°,∴DAC DBC ∠=∠,∴180EAB DBC ∠+∠=︒,故④正确;故答案为:①②③④.【点睛】此题主要考查了全等三角形的判定及性质,以及等腰三角形的性质,注意细心分析,熟练应用全等三角形的判定以及等腰三角形的性质是解决问题的关键.2.如图,10AB =,45A B∠=∠=︒,32AC BD==.点E,F为线段AB上两点.现存在以下条件:①4CE DF==;②AF BE=;③CEB DFA∠=∠;④5CE DF==.请在以上条件中选择一个条件,使得ACE△一定..和BDF全等,则这个条件可以为________.(请写出所有正确的答案)【答案】②③④【解析】【分析】根据三角形全等的判定定理逐个判断即可.【详解】①如图1,过点C作CM AB⊥,过点D作DN AB⊥32,45A BAC BD∠=∠===︒3CM AM DN BN∴====4CE DF==由勾股定理得:22227,7ME CE CM NF DF DN=-==-=37,37AE AM ME BF BN NF∴=-=-=+=+,即AE BF≠此时,ACE∆和BDF∆不全等②AF BE=AF EF BE EF∴+=+,即AE BF=又452,3AC DA B B∠=∠=︒==则由SAS定理可得,ACE BDF∆≅∆③CEB DFACEB C ADFA D B∠=∠⎧⎪∠=∠+∠⎨⎪∠=∠+∠⎩C AD B∴∠+∠=∠+∠又A B ∠=∠C D ∴∠=∠ 32AC BD ==则由ASA 定理可得,ACE BDF ∆≅∆④由(1)知,当5CE DF ==时,22224,4ME CE CM NF DF DN =-==-=此时,,,CE CA DF BD ME AM NF BN >>⎧⎨>>⎩则点E 在点M 的右侧,点F 在点N 的左侧又10AM BN ME AM BN NF AB ++=++==则点E 与点N 重合,点F 与点M 重合,如图2所示因此必有347AE BF ==+=由SSS 定理可得,ACE BDF ∆≅∆故答案为:②③④.【点睛】本题考查了三角形全等的判定定理,熟记各判定定理是解题关键.3.如图,已知点(,0)A a 在x 轴正半轴上,点(0,)B b 在y 轴的正半轴上,ABC ∆为等腰直角三角形,D 为斜边BC 上的中点.若2OD =,则a b +=________.【答案】2【解析】【分析】根据等腰直角三角形的性质,可得AP 与BC 的关系,根据垂线的性质,可得答案【详解】如图:作CP ⊥x 轴于点P ,由余角的性质,得∠OBA=∠PAC ,在Rt△OBA 和Rt △PAC 中,OBA PAC AOB CPA BA AC ∠∠⎧⎪∠∠⎨⎪⎩===,Rt △OBA ≌Rt △PAC (AAS ),∴AP=OB=b ,PC=OA=a .由线段的和差,得OP=OA+AP=a+b ,即C 点坐标是(a+b ,a ),由B (0,b ),C (a+b ,a ),D 是BC 的中点,得D (2a b +,2a b +), ∴OD=2a b +() ∴22a b +()=2, ∴a+b=2.故答案为2.【点睛】本题解题主要①利用了等腰直角三角形的性质;②利用了全等三角形的判定与性质;③利用了线段中点的性质.4.如图,△ABE ,△BCD 均为等边三角形,点A ,B ,C 在同一条直线上,连接AD ,EC ,AD 与EB 相交于点M ,BD 与EC 相交于点N ,下列说法正确的有:___________ ①AD=EC ;②BM=BN ;③MN ∥AC ;④EM=MB .【答案】①②③【解析】∵△ABE ,△BCD 均为等边三角形,∴AB=BE ,BC=BD ,∠ABE=∠CBD=60°,∴∠ABD=∠EBC ,在△ABD 和△EBC 中AB BEABD EBCBD BC=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△EBC(SAS),∴AD=EC,故①正确;∴∠DAB=∠BEC,又由上可知∠ABE=∠CBD=60°,∴∠EBD=60°,在△ABM和△EBN中MAB NEBAB BEABE EBN∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABM≌△EBN(ASA),∴BM=BN,故②正确;∴△BMN为等边三角形,∴∠NMB=∠ABM=60°,∴MN∥AC,故③正确;若EM=MB,则AM平分∠EAB,则∠DAB=30°,而由条件无法得出这一条件,故④不正确;综上可知正确的有①②③,故答案为①②③.点睛:本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、AAS、ASA和HL)和性质(即全等三角形的对应边相等,对应角相等).5.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是________.【答案】8【解析】【分析】作FG⊥BC于点G,DE’⊥AB于点E’,易证E点和E’点重合,则∠FGD=∠DEP=90°;由∠EDB+∠PDF=90°可知∠EDP+∠GFD=90°,则易得∠EPD=∠GDF,再由PD=DF易证△EPD≌△GDF,则可得FG=DE,故F点的运动轨迹为平行于BC的线段,据此可进行求解.【详解】解:作FG⊥BC于点G,DE’⊥AB于点E’,由BD=4、BE=2与∠B=60°可知DE⊥AB,即∠∵DE’⊥AB,∠B=60°,∴BE’=BD×1=2,2∴E点和E’点重合,∴∠EDB=30°,∴∠EDB+∠PDF=90°,∴∠EDP+∠GFD=90°=∠EDP+∠DPE,∴∠DPE=∠GFD∵∠DEP=∠FGD=90°,FD=GP,∴△EPD≌△GDF,∴FG=DE,DG=PE,∴F点运动的路径与G点运动的路径平行,即与BC平行,由图可知,当P点在E点时,G点与D点重合,∵DG=PE,∴F点运动的距离与P点运动的距离相同,∴F点运动的路径长为:AB-BE=10-2=8,故答案为8.【点睛】通过构造垂直线段构造三角形全等,从而确定F点运动的路径,本题有一些难度.6.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是_____.【答案】5【解析】【分析】作∠CAO的平分线AD,交BO的延长线于点D,连接CD,由等边对等角得到∠CAB=∠CBA=50°,再推出∠DAB=∠DBA,得到AD=BD,然后可证△ACD≌△BCD,最后证△ACD≌△AOD,即可得AO=AC=5.【详解】解:如图,作∠CAO的平分线AD,交BO的延长线于点D,连接CD,∵AC=BC=5,∴∠CAB=∠CBA=50°,∵∠OAB=10°,∴∠CAD=∠OAD=1(CAB OAB)2∠-∠=()150102︒︒-=20°,∵∠DAB=∠OAD+∠OAB=20°+10°=30°,∴∠DAB=30°=∠DBA,∴AD=BD,∠ADB=120°,在△ACD与△BCD中AC BCAD BDCD CD=⎧⎪=⎨⎪=⎩∴△ACD≌△BCD(SSS)∴∠CDA=∠CDB,∴∠CDA=∠CDB=()1360ADB2︒-∠=()13601202︒︒-=120°,在△ACD与△AOD中CDA ADO120AD ADCAD OAD︒⎧∠=∠=⎪=⎨⎪∠=∠⎩∴△ACD≌△AOD(ASA)∴AO=AC=5,故答案为5.