北师大版八年级上勾股定理
北师大版八年级数学上册知识点归纳:第一章勾股定理

北师版八年级数学第1章 勾股定理一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDC B A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 a b ccb a E DC B A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A。
北师大版八年级数学上册第一章勾股定理复习与小结课件

P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
北师大版八年级数学上册《勾股定理》课件(共18张PPT)

知识要点
1.勾股定理:如果直角三角形两直角边分别为 a,b,斜边为c,那么__________ . 2.勾股定理各种表达式: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边也分别为a,b,c,则c=_________, b=_________,a=_________.
知识要点
3.勾股定理的逆定理: 在△ABC中,若a、b、c三边满足___________, 则△ABC为___________. 4.勾股数: 满足________的三个________,称为勾股数. 5.几何体上的最短路程是将立体图形的 ________展开,转化为_________上的路程问 题,再利用___________两点之间, ___________,解决最短线路问题.
2.已知△ABC的三边为a,b,c,有下列各
组条件,判定△ABC的形状.
(1)a 4 1 , b 4 0 , c 9 (2)a m 2 n 2 , b m 2 n 2 , c 2 m ( n m n 0 )
合作探究
探究四:勾股定理及逆定理的综合应用
B港有甲、乙两艘渔船,若甲船沿北 偏东60o方向以每小时8 n mile的速度前进, 乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙 船到P岛,两岛相距34 n mile,你知道乙 船是沿哪个方向航行的吗?
第一章 勾股定理
回顾与思考
情境引入
勾股定理,我们把它称为世界第一定理. 首先,勾股定理是数形结合的最典型的代 表; 其次,正是由于勾股定理得发现,导致无 理数的发现,引发了数学的第一次危机,这一 点,我们将在《实数》一章里讲到; 第三,勾股定理中的公式是第一个不定方 程,有许许多多的数满足这个方程,也是有完 整的解答的最早的不定方程,最为著名的就是 费马大定理,直到1995年,数学家怀尔斯才将 它证明.
北师大版八年级上册数学第一章勾股定理全章知识点及习题

cbaD CA B第一章 勾股定理学问点一:勾股定理定义画一个直角边为3cm 和4cm 的直角△ABC ,量AB 的长;一个直角边为5和12的直角△ABC ,量AB 的长发觉32+42及52的关系,52+122和132的关系,对于随意的直角三角形也有这特性质吗?直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2)1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;(给出证明) ⑷三边之间的关系: 。
学问点二:验证勾股定理学问点三:勾股定理证明(等面积法)例1。
已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
证明:ACBD例2。
已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
证明:学问点四:勾股定理简洁应用 在Rt △ABC 中,∠C=90°(1) 已知:a=6, b=8,求c (2) 已知:b=5,c=13,求a学问点五:勾股定理逆定理假设三角形的三边长为c b a ,,,满意222c b a =+,那么,这个三角形是直角三角形. 利用勾股定理的逆定理判别直角三角形的一般步骤: ①先找出最大边(如c )②计算2c 及22a b +,并验证是否相等。
若2c =22a b +,则△ABC 是直角三角形。
若2c ≠22a b +,则△ABC 不是直角三角形。
1.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A.a=7,b=24,c=25 B.a=7,b=24,c=24C.a=6,b=8,c=10D.a=3,b=4,c=52.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形 3.已知0)10(862=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形. 学问点六:勾股数bbba(1)满意222c b a =+的三个正整数,称为勾股数.(2)勾股数中各数的一样的整数倍,仍是勾股数,如3、4、5是勾股数,6、8、10也是勾股数.(3)常见的勾股数有:①3、4、5②5、12、13;③8、15、17;④7、24、25; ⑤11、60、61;⑥9、40、41.1.设a 、b 、c 是直角三角形的三边,则a 、b 、c 不行能的是( ).A.3,5,4B. 5,12,13C.2,3,4D.8,17,151.若线段a ,b ,c 组成Rt △,则它们的比可以是( )A.2∶3∶4B.3∶4∶6C.5∶12∶13D.4∶6∶7学问点七:确定最短路途1.一只长方体木箱如图所示,长、宽、高分别为5cm 、4cm 、3cm,有一只甲虫从A 动身,沿外表爬到C ',最近间隔 是多少?2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π 取3)是 .学问点八:逆定理推断垂直1.在△ABC 中,已知AB 2-BC 2=CA 2,则△ABC 的形态是( )A .锐角三角形;B .直角三角形;C .钝角三角形;D .无法确定.2.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对学问点九:勾股定理应用题1.在我国古代数学著作《九章算术》中记载了一道好玩的问题,这个问题的意思是:有一个水ABCD A 'B 'C 'D 'ABC5米3米池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,假设把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?2.如图为某楼梯,测得楼梯的长为5米,高3米,安排在楼梯外表铺地毯,地毯的长度至少须要________米.3.一根直立的桅杆原长25m,折断后,桅杆的顶部落在离底部的5m处,则桅杆断后两局部各是多长?4.某中学八年级学生想知道学校操场上旗杆的高度,他们发觉旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发觉下端刚好触地面,你能帮他们把旗杆的高度和绳子的长度计算出来吗?综合练习一一、选择题1、下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2 – n 2, 2mn(m,n 均为正整数,m >n);④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A.①②;B.①③;C.②③;D.③④2已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A.25B.14C.7D.7或253.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形;B. 钝角三角形;C. 直角三角形;D. 锐角三角形. 4.△ABC 的三边为a 、b 、c 且(a+b)(a-b)=c 2,则( )A.a 边的对角是直角B.b 边的对角是直角C.c 边的对角是直角D.是斜三角形5.以下列各组中的三个数为边长的三角形是直角三角形的个数有( )①6、7、8,②8、15、17,③7、24、25,④12、35、37,⑤9、40、41 A 、1个 B 、2个 C 、3个 D 、4个6.将直角三角形的三边扩大一样的倍数后,得到的三角形是 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形7.若△ABC 的三边a 、b 、c 满意(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( ) A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,∠C =∠B =90°,AB =5,BC =8,CD =11,则AD 的长为 ( )A 、10B 、11C 、12D 、139.如图、山坡AB 的高BC =5m ,程度间隔 AC =12m ,若在山坡上每隔0.65m 栽一棵茶树,则从上到下共 ( )A 、19棵B 、20棵C 、21棵D 、22棵10.Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,若c =2,则2a +2b +2c 的值是 ( )A 、6B 、8C 、10D 、4 11.下列各组数据中,不能构成直角三角形的一组数是( )A、9,12,15 B 、45,1,43 C 、0.2,0.3,0.4 D 、40,41,9 12.已知,一轮船以16海里/时的速度从港口A 动身向东北方向航行,另一轮船以12海里/时的速度同时从港口A 动身向东南方向航行,分开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里二、填空题1.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt △ABC =________2.现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成直角三角形,则其周长为 cm .3.勾股定理的作用是在直角三角形中,已知两边求 ;勾股定理的逆定理的作用是用来证明 .4.如图中字母所代表的正方形的面积:A = B = .400225AB812255.在△ABC中,∠C=90°,若a=5,b=12,则c=.6.△ABC中,AB=AC=17cm,BC=16cm,则高AD= ,S△ABC = 。
北师大版数学八年级上册勾股定理的应用课件

