2018届九年级下数学期中检测试卷含答案(1)

合集下载

2018届人教版九年级下数学期中检测卷含答案

2018届人教版九年级下数学期中检测卷含答案

2018届人教版九年级下数学期中检测卷含答案分一、选择题(每小题3分,共30分)1.下列各点中,在函数y =-8x图象上的是( )A .(-2,4)B .(2,4)C .(-2,-4)D .(8,1)2.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积比为( )A .4∶3B .3∶4C .16∶9D .9∶163.已知A (1,y 1)、B (3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定4.如图,E 是▱ABCD 的边BC 的延长线上一点,连接AE 交CD 于F ,则图中共有相似三角形( )A .4对B .3对C .2对D .1对第4题图 第5题图5.如图,点A 是反比例函数y =2x (x >0)图象上任意一点,AB ⊥y 轴于B ,点C 是x 轴上的动点,则△ABC 的面积为( )A .1B .2C .4D .不能确定6.如图,双曲线y =k x 与直线y =-12x 交于A 、B 两点,且A (-2,m ),则点B 的坐标是( )A .(2,-1)B .(1,-2) C.⎝⎛⎭⎫12,-1 D.⎝⎛⎭⎫-1,12第6题图 第7题图7.如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A.3102B.3105C.105D.3558.如图,在△ABC 中,点E 、F 分别在边AB 、AC 上,EF ∥BC ,AF FC =12,△CEF 的面积为2,则△EBC 的面积为( )A .4B .6C .8D .12第8题图 第9题图9.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( )A .-4B .4C .-2D .210.如图,在四边形ABCD 中,∠B =90°,AC =4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系用图象大致可以表示为( )二、填空题(每小题3分,共24分)11.反比例函数y =kx的图象经过点M (-2,1),则k =________.12.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为________.第12题图 第14题图 第15题图13.已知反比例函数y =m +2x 的图象在第二、四象限,则m 的取值范围是________.14.如图,正比例函数y 1=k 1x 与反比例函数y 2=k 2x 的图象交于A 、B 两点,根据图象可直接写出当y 1>y 2时,x 的取值范围是________________.15.如图,甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为________米.16.如图,等腰三角形OBA 和等腰三角形ACD 是位似图形,则这两个等腰三角形位似中心的坐标是________.第 16题图 第17题图 第18题图17.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接EC 交对角线BD 于点F ,若S △DEC =3,则S △BCF =________.18.如图,点E ,F 在函数y =2x 的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且BE ∶BF =1∶3,则△EOF 的面积是________.三、解答题(共66分)19.(8分)在平面直角坐标系中,已知反比例函数y =kx 的图象经过点A (1,3).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.20.(8分)如图,在平面直角坐标系中,A (6,0),B (6,3),画出△ABO 的所有以原点O 为位似中心的△CDO ,且△CDO 与△ABO 的相似比为13,并写出C 、D 的坐标.21.(8分)如图,小明同学用自制的直角三角形纸板DEF 测量树AB 的高度,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40cm ,EF =20cm ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,求树AB 的高度.22.(8分)如图,AB 是⊙O 的直径,PB 与⊙O 相切于点B ,连接P A 交⊙O 于点C ,连接BC .(1)求证:∠BAC =∠CBP ; (2)求证:PB 2=PC ·P A .23.(10分)如图,在平面直角坐标系xOy 中,反比例函数y =mx 的图象与一次函数y =k (x-2)的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式及B 点坐标;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.24.(12分)如图,分别位于反比例函数y =1x ,y =kx 在第一象限图象上的两点A ,B ,与原点O 在同一直线上,且OA OB =13.(1)求反比例函数y =kx的表达式;(2)过点A 作x 轴的平行线交y =kx的图象于点C ,连接BC ,求△ABC 的面积.25.(12分)正方形ABCD 的边长为6cm ,点E ,M 分别是线段BD ,AD 上的动点,连接AE 并延长,交边BC 于F ,过M 作MN ⊥AF ,垂足为H ,交边AB 于点N .(1)如图①,若点M 与点D 重合,求证:AF =MN ;(2)如图②,若点M 从点D 出发,以1cm/s 的速度沿DA 向点A 运动,同时点E 从点B 出发,以2cm/s 的速度沿BD 向点D 运动,运动时间为t s.①设BF =y cm ,求y 关于t 的函数表达式; ②当BN =2AN 时,连接FN ,求FN 的长.参考答案与解析1.A 2.D 3.A 4.B 5.A 6.A 7.B 8.B9.A 解析:如图,过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点A 的坐标是(m ,n ),则AC =n ,OC =m .∵∠AOB =90°,∴∠AOC +∠BOD =90°.∵∠DBO +∠BOD =90°,∴∠DBO =∠AOC .∵∠BDO =∠ACO =90°,∴△BDO ∽△OCA .∴DB OC =ODAC=OB OA .∵OB =2OA ,∴BD =2m ,OD =2n .∵点A 在反比例函数y =1x 的图象上,∴mn =1.∵点B 在反比例函数y =kx 的图象上,B 点的坐标是(-2n ,2m ),∴k =-2n ·2m =-4mn =-4.故选A.10.D 解析:∵DH 垂直平分AC ,AC =4,∴DA =DC ,AH =HC =2,∴∠DAC =∠DCH .∵CD ∥AB ,∴∠DCA =∠BAC ,∴∠DAH =∠BAC .又∵∠DHA =∠B =90°,∴△DAH ∽△CAB ,∴AD AC =AH AB ,∴y 4=2x ,∴y =8x.∵AB <AC ,∴x <4,故选D.11.-2 12.18513.m <-214.-1<x <0或x >1 15.9 16.(-2,0) 17.4 解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴△DEF ∽△BCF ,∴EF CF =DE BC ,S △DEF S △BCF =⎝⎛⎭⎫DE BC 2.∵E 是边AD 的中点,∴DE =12AD =12BC ,∴EF CF =DE BC =12,∴S △DEF=13S △DEC =1,S △DEF S △BCF =14,∴S △BCF =4. 18.83 解析:作EP ⊥y 轴于P ,EC ⊥x 轴于C ,FD ⊥x 轴于D ,FH ⊥y 轴于H ,如图所示.∵EP ⊥y 轴,FH ⊥y 轴,∴EP ∥FH ,∴△BPE ∽△BHF ,∴PE HF =BE BF =13,即HF =3PE .设E 点坐标为⎝⎛⎭⎫t ,2t ,则F 点的坐标为⎝⎛⎭⎫3t ,23t .∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S △OFD =S △OEC =12×2=1,∴S △OEF =S 梯形ECDF =12⎝⎛⎭⎫23t +2t (3t -t )=83.故答案为83.19.解:(1)y =3x.(4分) (2)点B 在此反比例函数的图象上.(5分)理由:由题意可得OB =OA =12+(3)2=2.过点B 作BC ⊥x 轴,垂足为点C ,则∠AOC =60°,∠AOB =30°,∴∠BOC =30°,∴BC =1,OC =3,∴点B 的坐标为(3,1).∵1=33,∴点B 在此反比例函数的图象上.(8分)20.解:如图所示,(4分)C 点的坐标为(2,0)或(-2,0),D 点的坐标为(2,1)或(-2,-1).(8分)21.解:易证△DEF ∽△DCB ,(3分)则DE CD =EF BC ,即0.48=0.2BC ,(6分)∴BC =4m ,∴AB=BC +AC =4+1.5=5.5(m).(7分)答:树AB 的高度为5.5m.(8分)22.证明:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC +∠ABC =90°.(2分)∵PB 与⊙O 相切于点B ,∴∠CBP +∠ABC =90°,∴∠BAC =∠CBP .(4分)(2)∵∠BAC =∠CBP ,∠P =∠P ,∴△PBC ∽△P AB .(6分)∴PB AP =PCBP ,∴PB 2=PC ·P A .(8分)23.解:(1)∵点A (3,2)在反比例函数y =m x 和一次函数y =k (x -2)的图象上,∴2=m3,2=k (3-2),解得m =6,k =2,∴反比例函数的解析式为y =6x ,一次函数的解析式为y =2x-4.(3分)∵点B 是一次函数与反比例函数的另一个交点,∴6x =2x -4,解得x 1=3,x 2=-1,∴B 点的坐标为(-1,-6).(5分)(2)设点M 是一次函数y =2x -4的图象与y 轴的交点,则点M 的坐标为(0,-4).设C 点的坐标为(0,y c ),由题意知12×3×|y c -(-4)|+12×1×|y c -(-4)|=10,∴|y c +4|=5.(8分)当y c +4≥0时,y c +4=5,解得y c =1;当y c +4<0时,y c +4=-5,解得y c =-9,∴C 点的坐标为(0,1)或(0,-9).(10分)24.解:(1)作AE ,BF 分别垂直于x 轴,垂足为E ,F ,∴AE ∥BF ,∴△AOE ∽△BOF ,∴OE OF =EA FB =OA OB =13.(2分)由点A 在函数y =1x 的图象上,设A 的坐标是⎝⎛⎭⎫m ,1m ,∴OE OF =m OF =13,EA FB =1m FB =13,∴OF =3m ,BF =3m ,即B 的坐标是⎝⎛⎭⎫3m ,3m .(5分)又点B 在y =kx 的图象上,∴3m =k 3m ,解得k =9,则反比例函数y =k x 的表达式是y =9x.(7分) (2)由(1)可知A ⎝⎛⎭⎫m ,1m ,B ⎝⎛⎭⎫3m ,3m ,又已知过A 作x 轴的平行线交y =9x的图象于点C ,∴C的纵坐标是1m.(9分)把y=1m代入y=9x得x=9m,∴C的坐标是⎝⎛⎭⎫9m,1m,∴AC=9m-m=8m.∴S△ABC=12×8m×⎝⎛⎭⎫3m-1m=8.(12分)25.(1)证明:∵四边形ABCD为正方形,∴AD=AB,∠DAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NDA+∠ANH=90°,∴∠NAH=∠NDA,∴△ABF≌△MAN,∴AF=MN.(4分)(2)解:①∵四边形ABCD为正方形,∴AD∥BF,∴∠ADE=∠FBE.∵∠AED=∠BEF,∴△EBF∽△EDA,∴BFAD=BEED.∵四边形ABCD为正方形,∴AD=DC=CB=6cm,∴BD=62cm.∵点E从点B出发,以2cm/s的速度沿BD向点D运动,运动时间为t s,∴BE=2t cm,DE=(62-2t)cm,∴y6=2t62-2t,∴y=6t6-t.(8分)②∵四边形ABCD为正方形,∴∠MAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NMA+∠ANH=90°,∴∠NAH=∠NMA.∴△ABF∽△MAN,∴ANAM=BFAB.∵BN=2AN,AB=6cm,∴AN=2cm.∴26-t=6t6-t6,∴t=2,∴BF=6×26-2=3(cm).又∵BN=4cm,∴FN=32+42=5(cm).(12分)。

