阀 控 式 密 封 铅 酸 蓄 电 池
阀控密封铅酸蓄电池特性

一、蓄电池浮充特性1、浮充电压蓄电池的浮充电流应满足补偿电池自放电电流及维持氧循环的需要。
铅酸电池的浮充电压可按下经验公式确定:浮充电压=开路电压+极化电压=(电解液比重+0.85)V+(0.10±0.02)V 。
例如,双登公司GFM 型阀控蓄电池的电解液比重为1.30g/cm 3,即开路电压为2.15V ,故单体电池浮充电压可取2.25 V ±0.02V (25℃)。
2、端电压的偏差阀控蓄电池组的端电压偏差有两种:一种是静置状态的电压偏差,即开路电压的偏差,这种偏差应不超过20mV ;二是动态偏差,即浮充状态偏差,这个偏差值在浮充运行投入初期较大,运行2~3个月后会逐渐减少。
这是由于运行初期氧循环复合状态尚不稳定,随着运行时间的增加,氧循环复合状态将日趋稳定,端电压偏差逐渐减少。
所以,浮充运行状态的端电压偏差值要大于静置状态。
按照通信电源系统维护规程要求,在浮充状态下,各单体电池电压与平均电压的偏差不应大于50mV 。
当平均浮充电压变化时,偏差值也在变化。
平均浮充电压越高,偏差增大,反之偏差减小,但不成比例。
此外,电池的剩余容量与浮充运行状态电池端电压的高低无直接关系。
如果仅根据电池浮充端电压的高低,简单地认定电池端电压高的剩余容量大,端电压低的剩余容量就小,这是没有道理的。
3、浮充电流浮充电流I f 的值应满足补偿电池的自放电电流I s 和氧复合电流I r ,因此:I f ≥I s +I r 。
阀控密封式铅酸电池其自放电率是很小的,所以相应浮充电流值也很低。
一般要求蓄电池在其80%额定容量下一昼夜自放电率不大于0.2%。
即使按1%计算,则蓄电池的自放电电流在规定温度下(20℃或25℃),I s =(C 10/24)×(1/100)=0.00042C 10A ,按单位安时I s =0.42mA/Ah 计算。
再考虑到氧循环复合的需要,浮充电流取I f =1mA/Ah 已能满足要求。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析

阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析阀控式密封铅酸蓄电池和磷酸铁锂蓄电池是两种常见的蓄电池类型,它们都有自己的优势和特点。
本文将从电池原理、性能特点、安全性、环保性和应用领域等方面对这两种蓄电池进行对比分析,帮助大家更好地了解这两种蓄电池,并选择适合自己需求的产品。
一、电池原理阀控式密封铅酸蓄电池是一种铅酸蓄电池,它使用硫酸和铅作为电解液,通过化学反应来产生电能。
它采用阀控技术,可以在正常使用状态下将电解液将气体和水分分离,保持电池内部压力恒定,避免了电解液泄漏的问题。
磷酸铁锂蓄电池是一种锂离子电池,它采用锂铁磷酸盐作为正极材料,通过锂离子在正负极之间的往复迁移来储存和释放电能。
相比于铅酸蓄电池,锂离子电池具有更高的能量密度和更长的循环寿命。
二、性能特点1. 能量密度:磷酸铁锂电池的能量密度通常高于铅酸蓄电池,因此在同样体积和重量下,锂离子电池可以存储更多的电能。
2. 循环寿命:磷酸铁锂电池的循环寿命通常高于铅酸蓄电池,可以经受更多次的充放电循环,因此更适合长周期使用场景。
3. 充放电效率:锂离子电池的充放电效率通常高于铅酸蓄电池,能够更快地完成充电和放电过程。
4. 自放电率:磷酸铁锂电池的自放电率通常低于铅酸蓄电池,可以在长时间不使用时保持较高的电荷状态。
三、安全性铅酸蓄电池由于使用硫酸和铅等有毒物质,一旦损坏可能会造成严重的环境污染,并且可能产生可燃气体导致爆炸。
而磷酸铁锂电池采用无毒无害的材料,安全性更高,可以更好地满足环保要求。