【点睛】本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.7.在△ABC中,∠ABC=60°,∠ACB=70°,若点O到三边的距离相等,则∠BOC=_____°.【答案】115或65或22.5【解析】【分析】先画出符合的图形,再根据角平分线的性质和三角形的内角和定理逐个求出即可.【详解】解:①如图,∵点O到三边的距离相等,∴点O是△ABC的三角的平分线的交点,∵∠ABC=60°,∠ACB=70°,∴∠OBC=12∠ABC=30°,1OCB2∠=∠ACB=35°,∴∠BOC=180°﹣∠OBC﹣∠OCB=115°;②如图,∵∠ABC=60°,∠ACB=70°,∴∠EBC=180°﹣∠ABC=120°,∠FCB=180°﹣∠ACB=110°,∵点O到三边的距离相等,∴O是∠EBC和∠FCB的角平分线的交点,∴∠OBC=12∠EBC=60°,1OCB2∠=∠FCB=55°,∴∠BOC=180°﹣∠OBC﹣∠OCB=65°;③如图,∵∠ABC=60°,∠ACB=75°,∴∠A=180°﹣∠ABC﹣∠ACB=45°,∵点O到三边的距离相等,∴O是∠EBA和∠ACB的角平分线的交点,∴∠OBA=12∠EBA=12×(180°﹣60°)=60°,1OCB2∠=∠ACB=37.5°,∴∠BOC=180°﹣(∠OBA+∠ABC+∠OCB)=180°﹣(60°﹣60°﹣37.5°)=22.5°;如图,此时∠BOC =22.5°,故答案为:115或65或22.5.【点睛】此题主要考查三角形的内角和,解题的关键是根据题意分情况讨论.8.已知在△ABC 中,AD 是BC 边上的中线,若AB=10,AC=4,则AD 的取值范围是_____.【答案】3<AD <7【解析】【分析】连接AD 并延长到点E ,使DE=DA ,连接BE ,利用SAS 证得△BDE ≌△CDA ,进而得到BE=CA=4,利用三角形两边之和大于第三边,两边之差小于第三边,即可求得AE 的取值范围,进而求出AD 的取值范围.【详解】如图,连接AD 并延长到点E ,使DE=DA ,连接BE ,∵在△ABC 中,AD 是BC 边上的中线∴BD=CD在△BDE 和△CDA 中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS )∴BE=CA=4在△ABE 中,AB+BE>AE ,且AB ﹣BE <AE∵AB=10,AC=4,∴6<AE <14∴3<AD<7故答案为3<AD<7【点睛】本题考点涉及三角形全等的判定及性质、三角形的三边关系等知识点,熟练掌握相关性质定理是解题关键.9.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=12cm,AC=6cm.动点E 从A点出发以3cm/s沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.当点E经过______s时,△DEB与△BCA全等.【答案】0、2、6、8【解析】∵CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,∴∠CAB=∠DBE=90°,∴△CAB和△EBD都是Rt△,∵点E运动过程中两三角形始终保持斜边ED=CB,∴当BE=BA=12cm或BE=AC=6cm时,两三角形全等,如图共有四种情形,此时AE分别等于0cm、6cm、18cm、24cm,又∵点E每秒钟移动3cm,∴当点E移动的时间分别为0秒、2秒、6秒和8秒时,两三角形全等.10.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PC=4,点D是射线OA上的一个动点,则PD的最小值为_____.【答案】2【解析】作PE⊥OA 于E ,根据角平分线的性质可得PE =PD ,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE ,即可求得PD .【详解】当PD⊥OA 时,PD 有最小值,作PE⊥OA 于E ,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD (角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE 中,PE =12PC =12×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE =2,故答案是:2.【点睛】此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.二、八年级数学全等三角形选择题(难)11.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作 EF∥AD,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连结DE 、 EH 、DH 、FH .下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23AE AB =,则313DHCEDH SS =.其中结论正确的有( )A .1个B .2个C .3个D .4个【答案】D分析:①根据题意可知∠ACD=45°,则GF=FC,则EG=EF-GF=CD-FC=DF;②由SAS证明△EHF≌△DHC即可;③根据△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;④若AEAB=23,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2.详解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF−GF,DF=CD−FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=12∠GFC=45°=∠HCD,在△EHF和△DHC中,EF=CD;∠EFH=∠DCH;FH=CH,∴△EHF≌△DHC(SAS),故②正确;③∵△EHF≌△DHC(已证),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;④∵AEAB=23,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,EG=DF;∠EGH=∠HFD;GH=FH,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD 为等腰直角三角形,如图,过H 点作HM ⊥CD 于M ,设HM=x,则DM=5x,DH=26x ,CD=6x ,则S △DHC =12×HM×CD=3x 2,S △EDH =12×DH 2=13x 2, ∴3S △EDH =13S △DHC ,故④正确;故选D. 点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.12.