黑龙江省鸡西市2018年九年级下期中数学试卷及答案

黑龙江省鸡西市2018年九年级下期中数学试卷及答案

黑龙江省鸡西九年级(下)期中数学试卷一、选择题(本题有10小题,每题3分,共30分)1.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,C .6,8,11D .5,12,232.下列函数中是正比例函数的是( )A .B .y=82C .y=2(x ﹣1)D .3.①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线相等.以上四个条件中可以判定四边形是平行四边形的有( )A .1个B .2个C .3个D .4个4.已知菱形的边长等于2,菱形的一条对角线长也是2,则另一条对角线的长是( )A .4B .2C .D .35.已知直角三角形两边的长为3和4,则此三角形的周长为( )A .12B .7+C .12或7+D .以上都不对6.如图,在正方形ABCD 的外侧作等边△ADE ,则∠AEB 的度数为( )A .10°B .12.5°C .15°D .20°7.函数y=kx ﹣2中,y 随x 的增大而减小,则它的图象可以是( )A .B .C .D .8.将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm9.点A (5,y 1)和B (2,y 2)都在直线y=﹣x 上,则y 1与y 2的关系是( )A .y 1≥y 2B .y 1=y 2C .y 1<y 2D .y 1>y 210.一杯水越晾越凉,下列图象中可表示这杯水的水温T (℃)与时间t (分)的函数关系的是( )A .B .C .D .二、填空题(本大题有10小题,每题3分,共30分,)11.已知一个正比例函数的图象经过点(﹣1,3),则这个正比例函数的表达式是 .12.平行四边形两对角之和为200度,则此平行四边形的最大内角为 度.13.函数y=的自变量x 的取值范围是 .14.矩形ABCD 的对角线AC 、BD 相交于点O ,AB=4cm ,∠AOB=60°,则这个矩形的对角线长是 cm .15.在Rt△ABC中,∠ACB=90°,若CA=8,BC=6,点D、E分别是AC、AB的中点.则DE= ,CE= .16.已知一次函数y=(m+2)x+1,函数y的值随x值的增大而增大,则m的取值范围是.17.鸡西九天影院每张电影票的售价为50元,如果售出x张票,票房收入y与x的关系为.18.在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(3,4),点C的坐标是.19.已知一次函数y=x+4的图象经过点(m,6),则m= .20.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.三、解答题21.水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.22.如图所示,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF;(2)AE∥CF.23.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.24.如图,在正方形ABCD中,OE=OF.求证:△AOE≌△BOF,AE⊥BF.25.已知,一条直线经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.(3)求此一次函数与x轴、y轴的交点坐标及其图象与两坐标轴围成的面积.26.如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH⊥AB于H,求DH的长.27.如图是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是km/h.(2)汽车在中途停了 min.(3)当16≤t≤30时,求S与t的函数关系式.2015-2016学年黑龙江省鸡西九年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分)1.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23【考点】勾股定理的逆定理.【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.2.下列函数中是正比例函数的是()A.B.y=82C.y=2(x﹣1)D.【考点】正比例函数的定义.【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【解答】解:A、y=,自变量次数不为1,故本选项错误;B、y=82,自变量系数为0,故本选项错误;C、y=2(x﹣1)=2x﹣2,故本选项错误;D、y=﹣,符合正比例函数的含义,故本选项正确.故选D.3.①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线相等.以上四个条件中可以判定四边形是平行四边形的有()A.1个B.2个C.3个D.4个【考点】平行四边形的判定.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.按照平行四边形的判定方法进行判断即可.【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选:C.4.已知菱形的边长等于2,菱形的一条对角线长也是2,则另一条对角线的长是()A.4 B.2 C.D.3【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的性质,求得OA=1,AC⊥BD,然后由勾股定理求得OB的长,继而求得答案.【解答】解:如图,∵菱形ABCD中,AB=AC=2,∴OA=AC=1,AC⊥BD,∴OB==,∴BD=2OB=2.即另一条对角线的长是:2.故选B.5.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对【考点】勾股定理.【分析】先设Rt△ABC的第三边长为x,由于4是直角边还是斜边不能确定,故应分4是斜边或x为斜边两种情况讨论.【解答】解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选C.6.如图,在正方形ABCD的外侧作等边△ADE,则∠AEB的度数为()A.10°B.12.5°C.15° D.20°【考点】正方形的性质;等腰三角形的性质;等边三角形的性质.【分析】由于四边形ABCD是正方形,△ADE是正三角形,由此可以得到AB=AE,接着利用正方形和正三角形的内角的性质即可求解.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,又∵△ADE是正三角形,∴AE=AD,∠DAE=60°,∴△ABE是等腰三角形,∠BAE=90°+60°=150°,∴∠ABE=∠AEB=15°.故选:C.7.函数y=kx﹣2中,y随x的增大而减小,则它的图象可以是()A. B.C.D.【考点】一次函数的图象.【分析】根据一次函数的性质得到k<0,b<0,所以一次函数y=kx﹣2的图象经过第二、四象限,与y 轴的交点在x轴下方.【解答】解:∵函数y=kx ﹣2中,y 随x 的增大而减小,∴k <0,∴图象一定过二、四象限,∵b=﹣2,∴图象与y 轴的交点在x 轴下方.故选:D .8.将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm【考点】勾股定理的应用.【分析】如图,当筷子的底端在A 点时,筷子露在杯子外面的长度最短;当筷子的底端在D 点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h 的取值范围.【解答】解:如图,当筷子的底端在D 点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm ;当筷子的底端在A 点时,筷子露在杯子外面的长度最短,在Rt △ABD 中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm ,所以h 的取值范围是7cm ≤h ≤16cm .故选D .9.点A (5,y 1)和B (2,y 2)都在直线y=﹣x 上,则y 1与y 2的关系是( )A .y 1≥y 2B .y 1=y 2C .y 1<y 2D .y 1>y 2【考点】一次函数图象上点的坐标特征.【分析】分别把点A (5,y 1)和B (2,y 2)代入直线y=﹣x ,求出y 1,y 2的值,再比较出其大小即可.【解答】解:∵点A (5,y 1)和B (2,y 2)都在直线y=﹣x 上,∴y 1=﹣5,y 2=﹣2,∵﹣5<﹣2,∴y 1<y 2.故选:C .10.一杯水越晾越凉,下列图象中可表示这杯水的水温T (℃)与时间t (分)的函数关系的是( )A .B .C .D .【考点】函数的图象.【分析】杯中水的温度只会逐步下降,下降幅度先快后慢,选择符合这一情形的图象.【解答】解:根据题意可知,这杯水的水温T (℃)与时间t (分)的关系是:T 随着t 的增大而减小. 故选D .二、填空题(本大题有10小题,每题3分,共30分,)11.已知一个正比例函数的图象经过点(﹣1,3),则这个正比例函数的表达式是y=﹣3x .【考点】待定系数法求正比例函数解析式.【分析】正比例函数的一般形式是y=kx(k≠0),依据待定系数法即可求解.【解答】解:设正比例函数的表达式是y=kx(k≠0),∵正比例函数的图象经过点(﹣1,3),∴3=﹣k,即k=﹣3.