四、环保性磷酸铁锂电池采用无毒无害材料,更符合环保要求;而铅酸蓄电池在生产和处理过程中可能会产生大量的废弃物和有害物质,对环境造成较大的影响。
五、应用领域铅酸蓄电池由于成本低廉、使用成熟,广泛应用于汽车、UPS电源、太阳能储能系统等领域;而磷酸铁锂电池由于能量密度高、循环寿命长、安全可靠,逐渐在电动汽车、储能系统等高端领域得到应用。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池各有优势,适用于不同的应用场景。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析

阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池是目前市场上主要应用的两种蓄电池技术。
本文将从以下几个方面对它们进行对比分析。
1.安全性能对比
阀控式密封铅酸蓄电池采用了阀控装置,可以有效控制内部气体的压力,防止气体泄
漏和电池爆炸的发生。
而磷酸铁锂蓄电池在安全性能方面更优秀,因为其正极材料热稳定
性高,不易产生热失控反应,能够有效抑制电池发生燃烧和爆炸的风险。
2.电池容量对比
阀控式密封铅酸蓄电池的电池容量一般较小,一般在10-30Ah左右。
而磷酸铁锂蓄电
池的电池容量相对较大,一般可以达到100Ah甚至更高。
3.循环寿命对比
阀控式密封铅酸蓄电池的循环寿命一般为200-300次,而磷酸铁锂蓄电池的循环寿命
可以达到2000次以上。
这是因为磷酸铁锂蓄电池具有较高的充放电效率和较低的自放电率,相对于铅酸蓄电池更耐循环。
4.充电性能对比
阀控式密封铅酸蓄电池充电过程中会产生氧气和氢气,需要通过安全阀将其排放出去。
而磷酸铁锂蓄电池充电时产生的气体很少,不需要特别的排气装置。
磷酸铁锂蓄电池具有
较高的充电效率,可以在较短时间内完成充电。
5.环境友好性对比
阀控式密封铅酸蓄电池中的铅、酸等成分对环境造成一定的污染,需要特别注意处理
和回收。
而磷酸铁锂蓄电池的正极材料中不含有有毒元素,对环境污染较小。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池在安全性能、容量、循环寿命、充电性能和
环境友好性等方面有不同的特点和优势。
在选择使用时,需要根据具体的应用需求和特点
来进行选择。
阀控式密封铅酸蓄电池

04
阀控式密封铅酸蓄电池的优 缺点
优点
安全性高
阀控式密封铅酸蓄电池采用密封 结构,避免了电池内部酸液外泄
,从而提高了使用安全性。
维护简单
由于其密封设计,用户无需定期 加水维护,降低了维护成本和操
作难度。
寿命长
在正确使用和保养条件下,阀控 式密封铅酸蓄电池的寿命通常较
长。
性价比高
与其它类型的电池相比,阀控式 密封铅酸蓄电池具有较高的性价
比,适合大规模应用。
缺点
能量密度低
由于采用铅和硫酸作为 主要材料,其能量密度 相对较低,会增加设备
的体积和重量。
对充电环境要求高
过充电或欠充电都可能 影响电池寿命,需要精 确的充电设备和管理系
统。
环境污染风险
虽然密封设计减少了酸 液外泄的可能性,但电 池废弃后仍可能对环境
造成污染。
05
阀控式密封铅酸蓄电池的充 控式密封铅酸蓄电池 在多次充放电后能够保持性能的时间。
详细描述
循环寿命是衡量电池寿命的重要指标。 循环寿命越长,表示电池的使用寿命 越长,能够更长时间地保持性能。
自放电率
总结词
自放电率是指阀控式密封铅酸蓄电池在不使用情况下,电量自行损失的比例。
详细描述
自放电率越低,表示电池的存储性能越好,长期不用时电量损失较少。
THANKS
广泛的应用领域,如通信、电力、数据中心等。
工作原理
01
当电池充电时,正极产生的氧气在负极上被吸 收,从而保持电池的密封状态。
02