如图,已知等腰Rt △ABC 和等腰Rt △ADE ,AB=AC=4,∠BAC=∠EAD=90°,D 是射线BC 上任意一点,连接EC .下列结论:①△AEC △ADB ;② EC ⊥BC ; ③以A 、C 、D 、E 为顶点的四边形面积为8;④当BD=时,四边形AECB 的周长为10524++;⑤ 当BD=32B 时,ED=5AB ;其中正确的有( )A .5个B .4个C .3 个D .2个【答案】B【解析】解:∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;∵BD =2,∴EC =2,DC =BC -BD =422=32,∴DE 2=DC 2+EC 2,=(2222+=20,∴DE =25,∴AD =AE =252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;当BD =32BC 时,CD =12BC ,∴DE =221322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=10BC =5AB .故⑤错误. 故选B .点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.13.如图所示,在Rt ABC ∆中,E 为斜边AB 的中点,ED AB ⊥,且:1:7CAD BAD ∠∠=,则BAC ∠=( )A .70B .45C .60D .48【答案】D【解析】 根据线段的垂直平分线,可知∠B=∠BAD ,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x ,则∠BAD=7x ,则x+7x+7x=90°,解得x=6°,因此可知∠BAC=∠CDA+∠BAD=6°+42°=48°. 故选:D.点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.14.在△ABC 中, ∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,AB=18cm ,则△DBE 的周长为( )A .16cmB .8cmC .18cmD .10cm【答案】C【解析】因为 ∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE ⊥AB ,易证△ACD≌△AED,所以AE =AC=BC ,ED=CD.△DBE 的周长=BE+DE+DB=BE+CD+DB=BE+BC=BE+AE=AB.因为AB=12,所以△DBE 的周长=12.故选C.点睛:本题主要考查了全等三角形的判定的性质及角平分线的性质定理,角的平分线上的点到角的两边的距离相等,运用这个性质,结合等腰三角形有性质,将△DBE 的周长转化为AB 的长.15.如图,BD 是∠ABC 的角平分线,AD ⊥AB ,AD=3,BC=5,则△BCD 的面积为( )A.7.5 B.8 C.10D.15【答案】A【解析】作DE⊥BC于E,根据角平分线的性质,由BD是∠ABC的角平分线,AD⊥AB,DE⊥BC,求出DE=DA=3,根据三角形面积公式计算S△BCD=12×BC×DE=7.5,故选:A.16.如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有()A.①②④B.①②③C.①②④⑤D.①②③⑤【答案】D【解析】试题解析:①利用公式:∠CDA=12∠ABC=45°,①正确;②如图:延长GD与AC交于点P',由三线合一可知CG=CP',∵∠ADC=45°,DG⊥CF,∴∠EDA=∠CDA=45°,∴∠ADP=∠ADF,∴△ADP'≌△ADF(ASA),∴AF=AP'=AC+CP'=AC+CG,故②正确;③如图:∵∠EDA=∠CDA,∠CAD=∠EAD,从而△CAD≌△EAD,故DC=DE,③正确;④∵BF⊥CG,GD⊥CF,∴E为△CGF垂心,∴CH⊥GF,且△CDE、△CHF、△GHE均为等腰直角三角形,∴2CD,故④错误;⑤如图:作ME⊥CE交CF于点M,则△CEM为等腰直角三角形,从而CD=DM,CM=2CD,EM=EC,∵∠MFE=∠CGE,∠CEG=∠EMF=135°,∴△EMF≌△CEG(AAS),∴GE=MF,∴CF=CM+MF=2CD+GE ,故⑤正确;故选D点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀.17.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,AQ PQ =,PR PS =,下面三个结论:①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).A .①②B .②③C .①③D .①②③【答案】A【解析】连接AP ,由题意得,90ARP ASP ∠=∠=︒,在Rt APR 和Rt APS 中,AP AP PR PS =⎧⎨=⎩, ∴△APR ≌()APS HL ,∴AS AR =,故①正确.BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,∴PQ AB ∥,故②正确;在Rt BRP 和Rt CSP 中,只有PR PS =,不满足三角形全等的条件,故③错误.故选A .点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.18.在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,如图,那么下列各条件中,不能使Rt △AB C ≌Rt △A′B′C′的是( )A .AB =A′B′=5,BC =B′C′=3B .AB =B′C′=5,∠A =∠B′=40°C .AC =A′C′=5,BC =B′C′=3D .AC =A′C′=5,∠A =∠A′=40°【答案】B【解析】∵在Rt △ABC 和Rt △A′B′C ′中,∠C=∠C′=90°A 选项:AB=A′B′=5,BC=B′C′=3,符合直角三角形全等的判定条件HL ,∴A 选项能使Rt △ABC ≌Rt △A′B′C′;B 选项:AB=B′C′=5,∠A=∠B′=40°,不符合符合直角三角形全等的判定条件,∴B 选项不能使Rt △ABC ≌Rt △A′B′C′;C 选项符合Rt △ABC 和Rt △A′B′C 全等的判定条件SAS ;∴C 选项能使Rt △ABC ≌Rt △A′B′C′;D 选项符合Rt △ABC 和Rt △A′B′C 全等的判定条件ASA ,∴D 选项能使Rt △ABC ≌Rt △A′B′C′;故选:B .点睛:此题主要考查学生对直角三角全等的判定的理解和掌握,解答此题不仅仅是掌握直角三角形全等的判定,还要熟练掌握其它判定三角形全等的方法,才能尽快选出此题的正确答案.19.已知111122,A B C A B C △△的周长相等,现有两个判断:①若21212112,A A B C B A A C ==,则111222A B C A B C △≌△;②若12=A A ∠∠,1122=A C A C ,则111222A B C A B C △≌△,对于上述的两个判断,下列说法正确的是( )A.