则这个正比例函数的表达式是y=﹣3x.12.平行四边形两对角之和为200度,则此平行四边形的最大内角为100 度.【考点】平行四边形的性质.【分析】由平行四边形两对角之和为200度,根据平行四边形的对角相等,即可求得答案.【解答】解:∵平行四边形两对角之和为200度,∴此两角的度数为100°,∴另两角的度数为80°,∴此平行四边形的最大内角为100°.故答案为:100.13.函数y=的自变量x的取值范围是x≠2 .【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.14.矩形ABCD的对角线AC、BD相交于点O,AB=4cm,∠AOB=60°,则这个矩形的对角线长是8 cm.【考点】矩形的性质.【分析】作出图形,根据矩形的对角线互相平分且相等可得OA=OB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,再根据AC=2OA计算即可得解.【解答】解:如图,∵四边形ABCD是矩形,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=4cm,∴AC=2OA=2×4=8cm,即这个矩形的对角线长是8cm.故答案为:8.15.在Rt△ABC中,∠ACB=90°,若CA=8,BC=6,点D、E分别是AC、AB的中点.则DE= 3 ,CE= 5 .【考点】直角三角形斜边上的中线;三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得DE=BC;利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半可得CE=AB.【解答】解:∵点D、E分别是AC、AB的中点,∴DE=BC=×6=3,∵∠ACB=90°,∴由勾股定理得,AB===10,∵点E是AB的中点,∴CE=AB=×10=5.故答案为:3;5.16.已知一次函数y=(m+2)x+1,函数y的值随x值的增大而增大,则m的取值范围是m>﹣2 .【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质可知:m+2>0.【解答】解:∵函数y的值随x值的增大而增大∴m+2>0∴m>﹣2.17.鸡西九天影院每张电影票的售价为50元,如果售出x张票,票房收入y与x的关系为y=50x .【考点】函数关系式.【分析】根据总价=单价×数量,可得售出x张票,票房收入y与x的关系.【解答】解:依题意有,售出x张票,票房收入y与x的关系为:y=50x.故答案为:y=50x.18.在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(3,4),点C的坐标是(8,4).【考点】菱形的性质;坐标与图形性质.【分析】过A、C作AE⊥x轴,CF⊥x轴,根据菱形的性质可得AO=AC=BO=BC=5,再证明△AOE≌△CBF,可得EO=BF,然后可得C点坐标.【解答】解:过A、C作AE⊥x轴,CF⊥x轴,∵点A的坐标是(3,4),∴AO=5,∵四边形AOBC是菱形,∴AO=AC=BO=BC=5,AO∥BC,∴∠AOB=∠CBF,∵AE⊥x轴,CF⊥x轴,∴∠AEO=∠CFO=90°,在△AOE和△CBF中,∴△AOE≌△CBF(AAS),∴EO=BF=3,∵BO=5,∴FO=8,∴C(8,4).故答案为:(8,4).19.已知一次函数y=x+4的图象经过点(m,6),则m= 2 .【考点】一次函数图象上点的坐标特征.【分析】直接把点(m,6)代入一次函数y=x+4即可求解.【解答】解:∵一次函数y=x+4的图象经过点(m,6),∴把点(m,6)代入一次函数y=x+4得m+4=6解得:m=2.故答案为:2.20.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有 4 m.【考点】勾股定理的应用.【分析】利用勾股定理,用一边表示另一边,代入数据即可得出结果.【解答】解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.三、解答题21.水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.【考点】勾股定理的应用.【分析】首先设河水的深度为x米,则竹竿长为(x+0.5)米,然后再利用勾股定理可得方程x2+1.52=(x+0.5)2,再解即可.【解答】解:设河水的深度为x米,由题意得:x2+1.52=(x+0.5)2,解得:x=2.答:河水的深度为2米.22.如图所示,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF;(2)AE∥CF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】欲证(1)AE=CF;(2)AE∥CF,只要△ABE≌△CDF即可.由平行四边形性质易求其全等.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC.∴∠ABE=∠CDF.又BE=DF,∴△ABE≌△CDF.∴AE=CF.(2)∵△ABE≌△CDF,∴∠AEB=∠CFD.∴∠AEF∠CFE.∴AE∥CF.23.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】(1)根据待定系数法,只需把原点代入即可求解;(2)直线y=kx+b中,y随x的增大而减小说明k<0.【解答】解:(1)把(0,0)代入,得:m﹣3=0,m=3;(2)根据y随x的增大而减小说明k<0.即2m+1<0.解得:m<.24.如图,在正方形ABCD中,OE=OF.求证:△AOE≌△BOF,AE⊥BF.【考点】正方形的性质;全等三角形的判定.【分析】利用正方形的性质可得AO=BO,∠AOE=∠BOF,又OE=OF,可证明△AOE≌△BOF,得到AE=BF,延长AE交BF于点G,证明∠AEO=∠AFG.证明∠GAF+∠AFG=90°,即可解决问题.【解答】证明:∵四边形ABCD为正方形,∴OA=OB,∠AOE=∠BOF;在△AOE与△BOF中,,∴△AOE≌△BOF(SAS),延长AE交BF于点G;∵△AOE≌△BOF,∴∠AEO=∠OFG,即∠AEO=∠AFG.∵AO⊥EO,∴∠EAO+∠AEO=90°,∴∠GAF+∠AFG=90°,∴AE⊥BF.∴△AOE≌△BOF,AE⊥BF.25.已知,一条直线经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.(3)求此一次函数与x轴、y轴的交点坐标及其图象与两坐标轴围成的面积.【考点】待定系数法求一次函数解析式;一次函数的性质;一次函数图象上点的坐标特征.【分析】(1)利用待定系数法求一次函数解析式;(2)把x=﹣3代入求得别的解析式,即可求得;(3))先根据坐标轴上点的坐标特征确定直线与x轴和y轴的交点坐标,然后根据三角形面积公式计算该函数图象与两坐标轴所围成的三角形的面积;【解答】解:(1)设一次函数解析式为y=kx+b,把点A(1,3)和B(2,5)代入得得,所以一次函数解析式为y=2x+1;(2)当x=﹣3时,y=2×(﹣3)+1=﹣5;(3)当x=0时,y=﹣1;则一次函数与y轴的交点坐标为(0,﹣1);当y=0时,2x+1=0,解得x=﹣,则一次函数与x轴的交点坐标为(﹣,0);所以该函数图象与两坐标轴所围成的三角形的面积=×1××=.26.如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH⊥AB于H,求DH的长.【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8cm.27.如图是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是km/h.(2)汽车在中途停了7 min.(3)当16≤t≤30时,求S与t的函数关系式.【考点】一次函数的应用.【分析】(1)直接利用总路程÷总时间=平均速度,进而得出答案;(2)利用路程不发生变化时,即可得出停留的时间;(3)利用待定系数法求出S与t的函数关系式即可.【解答】解:(1)汽车在前9分钟内的平均速度是: =(km/h);故答案为:;(2)汽车在中途停了:16﹣9=7(分钟);故答案为:7;(3)当16≤t≤30时,则设S与t的函数关系式为:S=kt+b,将(16,12),(30,40)代入得:,解得:,故当16≤t≤30时,S与t的函数关系式为:S=2t﹣20.2016年11月29日。

【最新】2017-2018学年北师大版九年级数学下册期中测试卷及答案

【最新】2017-2018学年北师大版九年级数学下册期中测试卷及答案

m a ( 5)2 ,
1
a
,
故有
解得
25
m 3 a ( 10)2 .
m 1.
所以, (1) 抛物线的表达式为 (2) 1÷0.2=5(h).
12
=
.
25
22. 解:设 ∴
= m,∵
=100 m,∠ =45 °,
· tan 45 °=100 m.∴ =(100+ )m.
在 Rt△ 中,∵∠
=60°,∠
21.解:设其函数表达式为 = 2( a≠ 0),设拱桥顶到警戒线的距离为
m,
则 点坐标为 (-5, - , 点坐标为 (-10, - -3),
m a ( 5)2 ,
1
a
,
故有
解得
25
m 3 a ( 10)2 .
m 1.
所以, (1) 抛物线的表达式为 (2) 1÷0.2=5(h).
12
=
.
25
22. 解:设 ∴

+3( a≠ 0),把
代入上式,得





.

