人教版高一数学《函数》复习教案(有答案)
高三数学《函数》单元复习教案 新人教A版

高 三 数 学(第10讲)一、 本讲进度《函数》单元复习二、 本讲主要内容1、函数的定义及通性;2、函数性质的运用。
三、 学习指导1、函数的概念:(1)映射:设非空数集A ,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射,记为f :A →B ,f 表示对应法则,b=f(a)。
若A 中不同元素的象也不同,则称映射为单射,若B 中每一个元素都有原象与之对应,则称映射为满射。
既是单射又是满射的映射称为一一映射。
(2)函数定义:函数就是定义在非空数集A ,B 上的映射,此时称数集A 为定义域,象集C={f(x)|x ∈A}为值域。
定义域,对应法则,值域构成了函数的三要素,从逻辑上讲,定义域,对应法则决定了值域,是两个最基本的因素。
逆过来,值域也会限制定义域。
求函数定义域,通过解关于自变量的不等式(组)来实现的。
要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。
复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。
理解函数定义域,应紧密联系对应法则。
函数定义域是研究函数性质的基础和前提。
函数对应法则通常表现为表格,解析式和图象。
其中解析式是最常见的表现形式。
求已知类型函数解析式的方法是待定系数法,抽象函数的解析式常用换元法及凑合法。
求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为△法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。
在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。
2、函数的通性(1)奇偶性:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如0)x (f )x (f =±-,1)x (f )x (f ±=-(f(x)≠0)。
人教b版高一数学必修一:2.1.1《函数(1)》学案(含答案)

二、填空题
6.将集合 { x|x=1 或 2≤ x≤8} 表示成区间为 ____________ . 7.若 f(2x)= x3,则 f(1)= ________. 8.函数 y= x2- 2 的定义域为 { - 1,0,1,2} ,则其值域为 ________.
三、解答题 9.求下列函数的定义域:
-x (3)y= 2x2- 3x-2;
(2) y=
3;
1- 1-x
(4) y=
2x+ 3-
1+ 2-x
1 x.
规律方法 求函数定义域的原则: (1)分式的分母不等于零; (2)偶次根式的被开方数 (式 )
为非负数ቤተ መጻሕፍቲ ባይዱ (3)零指数幂的底数不等于零等.
变式迁移 1 求下列函数的定义域:
(1)
f
(
x)=
第二章 函 数
§2.1 函 数 2.1.1 函数 (一 )
自主学习
学习目标 1.理解函数的概念,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念 中的作用. 2.通过实例领悟构成函数的三要素;会求一些简单函数的定义域. 3.了解区间的概念,体会用区间表示数集的意义和作用.
自学导引
1.函数的有关概念 设集合 A 是一个 ____________ ,对 A 中的 ____________,按照确定的法则 f,都有
(4)两个函数是否相同,与自变量是什么字母无关. 变式迁移 2 试判断下列函数是否为同一函数:
(1)f(x)= x· x+ 1与 g( x)= x x+ 1 ; (2)f(x)= x2- 2x 与 g(t)= t2- 2t; (3)f(x)= 1 与 g(x)= x0(x≠ 0).