①,②都正确B.①,②都错误C.①错误,②正确D.①正确,②错误【答案】A【解析】【分析】根据SSS即可推出△111A B C≅△222A B C,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可.【详解】解:①△111A B C,△222A B C的周长相等,1122A B A B=,1122AC A C=,1122B C B C∴=,∴△111A B C≅△222()A B C SSS,∴①正确;②如图,延长11A B到1D,使1111B D B C=,,延长22A B到2D,使2222B D B C=,∴111111A D AB B C=+,222222A D AB B C=+,∵111122,A B C A B C△△的周长相等,1122=A C A C∴1122A D A D=,在△111A B D和△222A B D中1122121122==A D A DA AA C A C=⎧⎪∠∠⎨⎪⎩,∴△111A B D≅△222A B D(SAS)∴12=D D∠∠,∵1111B D B C=,2222B D B C=∴1111=D D C B∠∠,2222=D D C B∠∠,又∵1111111=A B C D D C B∠∠+∠,2222222=A B C D D C B∠∠+∠,∴1112221==2A B C A B C D∠∠∠,在△111A B C和△222A B C中111222121122===A B C A B CA AA C A C∠∠⎧⎪∠∠⎨⎪⎩,∴△111A B C≅△222A B C(AAS),∴②正确;综上所述:①,②都正确.故选:A.【点睛】本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.20.已知:如图,ABC∆、CDE∆都是等腰三角形,且CA CB=,CD CE=,ACB DCEα∠=∠=,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.以下4个结论:①AD BE=;②180DOBα∠=-;③CMN∆是等边三角形;④连OC,则OC平分AOE∠.正确的是( )A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据∠ACB=∠DCE求出∠ACD=∠BCE,证出ACD BCE≅△△即可得出结论,故可判断;②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB,故可判断;③根据已知条件可求出AM=BN,根据SAS可求出CAM CBN≅,推出CM=CN,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN∆的形状;④在AD上取一点P使得DP=EO,连接CP,根据ACD BCE≅△△,可求出∠CEO=∠CDP,根据SAS可求出CEO CDP≅,可得∠COE=∠CPD,CP=CO,进而得到∠COP=∠COE,故可判断.【详解】①正确,理由如下:∵ACB DCE α∠=∠=,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,又∵CA=CB,CD=CE,∴ACD BCE ≅△△(SAS),∴AD=BE,故①正确;②正确,理由如下:由①知,ACD BCE ≅△△,∴∠CAD=∠CBE,∵∠DOB 为ABO 的外角,∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,∴∠CBA+∠BAC=180°-α,即∠DOB=180°-α,故②正确;③错误,理由如下:∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD,BN= 12BE, 又∵由①知,AD=BE,∴AM=BN,又∵∠CAD=∠CBE,CA=CB,∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,∴MCN △为等腰三角形且∠MCN=α,∴MCN △不是等边三角形,故③错误;④正确,理由如下:如图所示,在AD 上取一点P 使得DP=EO,连接CP ,由①知,ACD BCE ≅△△,∴∠CEO=∠CDP ,又∵CE=CD,EO=DP ,∴CEO CDP ≅(SAS),∴∠COE=∠CPD,CP=CO,∴∠CPO=∠COP ,∴∠COP=∠COE,即OC 平分∠AOE,故④正确;故答案为:B.【点睛】本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.21.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634AOC AOB S S +=+△△.其中正确的结论是( )A .①②③④B .①②③⑤C .①②④⑤D .①②③④⑤【答案】D【解析】【分析】 证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO ′是等边三角形,可知结论②正确;在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;643AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.【详解】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB =O ′B ,AB =BC ,∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;如图①,连接OO ′,∵OB =O ′B ,且∠OBO ′=60°,∴△OBO ′是等边三角形,∴OO ′=OB =4.故结论②正确;∵△BO ′A ≌△BOC ,∴O ′A =5.在△AOO ′中,三边长为3,4,5,这是一组勾股数,∴△AOO ′是直角三角形,∠AOO ′=90°,∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,故结论③正确;2313446432AOO OBO AOBO S S S '∆'∆'=+=⨯⨯+⨯=+四边形, 故结论④正确;如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,则23193436324AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+⨯=+四边形, 故结论⑤正确.综上所述,正确的结论为:①②③④⑤.故选:D .【点睛】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.22.