,得

( 舍去 ) , [ 来源:Z§xx§]
故该运动员的成绩为
.
7

+3( a≠ 0),把
代入上式,得





.

,得

( 舍去 ) , [ 来源:Z§xx§]
故该运动员的成绩为
.
7
18. 135 解析:在 Rt△ ABD 中,∠ BAD =90 °,
=,
∵ ∠ ADB =30°,AB =45 m,∴

2018-2019学年第二学期期中九年级数学试卷(含答案)

2018-2019学年第二学期期中九年级数学试卷(含答案)

ABCD第4题图第6题图天水市藉口中学2018—2019学年度九年级期中考试卷数学试题A 卷(满分100分)一、选择题(共10小题,每小题4分,共40分) 1()A .BC D .2 2.函数9-=x y 中自变量x 的取值范围是( )A .x > 0B .x ≥0C .x >9D .x ≥93.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:方差若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择 ( )A .甲B .乙C .丙D .丁4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为 ( )A .60°B .50°C .45°D .30°5.已知1-=x 是一元二次方程012=++mx x 的一个根,那么m 的值是( )A .0B .1C .2D .-26.如图,AB 、CD 是⊙O 的两条弦,连接AD 、BC .若60AD ∠=︒B ,则CD ∠B 的度数为( ) A .40︒ B .50︒ C .60︒ D .70︒7.如图,每个大正方形均由边长为1的小正方形组成,则下列图中的三角形与△ABC 相似的是 ( )81a =-,则a 的取值范围是( )A .a >1B .a <1C .a ≥1D .a ≤19.如图,在Rt △ABC 中,∠C=900,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cos α的值为 ( )A .53 B .54 C .34 D .3410.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:① a+b+c<0;② a-b+c<0;③b+2a<0;④ abc>0 . 其中所有正确结论的序号是 ( )A .③④BC .②③ D第9题图 第13题图 第18题图二、填空题(共8小题,每小题4分,共32分)11.在网络上搜索“奔跑吧,兄弟”,能搜索到与之相关的结果为35 800 000个,将35 800 000用科学记数法表示为______ . 12.分解因式:x 2-9=______.13.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是14.已知方程 221211x x x x +-=+,设21x y x +=,则用换元法得到的方程为 ; 15.方程1352(5)(2)x x ax x x x +++=----有增根x=2,则a=16.如图,圆锥的底面半径为1,母线长为3,则这个圆锥的侧面积是 .(结果保留π) 17.若a 2-3a +1=0,则221a a+= 18.如图,二次函数342+-=x x y 的图象交x 轴于A .B 两点,交y 轴于点C ,则△ABC 的面积等于。

2018学年第二学期九年级期中考试数学答案

2018学年第二学期九年级期中考试数学答案

2018学年第二学期九年级期中考试(数学)答案一、选择题:本大题共10个小题,每小题3分,共30分. 二、填空题:(本题共6个小题,每小题6分,共36分)11. 2(a -2b )2 12. 2x 1≠≥且x13. a 14. (0,512)15. 1+ 16. ①②④三、解答题 (本大题共6小题,共66分.17、(1)解答:1-22-1-22224-1-22==×=原式 (2)解:3x(x-2)-(x-2)=0 (x-2)(3x-1)=0 31,221==∴x x18、解:当a=+1时, 原式=×=×===219、解:(1)被调查的总人数是:5÷10%=50(人).C 部分所对应的扇形圆心角的度数为: 360×5030=216°. (2)如图。

(3)1800×10%=180(人);(4)由树形图可得出:共有20种情况,两个学生性别相同的情况数有8种, 开始女 女 女 男 男女 女 男 男 女 女 男 男 女 女 男 男 女 女 女 男 女 女 女 男所以两个学生性别相同的概率为208=52. 20.(2)当OE 3=OE 2=AO=5,即E 2(0,-5),E 3(0,5);当OA=AE 1=5时,得到OE 1=2AD=8,即E 1(0,8);题 号 1 2 3 4 5 6 7 8 9 10 答 案 BDCDDAAACB21.解:(1)若某月空气净化器售价降低30元,该月可售出200+5×30=350台.(2)由题意,得:y=200+5(400﹣x)=2200﹣5x.∵售价不低于330元/台∴x≥330∵数量不低于450元∴y≥450,2200﹣5x≥450x≤350∴330≤x≤350.答:y与x之间的函数关系式为:y=2200﹣5x;(3)由题意,得:w=(x﹣200)(2200﹣5x)=﹣5(x﹣320)2+72000,∵a=﹣5<0,∴在对称轴的右侧w随x的增大而减小,∴x=330时,w最大=71500.答:当售价为330元/台时,月利润最大为71500元.22、(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥PA于H.∵OA=OP,OH⊥PA,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,∴=,∴=,∴PB=.23、解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,②如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M ,∵∠ADC=∠HAD=∠ADH=α,∴AH=AD,24、解:(1)OB =OC=3,则:B (3,0),C(0,﹣3),把B、C坐标代入抛物线方程,解得抛物线方程为:y=﹣x2+2x+3…①;(2)∵S△COF:S△CDF=3:2,∴S△COF=S△COD,即:x D=x F,设:F点横坐标为3t,则D点横坐标为5t,点F在直线BC上,而BC所在的直线方程为:y=﹣x+3,则F(3t,3﹣3t),则:直线OF所在的直线方程为:y=x=x,则点D(5t,5﹣5t),把D点坐标代入①,解得:t=或,则点D的坐标为(1,4)或(2,3);(3)①如图所示,当∠PEB=2∠OBE=2α时,过点E作∠PEB的平分线交x轴于G点,PE交x轴于H点,则:∠PEQ=∠QEB=∠ABE=α,则∠HGE=2α,设:GB=m,则:OG=3﹣m,GE=m,在Rt△OGE中,由勾股定理得:EG2=OG2+OE2,即:m2=(3﹣m)2+()2,解得:m=,则:GE=,OG=,BE=,∵∠PEQ=∠ABE=α,∠EHG=∠EHG,∴△HGE∽△HEB,∴==,设:GH=x,HE=4x,在Rt△OHE中,OH=OG﹣HG=﹣x,OE=,EH=4x,由勾股定理解得:x=,则:OH=,H(,0),把E、H两点坐标代入一次函数表达式,解得EH所在直线的表达式为:y=x﹣,将上式与①联立并解得:x=,则点P(,);②当∠PBE=2∠OBE时,则∠PBO=∠EBO,BE所在直线的k值为,则BE所在直线的k值为﹣,则:PB所在的直线方程为:y=﹣x+3,将上式与①联立,解得:x=,(x=0已舍去),则点P(,),故:点P坐标为:(,或(,).。

2018-2019学年第二学期九年级数学下册期中考试卷及答案有详细解析

2018-2019学年第二学期九年级数学下册期中考试卷及答案有详细解析

2018-2019学年第二学期九年级数学下册期中考试卷一、单选题1、如图,已知顶点为(﹣3,﹣6)的抛物线y=ax 2+bx+c 经过点(﹣1,﹣4),则下列结论中错误的是( )A .b 2>4ac B .ax 2+bx+c ≥﹣6C .若点(﹣2,m ),(﹣5,n )在抛物线上,则m >nD .关于x 的一元二次方程ax 2+bx+c=﹣4的两根为﹣5和﹣12、﹣3的相反数是( )A .3B .﹣3C .D .3、如图,直线AB ∥CD ,直线EF 与AB ,CD 分别交于点E ,F ,EC ⊥EF ,垂足为E ,若∠1=60°,则∠2的度数为( )A .15°B .30°C .45°D .60°(第3题图) (第5题图) (第6题图) 4、若a ﹣b+c=0,则关于x 的一元二次方程ax 2+bx+c=0必有一根为( )A .0B .1C .﹣1D .25、如图,△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为( ) A .4 B .3 C .D .26、如图,△ABO 的面积为3,且AO=AB ,双曲线y=经过点A ,则k 的值为( )A .B .3C .6D .9二、填空题7、因式分解3x 2﹣3y 2=_____。