知识点三 求函数解析式
高一数学函数的教案优秀5篇

高一数学函数的教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!高一数学函数的教案优秀5篇作为一位不辞辛劳的人·民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。
最新人教版高中数学必修1第三章《函数的应用——复习》教案1

第三章单元复习从容说课函数的零点与用二分法求方程的近似解是新课标新增内容,在学习了函数的概念及其性质和研究了具体函数的基础上,引入函数的零点及解,一方面使函数与方程得到了完美的统一,另一方面使函数的应用问题的求解思路更广阔以及函数与方程思想更具活力.学习数学知识的目的,就是运用数学知识处理、解决实际问题,运用数学知识解决实际问题是每年高考必考内容之一,因此,函数模型及其应用是本章的重点,也是高考考查的热点,它给出的思想方法,在其他数学章节中都能应用.将所学的知识用于实际是个很复杂的过程,不但要求理解、掌握知识和思维方法,而且要求具备较强的分析、综合能力,还需要运用自己的生活经验和体会,这样才能理解实际问题中的数量关系并确定它们间的数学联系(函数关系),将实际问题抽象、概括为典型的数学问题.应用数学知识解决了数学问题后,还要分析理论的解适应实际问题的状况等等,这实际是对一个人的素质水平高低的考查,因此本单元知识是高中数学的一大难点.三维目标一、知识与技能1.了解方程的根与函数零点的关系,理解函数零点的性质.2.掌握二分法,会用二分法求方程的近似解.3.了解直线上升、指数爆炸、对数增长,会进行指数函数、对数函数、幂函数增长速度的比较.4.能熟练进行数学建模,解决有关函数实际应用问题.二、过程与方法1.培养学生分析、探究、思考的能力,进一步培养学生综合运用基本知识解决问题的能力.2.能恰当地使用信息技术工具,解决有关数学问题.三、情感态度与价值观激发学生学习数学的兴趣,培养他们合作、交流、创新意识以及分类讨论、抽象理解能力.教学重点应用函数模型解决有关实际问题.教学难点二分法求方程的近似解,指数函数、对数函数、幂函数增长速度的比较.教具准备多媒体、课时讲义.课时安排1课时教学过程一、知识回顾(一)第三章知识点1.函数的零点,方程的根与函数的零点,零点的性质.2.二分法,用二分法求函数零点的步骤.3.几类不同增长的函数模型(直线上升、指数爆炸、对数增长),指数函数、对数函数、幂函数增长速度的比较.4.函数模型,解决实际问题的基本过程. (二)方法总结1.函数y =f (x )的零点就是方程f (x )=0的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题.2.一元二次方程根的讨论在高中数学中应用广泛,求解此类问题常有三种途径: (1)利用求根公式;(2)利用二次函数的图象; (3)利用根与系数的关系.无论利用哪种方法,根的判别式都不容忽视,只是由于二次函数图象的不间断性,有些问题中的判别式已隐含在问题的处理之中.3.用二分法求函数零点的一般步骤:已知函数y =f (x )定义在区间D 上,求它在D 上的一个变号零点x 0的近似值x ,使它与零点的误差不超过正数ε,即使得|x -x 0|≤ε.(1)在D 内取一个闭区间[a ,b ] D ,使f (a )与f (b )异号,即f (a )·f (b )<0.令a 0=a ,b 0=b .(2)取区间[a 0,b 0]的中点,则此中点对应的横坐标为 x 0=a 0+21(b 0-a 0)=21(a 0+b 0). 计算f (x 0)和f (a 0).判断:①如果f (x 0)=0,则x 0就是f (x )的零点,计算终止; ②如果f (a 0)·f (x 0)<0,则零点位于区间[a 0,x 0]内,令a 1=a 0,b 1=x 0; ③如果f (a 0)·f (x 0)>0,则零点位于区间[x 0,b 0]内,令a 1=x 0,b 1=b . (3)取区间[a 1,b 1]的中点,则此中点对应的横坐标为 x 1=a 1+21(b 1-a 1)=21(a 1+b 1). 计算f (x 1)和f (a 1).判断:①如果f (x 1)=0,则x 1就是f (x )的零点,计算终止; ②如果f (a 1)·f (x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1. ③如果f (a 1)·f (x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1. ……实施上述步骤,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<2ε时,区间[a n ,b n ]的中点x n =21(a n +b n ). 就是函数y =f (x )的近似零点,计算终止.这时函数y =f (x )的近似零点与真正零点的误差不超过ε.4.对于直线y =kx +b (k ≥0),指数函数y =m ·a x (m >0,a >1),对数函数y =log b x (b >1),(1)通过实例结合图象初步发现:当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快.(2)通过计算器或计算机得出多组数据结合函数图象(图象可借助于现代信息技术手段画出)进一步体会:直线上升,其增长量固定不变;指数增长,其增长量成倍增加,增长速度是直线上升所无法企及的.随着自变量的不断增大,直线上升与指数增长的差距越来越大,当自变量很大时,这种差距大得惊人,所以“指数增长”可以用“指数爆炸”来形容.对数增长,其增长速度平缓,当自变量不断增大时,其增长速度小于直线上升.5.在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1),y=x n(n>0)都是增函数,但是它们的增长速度不同,而且不在同一个‘档次’上,随着x的增大,y=a x(a>1)的增长速度越来越快,会远远超过y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,a x>x n>log a x.6.