放电时,负极的铅与硫酸发生化学反应,产生 电能。
03
由于氧再化合的过程,电池内部不会产生过多 的水,因此不需要加水维护。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析

阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析阀控式密封铅酸蓄电池和磷酸铁锂蓄电池是目前常见的两种蓄电池类型,它们在电力系统和能源存储领域有着广泛的应用。
在实际应用中,选择合适的蓄电池类型对于系统性能和成本控制至关重要。
对这两种蓄电池进行对比分析,可以帮助我们更好地了解其特点并选择适合的产品。
一、基本原理1. 阀控式密封铅酸蓄电池:阀控式密封铅酸蓄电池是一种使用电解液浓度较高的铅酸电池,采用气密封设计和压力维持阀,能够在充电时将水分解为氢气和氧气,并在放电时再次蒸发水汽重新合成水,实现了电解液的循环再生,从而形成了一种半封闭循环系统。
其电化学反应为:Pb+PbO2+2H2SO4=2PbSO4+2H2O;2PbSO4+2H2O=2PbO+2H2SO4。
2. 磷酸铁锂蓄电池:磷酸铁锂蓄电池是一种采用磷酸铁锂作为正极材料的锂离子电池,其具有高能量密度、长循环寿命和较低的自放电率等特点。
其电化学反应为:LiFePO4+LiC6=LiFePO4+LiC6。
二、比较分析1. 能量密度:磷酸铁锂蓄电池具有更高的能量密度,能够在相同体积和重量下储存更多的电能,因此在对空间限制较大的应用场景中更具优势。
2. 循环寿命:磷酸铁锂蓄电池的循环寿命远远高于阀控式密封铅酸蓄电池,能够经受更多次的充放电循环,具有更长的使用寿命。
3. 自放电率:磷酸铁锂蓄电池的自放电率较低,能够长时间保存电能而不会迅速损耗,适合长期储存和备用电源的应用。
4. 安全性:磷酸铁锂蓄电池相对于阀控式密封铅酸蓄电池在安全方面更为稳定,不易发生短路、过充和过放等危险情况。
5. 成本:阀控式密封铅酸蓄电池因其成熟的生产工艺和较低的材料成本而具有较低的总体成本,适合成本敏感型应用场景。
三、结论阀控式密封铅酸蓄电池和磷酸铁锂蓄电池各自具有独特的优势和适用场景。
在实际选择时,需要根据实际应用需求综合考虑其能量密度、循环寿命、自放电率、安全性和成本等因素,以确定最合适的蓄电池类型。
阀控式密封铅酸蓄电池的工作原理和维护

阀控式密封铅酸蓄电池的工作原理和维护工作原理:阀控式密封铅酸蓄电池的工作原理基于铅酸电池的化学反应。
在充电状态下,电池内的负极板(铅)上生成二氧化铅,正极板(二氧化铅)还原为铅,同时,在电解液中形成硫酸铅。
而在放电状态下,正负极板之间的化学反应反转,二氧化铅还原为铅,同时电池释放出电能。
然而,阀控式密封铅酸蓄电池与普通铅酸蓄电池的区别在于,它具有自密封的特点。
密封结构可以控制气体的扩散和液体的蒸发,使得电池能够保持足够的电解液,同时阻止外部空气进入电池内部。
这使得阀控式密封铅酸蓄电池具有更长的寿命和更高的安全性能。
维护:1.温度控制:电池的工作温度应在20℃-25℃范围内,避免过高或过低的温度。
高温会加速电解液的蒸发,降低电池的寿命,低温则会降低电池的容量和输出功率。
2.充电状态:尽量保持电池处于充满状态,可以通过定期充电或充电器进行维护充电来实现。
如果长时间不充电,电池内的自放电会导致电池电量逐渐减少。
3.清洁维护:定期检查电池表面的污物,如有必要可以用湿布或软刷进行清洁。
同时检查电池连接器和线缆的接触是否良好,如有松动或腐蚀应及时修复或更换。
4.定期检查电池状态:通过测量电池的开路电压、内阻、容量等参数,可以了解电池的健康状态。
如果发现电池存在异常,如充电时间延长、容量下降等,应及时进行维修或更换。
5.安全措施:在维护电池时应注意安全,及时清理电池周围的杂物和易燃物,避免因外界因素引起的安全问题。