如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD =BE ;②AP =BQ ;③PQ ∥AE ;④DE =DP ;⑤∠AOE =120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,故①正确;由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°∴△CQB≌△CPA(ASA),∴AP=BQ,故②正确;∵△CQB≌△CPA,∴PC=PQ,且∠PCQ=60°∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故③正确,∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,∴PD≠CD,∴DE≠DP,故④DE=DP错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,∴∠AOE=120°,故⑤正确,故选C.【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.23.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN 于点C,AD⊥MN于点D,下列结论错误的是( )A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点【答案】B【解析】【分析】根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.【详解】∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=12∠EOD,∠BOC=12∠MOE,∴∠AOB=12(∠EOD+∠MOE)=12×180°=90°,故C选项结论正确;在Rt△AOD和Rt△AOE中,AO AOAD AE=⎧⎨=⎩,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.故选B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.24.如图(1),已知AB AC=,D为BAC∠的角平分线上一点,连接BD,CD;如图(2),已知AB AC=,D,E为BAC∠的角平分线上两点,连接BD,CD,BE,CE;如图(3),已知AB AC=,D,E,F为BAC∠的角平分线上三点,连接BD,CD,BE,CE,BF,CF;……,依此规律,第6个图形中有全等三角形的对数是()A.21 B.11 C.6 D.42【答案】A【解析】【分析】根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.【详解】解:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,AB ACBAD CADAD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等,3=1+2;同理:图3中有6对三角形全等,6=1+2+3;∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.故选:A.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.25.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,45APE CPFAP PCEAP C∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.26.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF【答案】A【解析】【分析】通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.【详解】解:∵∠BAC=45°,BD⊥AC,∴∠CAB=∠ABD=45°,∴AD=BD,∵AB=AC,AE平分∠BAC,∴CE=BE=12BC,∠CAE=∠BAE=22.5°,AE⊥BC,∴∠C+∠CAE=90°,且∠C+∠DBC=90°,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,∴△ADF≌△BDC(AAS)∴AF=BC=2CE,故选项C不符合题意,∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°∴∠AHG=67.5°,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意,连接BH,∵AG =BG ,DG ⊥AB ,∴AH =BH ,∴∠HAB =∠HBA =22.5°,∴∠EHB =45°,且AE ⊥BC ,∴∠EHB =∠EBH =45°,∴HE =BE ,故选项B 不符合题意,故选:A .【点睛】本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.27.如图,在△ABC 中,AB=BC ,90ABC ∠=︒,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠5【答案】A【解析】【分析】 如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,先根据直角三角形两锐角互余可得BAD CBG ∠=∠,再根据三角形全等的判定定理与性质推出1G ∠=∠,又根据三角形全等的判定定理与性质推出3G ∠=∠,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,即90BCG ∠=︒ ,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD ⊥1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG∴∠=∠在BAD∆和CBG∆中,90BAD CBGAB BCABD BCG∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA∴∆≅∆,1BD CG G∴=∠=∠点D是BC的中点CD BD CG∴==在CDF∆和CGF∆中,45CD CGDCF GCFCF CF=⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS∴∆≅∆3G∴∠=∠13∠∠∴=故选:A.【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.28.如图,ABC∆中,45ABC∠=,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G,下列结论正确的有( )个①BF AC=;②12AE BF=;③67.5A∠=;④DGF∆是等腰三角形;⑤ADGE GHCES S=四边形四边形.A .5个B .4个C .3个D .2个【答案】B【解析】【分析】 只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF =∠DFG =67.5°,即可判断①②③④正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断⑤错误.