实际问题的建模方法.(1)认真审题,准确理解题意.(2)从问题出发,抓准数量关系,恰当引入变量或建立直角坐标系.运用已有的数学知识和方法,将数量关系用数学符号表示出来,建立函数关系式.(3)研究函数关系式的定义域,并结合问题的实际意义作出解答.必须说明的是:(1)通过建立函数模型解决实际问题,目的是通过例题培养同学们应用数学的意识和分析问题的能力.(2)把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题所得出的关于实际问题的数学描述,即为数学模型.7.建立函数模型,解决实际问题的基本过程:二、例题讲解【例1】作出函数y=x3与y=3x-1的图象,并写出方程x3=3x-1的近似解.(精确到0.1)解:函数y=x3与y=3x-1的图象如下图所示.在两个函数图象的交点处,函数值相等.因此,这三个交点的横坐标就是方程x3=3x-1的解.由图象可以知道,方程x3=3x-1的解分别在区间(-2,-1)、(0,1)和(1,2)内,那么,对于区间(-2,-1)、(0,1)和(1,2)分别利用二分法就可以求得它精确到0.1的近似解为x 1≈-1.8,x 2≈0.4,x 3≈1.5.【例2】 分别就a =2,a =45和a =21画出函数y =a x ,y =log a x 的图象,并求方程a x =log a x 的解的个数.思路分析:可通过多种途径展示画函数图象的方法.解:利用Excel 、图形计算器或其他画图软件,可以画出函数的图象,如下图所示.根据图象,我们可以知道,当a =2,a =45和a =21时,方程a x =log a x 解的个数分别为0,2,1.【例3】 根据上海市人大十一届三次会议上的政府工作报告,1999年上海完成GDP (国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市政府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP 与人口均按这样的速度增长,则要使本市人均GDP 达到或超过1999年的2倍,至少需________年.(按:1999年本市常住人口总数约为1300万)思路分析:抓住人均GDP 这条线索,建立不等式.解:设需n 年,由题意得nn %)08.01(13000000%)91(4035+⨯+⨯≥1300000040352⨯,化简得nn %)08.01(%)91(++≥2,解得n >8.答:至少需9年. 【例4】 某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本Q (单2的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.思路分析:由四个函数的变化趋势,直观得出应选择哪个函数模拟,若不能断定选择哪个函数,则分别利用待定系数法探求,最后可通过图象的增长特性进行筛选.解:由提供的数据知道,描述西红柿种植成本Q 与上市时间t 的变化关系的函数不可能是常数函数,从而用函数Q =at +b ,Q =a ·b t ,Q =a ·log b t 中的任意一个进行描述时都应有a ≠0,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数Q =at 2+bt +c 进行描述.以表格所提供的三组数据分别代入Q =at 2+bt +c ,得到 ⎪⎩⎪⎨⎧ 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.2225,23,2001c b a所以描述西红柿种植成本Q 与上市时间t 的变化关系的函数为Q =2001t 2-23t +2225. (2)当t =-)2001(223⨯-=150天时,西红柿种植成本最低为Q =2001·1502-23·150+2225=100(元/102kg ).三、课堂练习教科书P 132复习参考题A 组1~6题. 1.C 2.C3.设列车从A 地到B 地运行时间为T ,经过时间t 后列车离C 地的距离为y ,则 y =⎪⎪⎩⎪⎪⎨⎧<--.52,200500,520,500200T t Tt TTt t T函数图象为4.(1)圆柱形;(2)上底小、下底大的圆台形; (3)上底大、下底小的圆台形;(4)呈下大上小的两节圆柱形.(图略)5.(1)设无理根为x 0,将D 等分n 次后的长度为d n .包含x 0的区间为(a ,b ),于是d 1=1,d 2=21,d 3=221,d 4=321,…d n =121-n . 所以|x 0-a |≤d n =121-n ,即近似值可精确到121-n .(2)由于121-n 随n 的增大而不断地趋向于0,故对于事先给定的精确度ε,总有自然150=2500a +50b +c , 108=12100a +110b +c , 150=62500a +250b +c . ≤ ≤ ≤数n ,使得121n ≤ε.所以只需将区间D 等分n 次就可以达到事先给定的精确度ε.所以一般情况下,不需尽可能多地将区间D 等分.6.令f (x )=2x 3-4x 2-3x +1,函数图象如下所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x 3-4x 2-3x +1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)=-0.25. 因为f (2.5)·f (3)<0,所以x 0∈(2.5,3).再取(2.5,3)的中点x 2=2.75,用计算器可算得f (2.75)≈4.09. 因为f (2.5)·f (2.75)<0,所以x 0∈(2.5,2.75). 