同时,正确使用充电器以防止过度充电或过度放电。
总之,阀控式密封铅酸蓄电池以其自密封、阀控和免维护的特点,成为一种非常理想的蓄电池选择。
通过了解其工作原理和维护要点,可以更好地使用和保护阀控式密封铅酸蓄电池,延长其使用寿命,提高电池系统的可靠性和安全性。
阀控式密封铅酸蓄电池 讲义

>1.7V
3.电池带载放电10h率时的标准测试电压:
八、为阀控式铅酸蓄电池在线诊断技术提供思路 (1)
1、现状
A. 铅酸蓄电池从一百多年前发明到现在有大量的改进,阀控式蓄电池以它 的贫液特点带来了好处:如体积小、重量轻、维护工作量少而受到青 睐。然而,在日常使用中无法知道在线蓄电池的剩余容量,对于不能中 断通信的电信运行商来说这是长期以来希望尽快解决而没有实际解决的 问题;
四、阀控式密封铅酸蓄电池的主要技术性能(2):
2、不同放电率的蓄电池放电容量和电流
放电率
额定容量的% 额定容量的电流%
终止电压
10小时率 100%
10%
1.8V
09小时率 97.4%
10.8%
08小时率 94.4%
11.4%
07小时率 93%
12.4%
06小时率 91.7%
13.3%
05小时率 87.6%
六、基站蓄电池的使用(6)
➢ 第二、使用一段时间后的维护工作(约一个月至三个 月之间) a) 检查连接是否可靠 ; b) 检查浮充电压的一致性,检查落后电池; c) 检查设定参数有无变化,是否稳定,特别是充电 电压值和充电电流值必须稳定可靠 ; d) 检查单体电池有无泄漏 ;
六、基站蓄电池的使用(7)
五、说明几个问题(3):
2、气体复合效率: (防止过充引起失水) 均充电压=电池析气临界值。浮充运行下的VRLA蓄电池组中各单体电 池的端电压往往处于非均一状态,甚至差别很大,一旦实施均充,厂 方提出相当一部分 电池就进入析气状 态,所以均充会造 成失水、热失控, 引发蓄电池的早期 失效 (事实:关键看 电压和电流)
即可,三年后每年做全容量检查 。
阀控式密封铅酸蓄电池

阀控式密封铅酸蓄电池1.1. UPS系统常用的储能装置碱性镉镍蓄电池(Alkaline Cd-Ni batteries)碱性蓄电池是以KOH,NaOH的水溶液做为电解质的,镉镍蓄电池是碱性蓄电池,碱性镉镍蓄电池相对于铅酸蓄电池是长寿命、高倍率、,可以做到密封。
IEC285、IEC623标准规定循环寿命500—1000次可以工作5-10年,高低温性能好,高倍率(5-10倍率)放电性能好,除有记忆效应,制造工艺复杂,组成镉镍蓄电池的材料昂贵短缺外,其它各方面都优于铅酸蓄电池,其价格是铅蓄电池的几十倍,单体电压低(1.25V)。
一般UPS系统不宜选用镉镍蓄电池,尤其是大功率UPS系统用镉镍蓄电池造价非常可观。
阀控铅酸蓄电池AGM体系(Valve-reguleted lead-acid batteries Absorptive glass mat)组成蓄电池材料资源丰富,价格便宜,单体电压高(2V),经过阀控达到密封,现在工艺都很成熟,大电流高倍率放电性能基本满足UPS系统工作要求,工作其间对环境没有污染,价格相对镉镍蓄电池便宜很多,尤其是大功率UPS系统所用电池。
是目前UPS系统首选的蓄电池。
富液免维护铅酸蓄电池Freedom体系(最早以美国Delco公司命名为依据Vented lead acid battery)富液免维护铅酸蓄电池国外也称Flooded Sealed Maintenance Free lead acid batteries,其工作原理除氧气阴极复合不如AGM、,其化学反应机理相同。
由于将AGM体系的贫液式改为富液式Freedom体系,用PE (polythylene)隔板、富液密封,能克服AGM贫液体系所产生的热失控、干涸、内阻大等缺点。