典例精析 利用勾股定理的逆定理解答测量问题
有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边壁的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒最长是多少米?
12.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,当秋千荡到AB1的位置时,下端B1距静止位置的水平距离EB1等于2.4米,距地面1.4米,求秋千AB的长.
D
7.印度数学家什迦逻(1141年~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.
解:如图,由题意知,AC=2,AD=0.5,在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=22-0.52=3.75.设湖水深BD为x尺,则BC为(x+0.5)尺.在Rt△BCD中,由勾股定理,得BD2+CD2=BC2,即x2+3.75=(x+0.5)2,解得x=3.5.答:湖水深3.5尺
解:连接对角线AC,只要分别量出AB、BC、AC的长度即可.
AB2+BC2=AC2
△ABC为直角三角形
新知二 利用勾股定理的逆定理解答实际问题
合作探究
(2)量得AD长是30 cm,AB长是40 cm,BD长是50 cm. AD边垂直于AB边吗?
解:AD2+AB2=302+402=502=BD2,
解:因为出发2小时,A组行了12×2=24(km), B组行了9×2=18(km), 又因为A,B两组相距30km, 且有242+182=302, 所以A,B两组行进的方向成直角.
北师大版八年级上册数学课件.3.1 勾股定理的应用(共19张PPT)

•
怎样计算AB的长?
A’ r
O
B
A’
B
h
侧面展开图
A
A
在Rt△AA’B中,利用勾股定理可得,
AA’2 +A’B2 =AB2
其中AA’是圆柱体的高,A’B是底面圆周长的一半(πr)
把空间几何图形转化为平面几何问题的步骤: 1.展开图形 2.找出对应点 3.应用勾股定理
二、利用勾股定理的逆定理判断线段垂直: 用刻度尺量出所构造的三角形的三边的长,看是
否满足两边的平方和等于第三边的平方,满足就有直 角(即线段垂直)。
当堂训练(10分钟)
1.课本第14页随堂练习1; 2 .课本第14页习题1.4的第1、2、4题。 3.课本第15页问题解决的第5题。
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/52021/9/52021/9/52021/9/59/5/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月5日星期日2021/9/52021/9/52021/9/5 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/52021/9/52021/9/59/5/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/52021/9/5September 5, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/52021/9/52021/9/52021/9/5
北师大版八年级数学上册《1.1.1勾股定理》教学课件(共19张PPT)