同理,可得x 0∈(2.5,2.625),x 0∈(2.5,2.5625),x 0∈(2.5,2.53125), x 0∈(2.515625,2.53125),x 0∈(2.515625,2.5234375). 由于|2.534375-2.515625|=0.0078125<0.01,此时区间(2.515625,2.5234375)的两个端点精确到0.01的近似值都是2.52,所以方程2x 3-4x 2-3x +1=0精确到0.01的最大根约为2.52.四、课堂小结1.函数与方程的紧密联系,体现在函数y =f (x )的零点与相应方程f (x )=0的实数根的联系上.2.二分法是求方程近似解的常用方法,应掌握用二分法求方程近似解的一般步骤.3.不同函数模型能够刻画现实世界不同的变化规律.指数函数、对数函数以及幂函数就是常用的现实世界中不同增长规律的函数模型.4.函数模型的应用,一方面是利用已知函数模型解决问题;另一方面是建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.5.在函数应用的学习中要注意充分发挥信息技术的作用. 五、作业布置教科书P 132复习参考题A 组7,8,9,10. B 组1,2,3. 板书设计第三章单元复习概念与方法 例题与解答 1. 2. 3. 4.练习与小结。
高一数学函数教案5篇

高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。
人教版新课标高一数学必修一 期末综合复习 函数及其应用 教案及课后习题附完整答案解析

一、考点突破1. 理解集合的概念及其性质;会用集合的表示方法表示集合。
2. 了解全集与空集的含义,理解两个集合的并集与交集、已知集合的补集的含义及其运算。
能使用Venn图表达集合的关系及运算。
3. 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
4. 会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,了解简单的分段函数及应用。
5. 理解函数的单调性、奇偶性、最大(小)值及其几何意义;学会运用函数图象理解和研究函数的性质。
6. 理解基本初等函数的概念和意义,能借助函数的图象探索并理解函数的性质。
7. 会研究简单复合函数与基本初等函数的单调性和最值的求法。
8. 掌握函数的零点的概念以及求零点的技巧。
9. 了解函数模型的广泛应用。
二、重难点提示:重点:1. 集合的运算。
2. 函数的概念和性质。
难点:1. 基本初等函数性质的应用。
2. 函数与方程的应用。
集合及其应用【考点精讲】一、正确理解集合的概念集合的概念:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)。
构成集合的每个对象叫做这个集合的元素(或成员)。
集合通常用英语大写字母A,B,C,…来表示,它们的元素通常用英语小写字母a∈,读作“a属于A ,b,c,…来表示。
如果a是集合A的元素,就说a属于A,记作a A∉,读作“a不属于A”。
”。
如果a不是集合A的元素,就说a不属于A,记作a A二、集合内元素的三个基本特征确定性:对任意对象都能确定它是不是某一集合的元素,就是说:对于某一个元素,要么它属于这个集合,要么它不属于这个集合,不会出现可能属于也可能不属于这种情况。
例如:对于集合{x>1},2就属于这个集合,而0就不属于这个集合。
再如:{非常大的数}就不是集合,因为1000000到底属于不属于这个集合,这很难说。
互异性:集合中的任何两个元素都不相同,即在同一集合里不能出现相同的元素。
新课标高一数学人教版必修1教案(函数)

课题:§1.2.1函数的概念教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国2003年4月份非典疫情统计:3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例12.判断两个函数是否为同一函数课本P21例2巩固练习:○1课本P22第2题○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?(1)f ( x ) = (x -1) 0;g ( x ) = 1(2)f ( x ) = x;g ( x ) = 2x(3)f ( x ) = x 2;f ( x ) = (x + 1) 2(4)f ( x ) = | x | ;g ( x ) = 2x(三)课堂练习求下列函数的定义域(1)|x |x 1)x (f -=(2)x111)x (f +=(3)5x 4x )x (f 2+--=(4)1x x 4)x (f 2--=(5)10x 6x )x (f 2+-=(6)13x x 1)x (f -++-=三、归纳小结,强化思想从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
【B版】人教课标版高中数学必修一《函数(第二课时)》教学教案-新版

2.1.1 函数(第二课时)映射与函数知识与技能:(1)了解映射的概念及表示方法;(2)结合简单的对应图表,理解一一映射的概念.过程与方法:(1)函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;(2)通过实例进一步理解映射的概念;(3)会利用映射的概念来判断“对应关系”是否是映射,一一映射.情态与价值:映射在近代数学中是一个极其重要的概念,是进一步学习各类映射的基础.教学目标(1)了解映射的概念及表示方法(2)了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象.(3)会结合简单的图示,了解一一映射的概念(4) 会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(5) 能正确认识和使用函数的三种表示法:解析法,列表法和图像法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;(6) 求简单分段函数的解析式;了解分段函数及其简单应用.教学重难点(1)对映射、函数概念的理解、函数概念的理解。