8、几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是_____。

(第8题图) (第9题图)9、如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为_____。

10、在函数y=中,自变量x 的取值范围是_____。

11、小明用S 2=[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=_____。

2018年人教版九年级数学下期中综合检测试卷有答案

2018年人教版九年级数学下期中综合检测试卷有答案

期中综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.已知点P-在反比例函数y=(k≠0)的图象上,则k的值是()A.-B.2C.1D.-12.关于反比例函数y=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称3.(2015·成都中考)如图所示,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.44.如图所示,平行四边形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则BF∶FD等于()A.2∶5B.3∶5C.2∶3D.5∶75.(2015·自贡中考)若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=-图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x16.已知反比例函数y=(a≠0)的图象在每一象限内,y的值随x值的增大而减小,则一次函数y=-ax+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图所示,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.68.(2015·浙江中考)如图所示,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1B.2C.D.29.如图所示,这是圆桌正上方的灯泡(看成一个点)发出的光线照射到桌面后在地面上形成影子(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为()A.0.36π米2B.0.81π米2C.2π米2D.3.24π米210.(2015·重庆中考)如图所示,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.2D.4二、填空题(每小题4分,共24分)11.反比例函数y=(m-2)的函数值为时,自变量x的值是.12.(2015·重庆中考)已知△ABC∽△DEF,且△ABC与△DEF的面积比为4∶1,则△ABC与△DEF对应边上的高之比为.13.如图所示,平行四边形ABCD中,点E是AD边的中点,BE交对角线AC于点F,若AF=2,则对角线AC的长为.14.已知在反比例函数y=-图象的每一支上,y都随x的增大而减小,则k的取值范围是.15.反比例函数y=的图象与一次函数y=2x+1的图象的一个交点是(1,k),则反比例函数的解析式是.16.如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C 为顶点的三角形相似,则AQ的长为.三、解答题(共66分)17.(7分)反比例函数y=(k≠0)与一次函数y=mx+b(m<0)交于点A(1,2k-1).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.18.(7分)如图所示,将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.(1)向上平移4个单位长度得到△A1B1C1;(2)关于y轴对称得到△A2B2C2;(3)以点A为位似中心,将△ABC放大为原来的2倍得到△A3B3C3.19.(8分)(2015·泰安中考)如图所示,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.20.(8分)(2015·泰安中考)一次函数y=kx+b与反比例函数y=的图象相交于A(-1,4),B(2,n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)如图所示,过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.21.(8分)如图所示,已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.(1)求的值;(2)若AB=18,FB=EC,求AC的长.22.(9分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(单位:元)与日销售量y(单位:个)之间有如下关系:;(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的单价最高不能超过10元,请你求出当日销售单价x定为多少时,才能获得最大日销售利润.23.(9分)如图所示,在Rt△ABC中,∠ACB=90°,以AC为直径的☉O与AB边交于点D,过点D作☉O的切线,交BC于点E.(1)求证点E是边BC的中点;(2)若EC=3,BD=2,求☉O的直径AC的长;(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.24.(10分)(2015·成都中考)如图所示,一次函数y=-x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【答案与解析】1.D(解析:将点P-代入函数解析式,得k=-×2=-1.故选D.)2.D(解析:把(1,1)代入,左边≠右边,故A错误;因为k=4>0,所以图象在第一、三象限,故B错误;沿x轴对折不重合,故C 错误;两分支关于原点对称,故D正确.故选D.)3.B(解析:根据平行线分线段成比例,得=,即=,则EC=2.故选B.)4.A(解析:∵BE∶EC=2∶3,∴BE∶BC=2∶5,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴BE∶AD=2∶5,△ADF∽△EBF,∴==.故选A.)5.D(解析:∵k=-1<0,∴反比例函数图象在第二、四象限,且在每个象限内y随x的增大而增大,∵y1<0<y2<y3,∴x1>0,x2<x3<0,即x2<x3<x1.故选D.)6.C(解析:根据反比例函数的性质可知a>0,再根据一次函数的性质知y=-ax+a的图象经过第一、二、四象限,不经过第三象限.故选C.)7.C(解析:在△ABC中,∠C=90°,AC=8,BC=6,∴AB=又△ADE∽△ABC,则=,=,∴AD==5.故选C.)8.C(解析:如图所示,过B点作BD⊥x轴,垂足为D,∵△OAB是等边三角形,∴OB=OA=2,∴OD=1,BD=.∴点B的坐标为(1,).∵反比例函数的图象经过点B,∴k=.故选C.)9.B(解析:设阴影部分的直径是x m,则1.2∶x=2∶3,解得x=1.8,所以地面上阴影部分的面积S=πr2=0.81π(米2).故选B.)10.D(解析:∵反比例函数的图象经过A,B两点,且A,B两点的纵坐标分别为3,1,∴点A的坐标为(1,3),点B的坐标为(3,1),过B作BE⊥AD,垂足为E,则AE=2,BE=2,根据勾股定理可得AB=2,又∵四边形ABCD为菱形,∴AD=AB=2∴菱形ABCD的面积为AD·BE=2×2=4.故选D.)11.-9(解析:∵函数y=(m-2)是反比例函数,∴m-2≠0,且2m+1=-1,∴m=-1,∴y=-,当y=时,x=-9.故填-9.)12.2∶1(解析:∵△ABC与△DEF相似且面积比为4∶1,∴△ABC与△DEF的相似比为2∶1,∴△ABC与△DEF的对应边上的高之比为2∶1.故填2∶1.)13.6(解析:∵四边形ABCD是平行四边形,点E是AD边的中点,∴△AEF∽△CBF,∴=,=,∴FC=4,∴AC=6.故填6.)14.k>2015(解析:反比例函数y=的性质:当k>0时,图象在第一、三象限,且在每一象限内,y随x的增大而减小;当k<0时,图象在第二、四象限,且在每一象限内,y随x的增大而增大.由题意得k-2015>0,解得k>2015.)15.y=(解析:将(1,k)代入一次函数解析式y=2x+1,得k=2+1=3,把(1,3)代入y=,得k=3,则反比例函数解析式为y=.故填y=.)16.3或(解析:当△ABC∽△AQP时,=,即=,AQ=3;当△ABC∽△APQ时,=,即=,AQ=.故填3或.)17.解:(1)把A(1,2k-1)代入y=(k≠0),得1×(2k-1)=k,解得k=1,∴反比例函数的解析式为y=. (2)∵k=1,∴点A坐标为(1,1),∵=OB×1=3,∴OB=6,又m<0,∴点B的坐标为(6,0),把(1,1),(6,0)代入y=mx+b,得解得△-∴一次函数解析式为y=-x+.18.解:如图所示.(1)平移后三个顶点的横坐标都不变,纵坐标都加4. (2)三个顶点的纵坐标不变,横坐标变为原来的相反数. (3)点A的坐标不变,点B的纵坐标不变,横坐标为原来横坐标加AB的长,点C的横坐标为原来横坐标加AB的长,纵坐标为原来纵坐标加BC的长.19.(1)证明:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∠APD=∠B,∴∠BAP=∠DPC,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD,∴=,∴AB·CD=CP·BP,即AC·CD=CP·BP. (2)解:∵PD∥AB,∴△PCD∽△BCA,由①得△ABP∽△PCD,∴△ABP∽△BCA,∴=,∴=,∴PB=.20.解:(1)把A(-1,4)代入反比例函数解析式y=,得m=-1×4=-4,∴反比例函数的解析式为y=-;把B(2,n)代入y=-,得2n=-4,解得n=-2,∴B点坐标为(2,-2),将A(-1,4)和B(2,-2)代入y=kx+b,得--解得-∴一次函数的解析式为y=-2x+2. (2)∵BC⊥y轴,垂足为C,B(2,-2),∴C点坐标为(0,-2),设直线AC的解析式为y=px+q(p≠0),∵A(-1,4),C(0,-2),∴--解得--∴直线AC的解析式为y=-6x-2,当y=0时,-6x-2=0,解得x=-,∴E点坐标为-,∵直线AB的解析式为y=-2x+2,∴直线AB与x轴交点D的坐标为(1,0),∴DE=1--=,∴△AED的面积S=××4=.21.解:(1)如图所示,连接FC,AD.∵点F是AB的中点,CD=BC,∴FC是△ADB的中位线,∴FC∥AD,FC=AD,∴△EFC∽△EDA,∴==2,∴=. (2)∵点F是AB的中点,AB=18,FB=EC,∴EC=AB=9.由(1)知=2,则=2,∴AE=18,∴AC=AE+EC=18+9=27.21.解:(1)如图所示,连接FC,AD.∵点F是AB的中点,CD=BC,∴FC是△ADB的中位线,∴FC∥AD,FC=AD,∴△EFC∽△EDA,∴==2,∴=. (2)∵点F是AB的中点,AB=18,FB=EC,∴EC=AB=9.由(1)知=2,则=2,∴AE=18,∴AC=AE+EC=18+9=27.22.解:(1)设y=,把点(3,20)代入得k=60,∴y=,其他组数据也满足此关系式,故y=,图象略. (2)∵W=(x-2)y=60-,又∵x≤10,∴当x=10时,日销售利润最大.23.(1)证明:如图所示,连接CD,OD.∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=EB,∴EB=EC,即点E为边BC的中点. (2)解:∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B,∴△ABC∽△CBD,∴=,∴BC2=BD·BA.∴(2EC)2=BD·BA,即BA·2=36,∴BA=3,在Rt△ABC中,由勾股定理,得AC=-=3.(3)解:△ABC是等腰直角三角形.理由如下:∵四边形ODEC为正方形,∴∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=90°-45°=45°,∴Rt△ABC为等腰直角三角形.24.解:(1)由已知可得a=-1+4=3,k=1×a=1×3=3,∴反比例函数的表达式为y=,联立-解得或所以B(3,1). (2)如图所示,作B点关于x轴的对称点,得到B'(3,-1),连接AB'交x轴于点P',连接P'B,则有PA+PB=PA+PB'≥AB',当且仅当P点和P'点重合时取等号.易得直线AB'的解析式为y=-2x+5,令y=0,得x=,∴P',即满足条件的P的坐标为,设y=-x+4交x轴于点C,则C(4,0),∴S△PAB=S△APC-S△BPC=×PC×(y A-y B)=×(4-)×(3-1)=.。