由于该体系的流动性大、低温内阻小,从电化学动力学的理论分析,高速放电传质速度优于AGM体系和gel体系。
由于采用过剩电解液气体可以自由进出,通过特殊的复合盖结构设计通过分子筛性质的滤气安全阀,实现了对电池的完全密封,永不漏液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阀控式密封铅酸蓄电池1.1. UPS系统常用的储能装置碱性镉镍蓄电池(Alkaline Cd-Ni batteries)碱性蓄电池是以KOH,NaOH的水溶液做为电解质的,镉镍蓄电池是碱性蓄电池,碱性镉镍蓄电池相对于铅酸蓄电池是长寿命、高倍率、,可以做到密封。
IEC285、IEC623标准规定循环寿命500—1000次可以工作5-10年,高低温性能好,高倍率(5-10倍率)放电性能好,除有记忆效应,制造工艺复杂,组成镉镍蓄电池的材料昂贵短缺外,其它各方面都优于铅酸蓄电池,其价格是铅蓄电池的几十倍,单体电压低(1.25V)。
一般UPS系统不宜选用镉镍蓄电池,尤其是大功率UPS系统用镉镍蓄电池造价非常可观。
阀控铅酸蓄电池AGM体系(Valve-reguleted lead-acid batteries Absorptive glass mat)组成蓄电池材料资源丰富,价格便宜,单体电压高(2V),经过阀控达到密封,现在工艺都很成熟,大电流高倍率放电性能基本满足UPS系统工作要求,工作其间对环境没有污染,价格相对镉镍蓄电池便宜很多,尤其是大功率UPS系统所用电池。
是目前UPS系统首选的蓄电池。
富液免维护铅酸蓄电池Freedom体系(最早以美国Delco公司命名为依据Vented lead acid battery)富液免维护铅酸蓄电池国外也称Flooded Sealed Maintenance Free lead acid batteries,其工作原理除氧气阴极复合不如AGM、,其化学反应机理相同。
由于将AGM体系的贫液式改为富液式Freedom体系,用PE (polythylene)隔板、富液密封,能克服AGM贫液体系所产生的热失控、干涸、内阻大等缺点。
由于该体系的流动性大、低温内阻小,从电化学动力学的理论分析,高速放电传质速度优于AGM体系和gel体系。
由于采用过剩电解液气体可以自由进出,通过特殊的复合盖结构设计通过分子筛性质的滤气安全阀,实现了对电池的完全密封,永不漏液。
由于生产工艺简单单体电容易实现一致,电液量高于AGM, Gel体系1.2倍,使用寿命5--10年。
根据以上几点分析和比较能,目前为UPS系统配套首选VRLA蓄电池和Flooded体系和Gel胶体蓄电池。
关于胶体密封铅酸蓄电池(Gel electrolyte sealed lead-acid batteries)1.2. 关于硅胶体(Gelled)胶体是一种分散体系,是物质存在的一个特殊状态,而不是一种特殊的物质。
英国科学家Thomas Graham首先提出的胶体的概念。
其名称有称溶胶(Sol)凝胶(Gel)胶溶(Peptization)胶凝(Gelatination)冻胶(Jelly)水凝胶(Hydroged)在精细化工行业做催化剂载体和相关催化剂。
1.2.1. Gel VRLA蓄电池 Gel体系阀控铅酸蓄电池与阀控式AGM体系的密封铅酸蓄电池,其工作原理基本相同,但两种体系给正极析出的氧气到达负极提供的通道是不同的,因而结构工艺不相同。
胶体蓄电池的电解液比重1.26-1.35g/m3,不同用途的蓄电池其电解液比重是不一样的。
胶体铅蓄电池适用在动力型寿命较短要求的场合,虽然gel电池内阻比AGM式略高一些,但其放电容量、大电流放电性能仍不亚于AGM式电池。