(2)函数关系的三种表示方法.分段函数解析式的求法.教学过程一、创设情景,揭示课题问题情境:每个学生都有一个学号,这样管理比较方便;同学们在中考中,每一个人都有唯一的考号,也就是说在现实生活中,不仅是数集之间存在着某种对应关系,很多集合之间也存在着某种对应关系,为了研究集合之间的对应关系,我们引入映射的概念(板书课题).二、复习提问、研探新知提问:函数的概念教师:我们已经知道,函数是建立在两个非空数集间的一种特殊的对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,这种对应就叫映射.学生:分组讨论、归纳映射的概念。
(一)映射的定义:映射定义:设A,B是两个非空..的集合,如果按照某种对应法则f,对于集合A中的任何一个..元素与之对应,这样的对应叫做从集合A ....元素,在集合B中都有唯一到.集合B的映射,记作:B:(注:A中元素必须取完,B中元素可以取完,Af→也可以不取完,这种对应可以是一对一,也可以是多对一,但不能是一对多;注意关键词)在映射B:中,集合A叫做映射的定义域,与A中元素x对应Af→的B中元素y叫x的象,记作:)fy=,x叫做y的原象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一函数复习一、函数的概念与表示1、映射映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A →B 。
注意点:(1)对映射定义的理解;(2)判断一个对应是映射的关键:A 中任意,B 中唯一;对应法则f .给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.注意:(1)A 中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一; (3)a 的象记为f (a ).【例题1】设集合A ={x |0 ≤ x ≤ 6},B ={y |0 ≤ y ≤ 2},从A 到B 的对应法则f 不是映射的是( ).A . f :x →y =12x B . f :x →y =13x C . f :x →y =14x D . f :x →y =16x【变式练习1】若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个2、函数构成函数概念的三要素:①定义域;②对应法则;③值域两个函数是同一个函数的条件:当且仅当函数定义域、对应法则分别相同时.【例题1】下列各对函数中,相同的是( )A 、x x g x x f lg 2)(,lg )(2== B 、)1lg()1lg()(,11lg)(--+=-+=x x x g x x x f C 、 vvv g u u u f -+=-+=11)(,11)( D 、f (x )=x ,2)(x x f =【例题2】}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有 ( )A 、 0个B 、 1个C 、 2个D 、3个【变式练习】1.下列各组函数中,表示同一函数的是( )A . 1,xy y x==B . 211,1y x x y x =-+=-C . 33,y x y x ==D . 2||,()y x y x ==2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( )3.下列四个图象中,不是函数图象的是( )【巩固练习】xx x x1 2 1 1 1 22 2 1 1 1 1 2 2 2 2 y yyy3 OO OO1.判断下列各组中的两个函数是同一函数的是( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸ 2、设x 取实数,则f (x )与g (x )表示同一个函数的是( )A 、x x f =)(,2)(x x g = B 、x x x f 2)()(=,2)()(x x x g = C 、1)(=x f ,0)1()(-=x x g D 、39)(2+-=x x x f ,3)(-=x x g3、下列四个函数中,与y =x 表示同一函数的是( )A . y = (x )2B . y =33xC. y = 2xD. y = xx 24.下列图象中表示函数图象的是 ( )5.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈,使B 中元素31y x =+和A中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5二、函数的解析式与定义域1、函数解析式的七种求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .解:设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 ● 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
【例2】已知221)1(x x xx f +=+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+xx2)(2-=∴x x f )2(≥x● 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
【例3】已知x x x f 2)1(+=+,求)1(+x f .解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x● 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