2018年南京市鼓楼区九年级下期中数学试卷及答案

2018年南京市鼓楼区九年级下期中数学试卷及答案

九年级(下)期中试卷数 学注意事项:本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡...相应位置....上) 1.4的算术平方根是A .±2B .2C .±16D .162.计算(-a 3)2的结果是A .-a6B .-a5C .a6D .a53.如图是某几何体的三种视图,则这个几何体是A .圆锥B .圆柱C .球D .四棱锥4.若在数轴上画出表示下列各数的点,则与原点距离最近的点是 A .-1B .-12C .32D .25.对于代数式x 2-10x +24,下列说法中错误的是A .次数为2、项数为3B .因式分解的结果是(x -4)(x -6)C .该代数式的值可能等于0D .该代数式的值可能小于-16.如图,△ABC 是⊙O 的内接三角形,∠A =30°,BC =2,把△ABC 绕点O 按逆时针方向旋转90°得到△BED ,则对应点C 、D 之间的距离为A .1B . 2C . 3D .2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.-3的相反数是 ▲ ,-3的倒数是 ▲ .8.截止于2017年3月1日,南京市鼓楼区团区委官方微博的粉丝数量为25 000,将25 000 用科学记数法表示为 ▲ . 9.计算18a ·2a 的结果是 ▲ . 10.不等式x -12<x3的解集是▲ .左视图(第4题)(第6题)11.某市在一次空气污染指数抽查中,收集到10天的数据如下:106,60,74,100,92,67,75,67,87,119.该组数据的中位数是 ▲ .12.已知圆锥的底面半径为4cm ,圆锥的母线长为5cm ,则圆锥的侧面积为 ▲ cm 2.13.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若∠A +∠B =220°,则∠1+∠2+∠3=▲ °.14.以菱形ABCD 的对角线交点O 为原点,对角线AC 、BD 所在直线为坐标轴,建立如图所示直角坐标系,AD 的中点E 的坐标为(-1,2),则BC 的中点F 的坐标为 ▲ .15.在直角坐标系中,把四边形ABCD 以原点O 为位似中心放缩,得到四边形A ˊB ˊC ˊD ˊ.若点A 和它的对应点A ˊ的坐标分别为(2,3),(6,9),则四边形ABCD 的面积四边形A ˊB ˊC ˊD ˊ的面积= ▲ .16.已知二次函数y 1=ax 2+bx +c 图像与一次函数y 2=kx 的图像交于点M 、N ,点M 、N 的横坐标分别为m 、n (m <n ).下列结论:①若a >0,则当m <x <n 时,y 1<y 2;②若a <0,则当x <m 或x >n 时,y 1>y 2;③b -k =am +an ;④c =amn . 其中所以正确结论的序号是 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算:2-1×4+(-2)4÷4+cos60°.18.(7分)解方程组⎩⎨⎧x -3y =-1,3x +y =7.19.(9分)已知代数式1x -1+x 2-3xx 2-1,回答下列问题.(1)化简这个代数式; (2)“当x =1时,该代数式的值为0”,这个说法正确吗?请说明理由. 20.(7分)某中学九年级男生共450人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如下.(第14题)1 2 3ABCDE (第13题)(1)设学生引体向上测试成绩为x (单位:个).学校规定:当0≤x <2时成绩等级为不及格,当2≤x <4时成绩等级为及格,当5≤x <6时成绩等级为良好,当x ≥6时成绩等级为优秀.用适当的统计图表示“不及格”、“及格”、“良好”、“优秀”四个等级学生人数所占百分比; (2)估计全校九年级男生引体向上测试优秀的人数. 21.(8分)如图,在△ABC 中,AB =AC ,D 是边BC 上一点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,△AEF ∽△ABC .(1)求证:△AED ≌△AFD ;(2)若BC =2AD ,求证:四边形AEDF 是正方形.22.(8分)甲、乙两人用两颗骰子玩游戏.这两颗骰子的一些面标记字母A ,而其余的面则标记字母B .两个人轮流掷骰子,游戏规则如下:两颗骰子的顶面字母相同时,甲赢;两颗骰子的顶面字母不同时,乙赢.已知第一颗骰子各面的标记为4A2B ,回答下列问题: (1)若第二颗骰子各面的标记为2A4B ,求甲、乙两人获胜的概率各是多少? (2)若要使两人获胜概率相等,则第二颗骰子要有 ▲ 个面标记字母A . 23.(8分)按要求完成下列尺规作图(不写作图,保留作图痕迹).(1)如图①,点A 、B 、C 是平行四边形ABCD 的三个顶点,求作平行四边形ABCD ;(2)如图②,点O 、P 、Q 分别是平行四边形EFGH 三边EH 、EF 、FG 的中点,求作平行四边形EFGH .24.(8分)甲、乙两人骑车分别从A 、B 两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B 地后停留20 min 再以原速返回A 地,当两人到达A 地后停止骑行.设甲出发xmin后距离A 地的路程为ykm .图中的折线表示甲在整个骑行过程中y 与x 的函数关系. (1)A 、B 两地之间的路程是 ▲ km ;(2)求甲从B 地返回A 地时,y 与x 的函数表达式;(3)在整个骑行过程中,两人只相遇了1次,乙的骑行速度可能是( ▲ ).A .0.1B .0.15C .0.2D .0.25A B C 图①OP Q图② (第23题) y C D E B A F(第21题)25.(8分)某校九年级数学兴趣小组的活动课题是“测量物体高度”.小组成员小明与小红分别采CHD(2)数学老师说小红的结果较准确,而小明的结果与古塔的实际高度偏差较大.针对小明的测量方案分析测量发生偏差的原因;(3)利用小明与小红的测量数据,估算该古塔底面圆直径的长度为▲ m.26.(8分)某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现以下两种情况:情况1:如果每只水果每降价1元,那么每周可多卖出25只; 情况2:如果每只水果每涨价1元,那么每周将少卖出10只. (1)根据情况1,如何定价,才能使一周销售收入最多?(2)如果物价局规定该种水果每只价格只能在22元~24元之间(包括22元与24元)那么根据以上两种情况,你认为应当如何定价才能使一周销售收入最多?并说明理由. 27.(10分)在正方形ABCD 中,有一直径为CD 的半圆,圆心为点O ,CD =2,现有两点E 、F ,分别从点A 、点C 同时出发,点E 沿线段AD 以每秒1个单位长度的速度向点D 运动,点F 沿线段CB 以每秒2个单位长度的速度向点B 运动,当点F 运动到点B 时,点E 也随之停止运动.设点E 离开点A 的时间为t (s),回答下列问题: (1)如图①,根据下列条件,分别求出t 的值.①EF 与半圆相切;②△EOF 是等腰三角形.(2)如图②,点P 是EF 的中点,Q 是半圆上一点,请直接写出PQ +OQ 的最小值与最大值.图① 图② 备用图 ADA D E (第27题)九年级(下)期中考试数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3,-138.2.5×1049.6a 10.x <3 11.8112.20π 13.220° 14.(1,-2) 15.1916.①②④.三、解答题(本大题共11小题,共88分)17.(7分)解:2-1×6-(-2)4÷4+cos60°=12×6-16÷4+12………………………………………………………………………3分 =3-4+12…………………………………………………………………………………5分 =-12.……………………………………………………………………………………7分18.(7分)解方程组⎩⎨⎧x -3y =-1,①3x +y =7. ②解:由①+②×3,得x =2,……………………………………………………………3分 把x =2代入①,得y =1, ……………………………………………………………5分∴方程组⎩⎨⎧x -3y =-1,3x +y =7的解为⎩⎨⎧x =2y =1.…………………………………………………7分19.(9分)解:(1)1x -1+x 2-3xx 2-1=x +1(x +1)(x -1)+x 2-3x (x +1)(x -1)……………………………………………………………2分 =(x -1)2(x +1)(x -1) ……………………………………………………………………………4分 =x -1x +1. …………………………………………………………………………………6分 (2)不正确. …………………………………………………………………………7分因为当x =1时,代数式1x -1+x 2-3x x 2-1中的分母x -1,x 2-1都等于0,该代数式在实数范围内无意义,所以这个说法不正确.………………………………………………………9分 20.