例1 高为2.5 m的木梯,架在高为2.4 m的墙上(如图),
这时梯脚与墙的距离是多少?
A
解:在Rt△ABC中,根据勾股定理,得:
BC2=AB2-AC2=2.52-2.42=0.49,
所以BC=0.7.
即梯脚与墙的距离是0.7 m.
C
B
例2 求斜边长为17 cm、一条直角边长为15 cm的直角三 角形的另一边长.
正方形C的面积应该怎么计算呢?
C A
B
图①
➢ 分“割”成若干个直角边为整数的三角形 SC=12×2×3×4+1×1=13;
➢ 把C“补”成边长为5的正方形 SC=5×5-12×2×3×4=13.
观察:
C A
B
图①
正方形A中含有__4__个小正方形,即A的 面积是___4__. 正方形B中含有__9__个小正方形,即B的 面积是___9__. 正方形C中含有_1_3__个小正方形,即C的 面积是__1_3__.
第一章 勾股定理
1.1 探索勾股定理
第1课时 勾股定理
学习目标
1.经历探索勾股定理的过程,了解勾股定理的探 究方法;
2.掌握勾股定理,并能运用勾股定理解决一些简 单问题.
新知引入
一个直角三角形的两条直角边长分别是3和4,你 知道它的第三边长吗?
实际上,利用勾股定理我们可以很容易地解决这个问题. 勾股定理是一个古老的定理,人类很早就发现了这个定理.
观察:
A'
C'
B'
图②
正方形A'中含有__1_6_个小正方形,即 A'的面积是__1_6__.
正方形B'中含有__9__个小正方形,即 B'的面积是__9___.
正方形C'中含有__2_5_个小正方形,即 C'的面积是__2_5__.
北师大版八年级上册第一章探索勾股定理精讲

勾股定理第一节 探索勾股定理●应知 基础知识1、勾股定理(1)勾股定理的内容:在直角三角形中,两直角边的 等于 的平方.(2)勾股定理的表示方法:如果直角三角形的两直角边分别为,a b ,斜边为c ,那么有 。
2、理解(1)勾股定理存在和运用的前提条件是在直角三角形中,如果不是直角三角形,那么三边之间不存在这种关系。
(2)勾股定理把“图形”与“数量”有机地结合起来,即把直角三角形的“形”与三边关系的“数”结合起来,是数形结合思想的典型代表之一。
(3)利用勾股定理,可以在直角三角形中已知两边长的情况下,求出未知的第三边长。
一般情况下,用,a b 表示直角边,c 表示斜边,则有:222222222a b c b c a a c b +==-=- 在运用勾股定理求第三边时,首先应确定是求直角边还是求斜边,在选择利用勾股定理的原形公式还是变形公式。
【例1】在ABC ∆中,90C ︒∠=, (1)若3,4,a b ==则c = ; (2)若6,10a c ==,则b = ;(3)若:3:4,15a b c ==,则a = ,b = 。
【例2】已知直角三角形的两边长分别是3和4,如果这个三角形是直角三角形,求以第三边为边长的正方形的面积。
3、勾股定理的验证至少掌握勾股定理的三种验证方法,并从中体会到这种验证方法所体现的数学思想。
【例3】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾 股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所 示).如果大正方形的面积是13,小正方形的面积是1,直角三角形较短直角边为a ,较长 直角边为b ,那么2()a b 的值为( ).A .13B .19C .25D .169 ●应会 基本方法1、如何利用勾股定理求长度利用勾股定理求长度,关键是找出直角三角形或构造直角三角形,把实际问题转化为直 角三角形问题。
在已知两边求第三边时,关键是弄清已知什么边,要求什么边,用平方和还 是平方差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将立体图形最短距离问题转化 为平面图形最短距离问题并利 用勾股定理求解.
清晨,我从家出发,以100米/分的速度向正西 方走了5分钟,到达超市,又以120米/分的速度 向正南方走10分钟,到达学校。
北 超市 500m 家
两点之间,线段最短 勾股定理:a²+b²=c²
1200m
学校
在一个圆柱石凳上,若小明在
1.如图,台阶A处的蚂蚁要
爬到B处搬运食物,它怎么走最
近?并求出最近距离。
20
B
3
2
A
AB2 152 202 625 252
举一反三
2.如图,一个长方体形盒子的
长、宽、高分别是8cm,8cm,12cm,
一只蚂蚁想从盒底的点A沿盒的表面
爬到盒顶的点B,你能帮蚂蚁设计一
条最短的线路吗?蚂蚁要爬行的最短
A
A
在Rt△AA’B中,利用勾股定理可得,
AB2 AA2 A' B2
其中AA’是圆柱体的高,A’B是底面圆周长的一半(πr)
若已知圆柱体高为12cm,底面半径为 3cm,π取3,则:
AB2 122 (3 3)2 AB 15
A3 O
B
A’ 3π
B
’
12
12
侧面展开图
A
A
你学会了吗?
小试牛刀
路程是多少?
食
(1) B AB2 82 (8 12)2 464
物
B
B
(2)
AB
2
122
(8 8)2
400
最短路程为20cm
A
A
吃东西时留下了一点食物在B处,
恰好一只在A处的蚂蚁捕捉到这
B
一信息,于是它想从A 处爬向B
处,你们想一想,蚂蚁怎么走
最近?
A
A’
d
B
A’
B
A
A
蚂蚁A→B的路线
O
B
B
A
A
圆柱的侧面展开是什么图形?B点的位置在哪里?
ห้องสมุดไป่ตู้
A’
O
B
底面圆周长的一半
A’
B
侧面展开图
A
A
怎样计算AB?
A’ r
O
B
A’
B
h
侧面展开图