gel体系电池在使用寿命克服热失控电液分层,都优于AGM式体系。
AGM体系电池的氧气复合效率比gel体系高能作到免维护。
gel工艺较复杂避免不了放酸气,成本较高,单体间的电压平衡性有待提高,gel体系因耗水量小,寿命比AGM体系略长,一般5-10年。
但是gel体系电池工艺各方面都要做到很好的情况下,才能显示出它的优越性。
其容量和常规放电两者相近。
但由gel体系的粘着性,从电化学动力学的理论分析,高速放电的传质速度是很差的,低温内阻较大,gel体系稳定性有待提高,所以做为高倍率需求的UPS系统,AGM体系与gel体系相比各有千秋。
1.2.2. 关于胶体硅活性剂的实施工艺原理:胶体铅酸蓄电池几十年前学者们早就开始研究了。
欧洲尤其德国一直在研究,并取得了相当的进展。
主要是对纳米级气相二氧化硅的表面改性。
根据胶体铅蓄电池以前的制作,在铅蓄电池行业和专业试验研究中用三种方法:有中和法、离子交换法、和气相二氧化硅法。
椐了解目前国内外无例外的采用气相SiO2(Fumed Silica)俗称白炭黑用其制作的胶体蓄电池性能优良,主要是气相二氧化硅纯净度好,颗粒度也很容易调整,所以活性好。
经过具体试验,用常规的VRLA 蓄电池的结构,用普通的AGM玻璃纤维隔板,AGM隔板也是SiO2为主要成分与极性分子H2O水化和硫酸反应也做催化载体,富液式结构,少量气相二氧化硅添加量和其他微量活性添加剂,主要是聚合高分子的氟硼酸钠盐、氟磷酸硼和钛酸钠盐、高分子磷、硼、磷、钛酸复合盐等。
由于这些低分子量的高分子偶联剂和表面分散剂的催化活性,就能得到高性能的能量输出,深循环条件下的优良性能,高的功率密度、高的充电效率(99.5%),耐过充、充电重复性好,充电稳定性好(抗热失控),寿命期间免维护,长寿命,宽的工作温度,Wh价格低,高的体积比能量,自放电低,高的重量比能量。
若按半荷电制式工作(Partial-stage of charge)以40%--60%的荷电在寿命期间能量输出增加三倍。
在寿命试验中随着循环次数的增加其容量要比VRLA液式蓄电池衰减的慢,铅锑镉合金衰减最慢,胶体铅钙合金也比液式铅钙合金衰减慢。
证明SiO2胶体添加剂的催化作用,催化作用比较复杂。
将作好的活性硅胶体与配好的硫酸电解液混合,充分混合分散,可以高速搅拌也可以超声乳化。
用真空注酸法灌注胶液。
胶体活性添加剂的铅酸蓄电池是进入新世纪的重大技术进展,随着纳米技术和高分子合成技术的进展表面活性剂和硅、硼、磷、钛、铝等聚合偶联剂,偶联剂是两性结构的化学物质,按其化学结构可分为硅烷类、钛酸酯类、铝酸酯类、锆铝酸盐类及有机络合物类等,二氧化硅粉体改性多用硅烷类偶联剂。
它是一种特殊结构的低分子结构的有机硅化合物,另再填加阴离子表面分散活性剂,对微粒材料表面改性,有的用有机改性剂,有的用无机改性剂这是提高材料性能的重要方法也适用于其他行业,表面改性、综合合成技术的提高,硅胶体铅酸蓄电池的综合技术水平还会有突破性的进展。
2.阀控式密封铅酸蓄电池(VRLA Batteries)基本原理几个术语:VRLA(valve regulated lead acid)、 AGM(absorbent glass mat)、GEL(胶体)、 Flooded (富液)、Wh (瓦时)、 Ah(安时)、 XCn (不同倍率、不同小时率)等的说明。
2-1结构原理如图(1)、(2)所示,实际使用中蓄电池是由正极板负极板隔板组成为极群组构成。
材料的体积(极板的表面及厚度,正极板的数量)决定了电池的容量。
电池的工作状况取决于活性物质的有效活性表面,所以这些材料的孔率是很重要的。
为避免词语混乱,称“电子流动方向”为“物理流动方向”,实际电流方向是电子流动的反方向。
电子是带负电荷的微粒,在放电过程中正极的氧化铅,负极为绒面铅,被转化为硫酸铅,负极绒面铅失掉电子被氧化,其失掉的电子通过外电路供给负载后回到正极。