(7分)(1)解:如图所示: ……………………………………………………………5分不及格 10% 优秀 某中学抽样九年级男生引体向上 等级人数分布扇形统计图(2)450×30%=135(人)答:估计全校九年级男生引体向上测试优秀的人数为135人.…………………………………………………………………………………………………2分 21.(8分)(1)证明:∵△AEF ∽△ABC ,∴AE AB =AFAC,∵AB =AC ,∴AE =AF ,………………………………………1分 ∵DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,∴∠AED =∠AFD =90°,……………………………………………………2分 在Rt △AED 和Rt △AFD 中,∠AED =∠AFD =90°, ⎩⎨⎧AE =AF ,AD =AD ,∴Rt △AED ≌Rt △AFD .………………………………………………………4分(2)证明:∵Rt △AED ≌Rt △AFD ,∴∠EAD =∠FAD , ∵AB =AC ,∴AD ⊥BC ,BC =2BD ,………………………………………………………5分 ∵BC =2AD , ∴BD =AD , ∵AD ⊥BC ,∴∠ADB =90°,∴∠B =∠BAD =45°,…………………………………………………………6分 ∴∠BAC =2∠BAD =90°, ∵∠AED =∠AFD =90°,∴四边形AEDF 是矩形,………………………………………………………7分 ∵AE =AF ,∴矩形AEDF 是正方形.………………………………………………………8分22.(8分)由表格可知,共有36种可能出现的结果,并且它们是等可能的.“两颗骰子的顶面字母相同”记为事件M ,它的发生有16种可能,P (M )=49,“两颗骰子的顶面字母不同”记为事件N ,它的发生有20种可能,P (N )=59,∴甲、乙两人获胜的概率各是49、59.…………………………………………………………………………………………………6分 (2)3.………………………………………………………………………………………8分 23.(8分)解:(1)如图①,四边形ABCD 即为所求.…………………………………4分(2)如图②,四边形EFGH 即为所求.……………………………………………………8分24.(8分)解:(1)25km .…………………………………………………………………2分(2)∵甲从A 地到B 地的速度为25÷50=0.5km/min ,∴甲从B 地返回A 地的速度也为0.5km/min ,∵甲到达B 地后停留20min 再以原速返回A 地,∴甲从B 地返回A 地时以出发70分钟,且距离A 地25km ,∴y =25-0.5(x -70)=60-0.5x .………………………………………………6分 (3)D .…………………………………………………………………………………8分 25.(8分)解:(1)设CH =x , 在Rt△CHF 中,∵∠CFH =∠FCH =45°,∴CH =FH =x ,在Rt△CHE 中,∴tan∠CEH =CH EH,∴xx +58.8=tan17°=0.30, ∴x =25.2,即CH =25.2(m ),∴CD =CH +DH =25.2+1.6=26.8(m ),答:这棵树AB 的高度为26.8m .………………………………………………………4分(2)原因:小明测量的只是测角器所在位置与古塔底部边缘的最短距离,不是测量测角器所在位置与底面圆心的最短距离.………………………………………………………6分(3)12. …………………………………………………………………………………8分 26.(8分)解:(1)根据情况1,设当每只定价为x 元时,一周销售收入为y 1元.…………………………………………………………………………………………………1分y 1=x [300+25(20-x )]=-25x 2+800x ,当x =16时,y 1有最大值,最大值为6500元.…………………………………3分 答:当定价为16元时,一周销售收入最多,最多为6500元.(2)根据情况2,设当每只定价为x 元时,一周销售收入为y 2元. y 2=x [300-25(x -20)]=-10x 2+500x ,当x =25时,y 2有最大值,最大值为6250元, …………………………………5分 当22≤x ≤24时,y 1随x 的增大而减小,而y 2随x 的增大而增大,……………6分E CA F H 17° 45° 图① ABCD 图② P Q O EH F G当x =22时,y 1最大,最大值为5500,当x =24时,y 2最大,最大值为6000>5500.答:当定价为24元时,一周销售收入最多,最多为6000元.…………………8分27.(10分)(1)①解:如图,设EF 与半圆相切于点G ,过点E 作EH ⊥BC ,垂足为点H . ∵四边形ABCD 是正方形,∴AB =BC =CD =AD =2,∠A =∠B =∠ADC =∠BCD =90°, ∴OD ⊥AD ,且AD 经过半径OD 的外端点D , ∴AD 与半圆相切于点D ,同理可证:BC 与半圆相切于点C , ∴ED =EG =2-t ,CF =FG =2t , ∴EF =2+t ,∵EH ⊥BC ,垂足为点H ,∴∠BHE =90°, ∵∠A =∠B =90°,∴四边形ABHE 是矩形, ∴EH =AB =2,BH =AE =t , ∴HF =2-3t ,在△EHF 中,∠EHF =90°,∴EH 2+HF 2=EF 2, ∴22+(2-3t )2=(2+t )2,解这个方程,得t 1=1-22<1,t 2=1+22>1(不合题意,舍去),∴当EF 与半圆相切时,t 的值为1-22.………………………………………………4分②解:在△EDO 中,∵∠EDO =90°,∴OE 2=t 2-4t +5,同理可证:OF 2=1+4t 2, EF 2=9t 2-12t +8,第一种情况:当OE =OF 时,则OE 2=OF 2, ∴t 2-4t +5=1+4t 2,解这个方程,得t 1=23<1,t 2=-2<0(不合题意,舍去), 第二种情况:当OE =EF 时,则OE 2=EF 2, ∴t 2-4t +5=9t 2-12t +8,此方程无解,第三种情况:当OF =EF 时,则OF 2=EF 2,∴1+4t 2=9t 2-12t +8,解这个方程,得t 1=1,t 2=1.4>1(不合题意,舍去),综上所述:当△EOF 是等腰三角形时,t 的值为23或1.………………………………8分 (3)1、32.………………………………………………………………………………10分ADE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中检测卷分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列函数中,y 是x 的反比例函数的是( )A .y =x -1B .y =8x2C .y =-2x -1 D.yx=22.若△ABC ∽△DEF ,相似比为3∶2,则对应高的比为( )A .3∶2B .3∶5C .9∶4D .4∶9 3.如图,点A 是反比例函数y =k x(x >0)图象上一点,AB 垂直于x 轴,垂足为点B ,AC 垂直于y 轴,垂足为点C .若矩形ABOC 的面积为5,则k 的值为( )A .5B .2.5 C. 5 D .10第3题图第5题图第7题图4.反比例函数y =-3x的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( )A .x 1>x 2B .x 1=x 2C .x 1<x 2D .不确定5.如图,在△ABC 中,DE ∥BC ,AD DB =12,DE =4,则BC 的长是( )A .8B .10C .11D .126.在某一时刻,测得一根高为1.2m 的木棍的影长为2m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为( )A .15m B.1253m C .60m D .24m 7.如图,E 是▱ABCD 的边BC 的延长线上一点,连接AE 交CD 于F ,则图中共有相似三角形( )A .4对B .3对C .2对D .1对8.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺第8题图第9题图第12题图9.如图,双曲线y =k x与直线y =-12x 交于A ,B 两点,且A (-2,m ),则点B 的坐标是( )A .(2,-1)B .(1,-2)C.⎝⎛⎭⎫12,-1 D.⎝⎛⎭⎫-1,12 10.如图所示的四个图形为两个圆或相似的正多边形,其中是位似图形的个数为( )A .1个B .2个C .3个D .4个11.函数y =ax与y =-ax 2+a (a ≠0)在同一直角坐标系中的大致图象可能是( )12.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( )A .-4B .4C .-2D .213.如图,在△ABC 中,点E ,F 分别在边AB ,AC 上,EF ∥BC ,AF FC =12,△CEF 的面积为2,则△EBC 的面积为( ) A .4 B .6 C .8 D .12第13题图第14题图第16题图14.