【详解】∵CD ⊥AB ,BE ⊥AC ,∴∠BDC =∠ADC =∠AEB =90°,∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,∴∠A =∠DFB ,∵∠ABC =45°,∠BDC =90°,∴∠DCB =90°−45°=45°=∠DBC ,∴BD =DC ,在△BDF 和△CDA 中BDF CDA A DFBBD CD ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△BDF ≌△CDA (AAS ),∴BF =AC ,故①正确.∵∠ABE =∠EBC =22.5°,BE ⊥AC ,∴∠A =∠BCA =67.5°,故③正确,∴BA =BC ,∵BE ⊥AC ,∴AE =EC =12AC =12BF ,故②正确, ∵BE 平分∠ABC ,∠ABC =45°,∴∠ABE =∠CBE =22.5°,∵∠BDF =∠BHG =90°,∴∠BGH =∠BFD =67.5°,∴∠DGF =∠DFG =67.5°,∴DG =DF ,故④正确.作GM ⊥AB 于M .∵∠GBM =∠GBH ,GH ⊥BC , ∴GH =GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故⑤错误,∴①②③④正确,故选:B .【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.29.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG=( )A .73B .83C .113D .133【答案】D【解析】【分析】过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.【详解】解:过点F作FD⊥AG,交AG的延长线于点D ∵53BCCE=设BC=5x,则CE=3x∴BE=BC+CE=8x∵5AB BC x==,90ABC∠=︒,∴∠BAC=∠BCA=45°∴∠BCA=∠CAE+∠E=45°由旋转可知∠EAF=90°,AF=EA∴∠CAE+∠FAD=∠EAF-∠BAC=45°∴∠FAD=∠E在△FAD和△AEB中90FAD ED ABEAF EA∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△FAD≌△AEB∴AD=EB=8x,FD=AB∴BD=AD-AB=3x,FD=CB在△FDG和△CBG中90FDG CBGFGD CGBFD CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△FDG≌△CBG∴DG=BG=12BD=32x∴AG=AB+BG=132x。
上海民办尚德实验学校人教版七年级上册数学 压轴题 期末复习试卷及答案-百度文库
上海民办尚德实验学校人教版七年级上册数学压轴题期末复习试卷及答案-百度文库一、压轴题1.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.2.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.3.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.4.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.5.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.6.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值;(2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.7.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.8.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海民办尚德实验学校数学几何模型压轴题检测题(Word 版 含答案)一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.2.综合与探究:如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90︒得到线段BC ,过点C 作CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .(1)求点C 的坐标及抛物线的表达式;(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F(点F 在第一象限),设点G 的横坐标为m .①点G 的纵坐标用含m 的代数式表示为________;②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.【答案】(1)点C 的坐标为(6,2),21322y x x =-++;(2)①143m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ︒∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可.【详解】解:(1)4=OA ,2OB =,∴点A 的坐标为(0,4),点B 的坐标为(2,0),线段AB 绕点B 顺时针旋转90︒得到线段BC ,AB BC ∴=,90ABC ︒∠=,90ABO DBC ︒∴∠+∠=,在Rt AOB 中,90ABO OAB ︒∴∠+∠=,=OAB DBC ∴∠∠,CD x ⊥轴于点D ,90BDC ︒∴∠=,90AOB BDC ︒∴∠=∠=.AB BC =,ABO BCD ∴△≌△,2CD OB ∴==,4BD OA ==,6OB BD ∴+=,∴点C 的坐标为(6,2),∵抛物线23y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E , 236182c a c =⎧∴⎨++=⎩, 解得,122a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为21322y x x =-++; (2)①设直线AC 的表达式为y kx b =+,∵直线AC 经过点()6,2C ,(0,4)A ,∴624k b b +=⎧⎨=⎩, 解得,134k b ⎧=-⎪⎨⎪=⎩,即143y x =-+, ∴点G 的纵坐标用含m 的代数式表示为:143m -+, 故答案为:143m -+.