【例4】已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y xx ,解得:⎩⎨⎧-='--='y y x x 64,点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='y y x x 64代入得:)4()4(62--+--=-x x y整理得672---=x x y∴67)(2---=x x x g● 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
【例5】设,)1(2)()(x xf x f x f =-满足求)(x f解 x xf x f =-)1(2)( ①显然,0≠x 将x 换成x 1,得:xx f x f 1)(2)1(=- ② 解① ②联立的方程组,得:xx x f 323)(--=【例6】设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式解 )(x f 为偶函数,)(x g 为奇函数,)()(),()(x g x g x f x f -=-=-∴ 又11)()(-=+x x g x f ① , 用x -替换x 得:11)()(+-=-+-x x g x f 即11)()(+-=-x x g x f ②解① ②联立的方程组,得 11)(2-=x x f , xx x g -=21)(● 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
【例7】已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f解对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f 再令 x y =- 得函数解析式为:1)(2++=x x x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。
【例8】设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a ,都有ab b a f b f a f -+=+)()()(,求)(x f解 +∈-+=+N b a ab b a f b f a f ,)()()(,,∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(,又1)()1(,1)1(+=-+=x x f x f f 故 ① 分别令①式中的1,21x n =- 得:(2)(1)2,(3)(2)3,()(1),f f f f f n f n n -=-=--=将上述各式相加得:n f n f ++=-32)1()(,2)1(321)(+=+++=∴n n n n f +∈+=∴N x x x x f ,2121)(2 【变式练习】1、已知11112-=⎪⎭⎫ ⎝⎛+xx f ,求()x f 的解析式。
(换元法)2、设二次函数()x f y =的最小值等于4,且()()620==f f ,求()x f 的解析式。
(待定系数法)3、已知3311()f x x x x+=+,求()f x ;4、已知f (x -1)=3x -1,求()f x ;5、已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;6、已知()f x 满足12()()3f x f x x+=,求()f x .7、已知()x x x f21+=+,求()x f 。
8、已知)(x f 是一次函数,且()()14-=x x f f ,求)(x f 的解析式。
9、设)(x f 是R 上的函数,且满足()10=f ,并且对任意实数y x ,,有()()()12+--=-y x y x f y x f ,求()x f 的表达式。
【巩固练习】1.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x + 2.函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( ) A .3 B .3- C .33-或 D .35-或3.已知)0(1)]([,21)(22≠-=-=x x x x g f x x g ,那么)21(f 等于( ) A .15 B .1 C .3 D .30 4.已知2211()11x x f x x --=++,则()f x 的解析式为( ) A .21x x + B .212x x +- C .212x x + D .21xx+- 5.若函数x x x f 2)12(2-=+,则)3(f = . 6.已知2(21)2f x x x +=-,则(3)f =_________.7.已知函数1()1xf x x -=+. 求:(1)(2)f 的值;(2)()f x 的表达式.8.已知2()f x ax bx c =++,(0)0f =,且(1)()1f x f x x +=++,试求()f x 的表达式.2、求函数定义域的主要依据:(1)()f x 是整式时,定义域是全体实数.(2)()f x 是分式函数时,定义域是使分母不为零的一切实数.(3)()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. (4)零(负)指数幂的底数不能为零. (5)对数函数的真数必须大于零.(6)指数函数、对数函数的底数必须大于零且不等于1.(7)若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.(8)对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.(9)实际问题中的函数的定义域还要保证实际问题有意义.求函数定义域的两个难点问题1、已知()f x 的定义域是[-2,5],求(23)f x +的定义域。