正极氧化前得到电子,还原为硫酸铅。
在充电过程中,正极硫酸铅被氧化失掉电子从内电路运送到负极储存起来。
复极得到电子被还原为绒面铅。
2-2化学反应原理(双硫酸盐反应)Pb+PbO2+2H2SO4 2PbSO4+2H2O (1)在放电过程中,负极中的铅(活性物质)以及正极中的氧化铅被转化为硫酸铅,参与反应的硫酸铅是以硫酸根离子的形式存在,反应产物中的水证明该反应消耗并稀释了硫酸,硫酸的密度降低。
在充电过程中,正极中的硫酸铅被氧化成氧化铅,失掉电子,而负电极硫酸铅被还原成PbO2→Pb而得到电子还原为绒面铅。
2-3阀控式密封铅酸蓄电池的氧循环原理基于普通铅酸蓄电池的双硫酸盐反应机理,加之正极充电产生的氧气在阴极复合,并使阴极氢气不至排出,加以安全阀控制,以达到减少蓄电池的失水。
称为阴极复合原理。
具体化学反应在蓄电池充电时伴随着副反应即水的电解。
一般认为,在VRLA蓄电池中,负极起着双重的作用,即在充电末期或过充时,负极一方面与正极传过来的氧O2起反应而被氧化。
另一方面又接受外电路传输来的电子进行还原。
氧的传输在H2SO4(为5mol/L)的溶解度C (O2)0.65m mol/L和氧的扩散系数D(O2)105(cm2/S)。
氧以两种方式在电池内传质:一是溶解在溶液中的方式,即通过在液相中的扩散,传输到负极表面;二是以气相的形式,扩散到负极表面。
在起始O2与负极绒面铅化合时,消耗了一部分O2氧,在负极板附近产生负压,将产生正负极空间部分压力差,推动气相氧经过电极间的气道向负极移动。
从而使VRLA蓄电池在所要求的电压范围(2.25-2.27V/单体)下工作。
由于氧气的循环而不致失水。
反应式如下:正极2H2O+4e→4H++O2↑(2)负极 2H++2e→2H2↑(3)氧循环反应O2+Pb→PbO PbOH++SO4→PbSO4+H2O (4)总反应 2H2O→2H2↑+O2↑同时放出热量(5)阀控式密封铅酸蓄电池是在常规富液开口式铅酸蓄电池基础上发展起来的,其基本电化学成流反应与常规铅酸蓄电池一样,所不同之处是开口式改进后达到阀控密封的阶段。
一般正常水电解电位理论值为1.23V,实际在酸性溶液中电化学极化、浓差极化、欧姆极化、接触电位等,使分解电位上升为1.67V。
由于铅合金中钙的加入,提高了析氢析氧过电位,致使端子电压超过2.3V—2.40V后,才有少量气体析出,又通过合理选择正负极活性物质的配比选用电化学纯级材料,避免降低氢析出过电位的有害物质,使用纯度高的有效的负极添加剂等,来抑制气体的析出。
再加之氧的析出总是发生在氢的析出之前,而析出的氧,在密封电池的条件下,能够扩散到负极,被负极的海绵状铅所吸收,还原成氧化铅,进而与硫酸作用生成硫酸铅与水,这就控制了氢的析出,使析出的氧在负极上还原,通过氧气的循环实现了蓄电池内部自消气。
使铅酸蓄电池实现了阀控密封。
阀控密封属于贫液、气密,还有一种富液式液密,其电池壳盖上有一种巧妙设计的透气不透酸的透气垫,电液量多,在寿命期内不用添加硫酸电解液,所以也称富液、液密免维护铅酸蓄电池。
从IEC标准也明确了,阀控式铅酸蓄电池不再称为免维护铅酸蓄电池。
3.阀控密封铅酸蓄电池的工艺技术3-1.关于蓄电池电解液第一种是富液放气式和胶体铅酸蓄电池,这种电解液密度d=1.26—1.28g/cm3第二种是液体硫酸电解液,一般密度在1.28-1.31g/cm3.3-2. 板栅合金国内外阀控密封式铅酸蓄电池板栅有很多种,但常用的是Pb—Ca(0.02—0.05%Wt)—Sn(0.1—1.3%Wt)—Al(0.02—0.03%Wt)提高了析氢析氧过电位,使电池的密封性能和贮存性能(自然放电率),都有明显改善,有的还加入适量的镉、银等。