②过点G 作GM x ⊥轴于点M , OM m ∴=,143GM m =-+, AB BC =,BG AC ⊥,AG CG ∴=,90AOB GMH CDH ︒∠=∠=∠=,OA GM CD ∴,1OM AG MD GC∴==, 132OM MD OD ∴===, 3m ∴=,1433m -+=,∴点G 为(3,3), 设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,2033k b k b +=⎧⎨+=⎩, 36k b =⎧∴⎨=-⎩,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,∴得2132362x x x -++=-, 14x ∴=,24x =-(舍去),∴点F 的坐标为(4,6),过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,4PF ∴=,2AP =,2FQ =,4CQ =,在Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==,同理可得25AB BC ==,AB BC CF FA ∴===,∴四边形ABCF 为菱形,90ABC ︒∠=,∴菱形ABCF 为正方形;③∵直线AC :143y x =-+与x 轴交于点H , ∴1403x -+=, 解得,x =12,∴(12,0)H ,∴222(64)(26)20FC =-+-=,222(126)(02)40CH =-+-=,设点N 坐标为(,)s t ,∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-,第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,∴2222(4)(6)20(12)40s t s t ⎧-+-=⎨-+=⎩, 解得,11425265s t ⎧=⎪⎪⎨⎪=⎪⎩,2262s t =⎧⎨=⎩(即点C ), ∴4226,55N ⎛⎫ ⎪⎝⎭; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,∴2222(4)(6)40(12)20s t s t ⎧-+-=⎨-+=⎩, 解得,1138545s t ⎧=⎪⎪⎨⎪=⎪⎩,22104s t =⎧⎨=⎩, ∴384,55N ⎛⎫ ⎪⎝⎭或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【点睛】本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.3.我们定义:如图1,在△ABC 看,把AB 点绕点A 顺时针旋转α(0°<α<180°)得到AB',把AC 绕点A 逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC 的“旋补三角形”,△AB'C'边B'C'上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD= BC ;②如图3,当∠BAC=90°,BC=8时,则AD 长为 .猜想论证:(2)在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【答案】(1)①12;②4;(2)AD=12BC,证明见解析;(3)存在,证明见解析,39.【解析】【分析】(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=12AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=12BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;【详解】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=12AB′=12BC,故答案为12.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=12B′C′=12BC=4,故答案为4.(2)结论:AD=12 BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=12BC.(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=1BM=7,2∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵3CF=6,∴tan∠3∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,3,∴2222++39.=(3)6DN PD【点睛】本题考查四边形综合题.4.小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,13【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CM3DM3在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12BM3DE=EM﹣DM3﹣33由已知DA3AE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC3,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CMDM,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM,∠MBE=90°﹣∠M=30°,∴EM=12 BM∴DE=EM﹣DM∵DA∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12 BC∴tan∠CDF=CFCD,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,在△FCP和△CFD中,CPF CDFPCF CFD CF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP≌△CFD(AAS),∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=90°﹣30°=60°,∴∠BPC=120°,∴∠APD +∠BPC =180°,∴△PDC 与△PAB 之间满足小明探究的问题中的边角关系;在Rt △PDQ 中,∵∠PDQ =90°,PD =DA =63,DN =12CD =3, ∴PQ =22DQ DP +=223(63)+=313. 【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.5.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示.()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.【答案】(1)详见解析;(2)7,725. 【解析】【分析】 (1)图形经过旋转以后明确没有变化的边长,证明AOC BOD ≅,得出AC=BD , 延长BD 交AC 于E ,证明∠AEB=90︒,从而得到BD AC ⊥.(2) 如图3中,设AC=x ,在Rt △ABC 中,利用勾股定理求出x ,再根据sinα=sin ∠ABC=AC AB即可解决问题【详解】 ()1证明:如图2中,延长BD 交OA 于G ,交AC 于E .∵90AOB COD ∠=∠=,∴AOC DOB ∠=∠, 在AOC 和BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD ≅,∴AC BD =,CAO DBO ∠=∠,∵90DBO GOB ∠+∠=,∵OGB AGE ∠=∠,∴90CAO AGE ∠+∠=,∴90AEG ∠=,∴BD AC ⊥.()2解:如图3中,设AC x=,∵BD 、CD 在同一直线上,BD AC ⊥, ∴ABC 是直角三角形,∴222AC BC AB +=,∴222(17)25x x ++=,解得7x =,∵45ODC DBO α∠=∠+∠=,45ABC DBO ∠+∠=,∴ABC α∠=∠, ∴7sin sin 25AC ABC AB α=∠==. 【点睛】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型.6.在△AOB 中,C ,D 分别是OA ,OB 边上的点,将△OCD 绕点O 顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.7.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC和等边三角形GEB纸片,=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC DA DC和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB绕着C点按顺时针方向旋转90︒,如图②,试判断DF和EF的数量关系和位置关系,并说明理由;类比探索(3)①将GEB绕着点C任意方向旋转,如图③或图④,请问DF和EF的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB绕着点C旋转的过程中,猜想DF与EF的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DFEF ,理由见解析; (3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形.AM MC ∴=,GN BN =.又点F 为AB 的中点,AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =, 120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,333DM FN a==, 333MF NE b==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽. MDF NFE ∴∠=∠,3DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DFEF . (2)3EF DF =,DF EF . 理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在RtDEF △中,3tan 33DE DF F F E DF===∠; (3)①3EF DF =,DF EF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩, ()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠. //AD NB ∴.18060O ADC ∴∠=︒-∠=︒.又CPO BPE ∠=∠,60O CEB ∠=∠=︒, OCP OBE ∴∠=∠. DCE NBE ∴∠=∠. 又GEB 是等边三角形, GE BE ∴=,又AD BN CD ==, ()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠+∠=∠+∠, 即60NED BEC ∠=∠=︒. DEN ∴是等边三角形. 又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF 并延长到点N ,使得FN DF =,连接NB ,DE ,NE ,NB 与CD 交于点O ,EB 与CD 相交于点J , 在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩, ()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠. //AD NB ∴.120NOC ADC ∴∠=∠=︒. 60BOJ ∴∠=︒,60JEC ∠=︒. 又OJB EJC ∠=∠, OBE ECJ ∴∠=∠.AD CD =,AD NB =, CD NB ∴=. 又GEB 是等边三角形, CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠, 即60NED BEC ∠=∠=︒. DEN ∴是等边三角形. 又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DF EF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.8.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=42,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【答案】(1)2142y x=-+;(2)2<m<223)m=6或m17﹣3.【解析】【分析】(1)由题意抛物线的顶点C(0,4),A(20),设抛物线的解析式为24y ax=+,把A(220)代入可得a=12-,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为()21242y x m=--,由()221421242y xy x m⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y得到222280x mx m-+-=,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有()222(2)428020280m mmm⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为24y ax =+,把A (22,0)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m =17﹣3时,四边形PMP ′N 是正方形.二、初三数学 圆易错题压轴题(难)9.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。