如图,已知函数y =k x和函数y =12x +1的图象交于A ,B 两点,点A 的坐标为(2,2),以下结论:①反比例函数的图象一定过点(-1,-4);②当x >2时,12x +1>kx;③点B 的坐标是(-4,-1);④S △OCD =1,其中正确结论的个数是( )A .1个B .2个C .3个D .4个15.如图,在四边形ABCD 中,∠B =90°,AC =4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系用图象大致可以表示为( )16.如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D .若点C ,D 都在双曲线y =k x(k >0,x >0)上,则k 的值为( )A .253B .183C .93D .9二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.反比例函数y =k -1x的图象经过点(2,3),则k =________.18.如图,甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触到路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为________米.第18题图 第19题图19.如图,在△ABC 中,点A 1,B 1,C 1分别是BC ,AC ,AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点……依此类推,若△ABC 的面积为1,则△A 3B 3C 3的面积为________,△A n B n C n 的面积为________.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图,直线l 经过点A (0,-1),且与双曲线y =mx 交于点B (2,1).(1)求双曲线及直线l 的解析式;(2)已知P (a -1,a )在双曲线上,求P 点的坐标.21.(9分)如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).22.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.(1)求证:△ADE∽△BEC;(2)若AD=1,DE=3,BC=2,求AB的长.23.(9分)嘉琪同学家的饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热……重复上述程序(如图所示).根据图中提供的信息,解答下列问题:(1)写出饮水机水温的下降过程中y与x的函数关系式;(2)求图中t的值;(3)若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点回到家中,回到家时,他能喝到不低于50℃的水吗?24.(10分)如图,Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm.动点M 从点B 出发,在BA 边上以3cm/s 的速度向定点A 运动,同时动点N 从点C 出发,在CB 边上以2cm/s 的速度向点B 运动,运动时间为t s(0<t <103),连接MN .(1)若△BMN 与△ABC 相似,求t 的值; (2)连接AN ,CM ,若AN ⊥CM ,求t 的值.25.(11分)如图,已知直线y =ax +b 与双曲线y =k x(x >0)交于A (x 1,y 1),B (x 2,y 2)两点(A 与B 不重合),直线AB 与x 轴交于P (x 0,0),与y 轴交于点C .(1)若A ,B 两点的坐标分别为(1,3),(3,y 2),求点P 的坐标;(2)若b =y 1+1,点P 的坐标为(6,0),且AB =BP ,求A ,B 两点的坐标.26.(12分)在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF ⊥A B.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(2)如图③,若四边形ABCD为矩形,BC=mAB,其他条件都不变,将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图③中画出草图,并求出AE′与DF′的数量关系.参考答案与解析1.C 2.A 3.A 4.A 5.D 6.A 7.B8.B 9.A 10.C 11.D 12.A 13.B 14.D 15.D解析:∵DH 垂直平分AC ,AC =4,∴DC =DA =y ,CH =2.∵CD ∥AB ,∴∠DCA =∠BAC .又∵∠DHC =∠B =90°,∴△DCH ∽△CAB ,∴CD AC=CH AB,∴y 4=2x ,∴y =8x.∵AB <AC ,∴x <4,∴图象是D. 16.C解析:过点A 作AE ⊥OB 于点E .∵△OAB 是边长为10的正三角形,∴点A 的坐标为(10,0),点B 的坐标为(5,53),点E 的坐标为⎝⎛⎭⎫52,532.∵CD ⊥OB ,AE ⊥OB ,∴CD ∥AE ,∴BD BE =BCBA.设BD BE=BC BA=n (0<n <1),∴点D 的坐标为⎝⎛⎭⎫10-5n 2,103-53n 2,点C 的坐标为(5+5n ,53-53n ).∵点C ,D 均在反比例函数y =kx图象上,∴⎩⎪⎨⎪⎧k =10-5n 2×103-53n 2,k =(5+5n )×(53-53n ),解得⎩⎪⎨⎪⎧n =45,k =9 3.17.7 18.9 19.16414n解析:∵点A 1,B 1,C 1分别是△ABC 的边BC ,AC ,AB 的中点,∴A 1B 1,A 1C 1,B 1C 1是△AB C 的中位线,∴△A 1B 1C 1∽△ABC ,且相似比为12.同理可知△A 2B 2C 2∽△A 1B 1C 1,且相似比为12,∴△A 2B 2C 2∽△ABC ,且相似比为14.依此类推△A n B n C n ∽△ABC ,且相似比为12n .∵△ABC 的面积为1,∴△A 3B 3C 3的面积为⎝⎛⎭⎫1232=164,△A n B n C n的面积为⎝⎛⎭⎫12n 2=14n. 20.解:(1)将点B (2,1)的坐标代入双曲线解析式得m =2,则双曲线的解析式为y =2x.(2分)设直线l 的解析式为y =kx +b ,将点A 与点B 的坐标代入得⎩⎨⎧b =-1,2k +b =1,解得⎩⎨⎧k =1,b =-1.则直线l 的解析式为y =x -1.(4分)(2)将P (a -1,a )代入双曲线解析式得a (a -1)=2,整理得a 2-a -2=0,解得a =2或a =-1,(7分)则P 点的坐标为(1,2)或(-2,-1).(8分)21.解:(1)如图所示.(4分)(2)AA ′=CC ′=2.在Rt △OA ′C ′中,OA ′=OC ′=2,∴A ′C ′=22;同理可得AC =42.(7分)∴四边形AA ′C ′C 的周长为2+2+22+42=4+62.(9分)22.(1)证明:∵AD ∥BC ,∠ABC =90°,∴∠A =90°.∵DE ⊥CE ,∴∠DEC =90°,∴∠AED +∠BEC =90°.(3分)∵∠AED +∠ADE =90°,∴∠ADE =∠BEC ,∴△ADE ∽△BE C .(5分)(2)解:在Rt △ADE 中,AE =DE2-AD2=2.(6分)∵△ADE ∽△BEC ,∴AD BE=AE BC ,即1BE =22,∴BE =2,∴AB =AE +BE =22.(9分) 23.解:(1)在水温下降过程中,设水温y (℃)与开机时间x (分)的函数关系式为y =mx,依据题意,得100=m 8,即m =800,故y =800x.(3分)(2)当y =20时,20=800t ,解得t =40.(6分)(3)∵60-40=20≥8,∴当x =20时,y =80020=40.∵40<50,∴他不能喝到不低于50℃的水.(9分)24.解:(1)由题意知BM =3t cm ,CN =2t cm ,∴BN =(8-2t )cm.在Rt △ABC 中,BA =AC2+BC2=62+82=10(cm).当△BMN ∽△BAC 时,BM BA =BN BC ,∴3t10=8-2t 8,解得t =2011;(3分)当△BMN ∽△BCA 时,BM BC=BN BA,∴3t 8=8-2t 10,解得t =3223.∴当△BMN 与△ABC 相似时,t 的值为2011或3223.(5分)(2)过点M 作MD ⊥CB 于点D ,则MD ∥AC ,∴△BMD ∽△BAC ,∴DMCA=BD BC=BM BA ,即DM 6=BD 8=BM 10.∵BM =3t cm ,∴DM =95t cm ,BD =125t cm ,∴CD =⎝⎛⎭⎫8-125t cm.(7分)∵AN ⊥CM ,∠ACB =90°,∴∠CAN +∠ACM =90°,∠MCD +∠ACM =90°,∴∠CAN =∠MCD .∵MD ⊥CB ,∴∠MDC =∠ACB =90°,∴△CAN ∽△DCM ,∴ACCD=CNDM,∴68-125t =2t 95t,解得t =1312.(10分) 25.解:(1)∵直线y =ax +b 与双曲线y =kx(x >0)交于A (1,3),∴k =1×3=3,∴双曲线的解析式为y =3x.∵B (3,y 2)在反比例函数的图象上,∴y 2=33=1,∴点B 的坐标为(3,1).(2分)∵直线y =ax +b 经过A ,B 两点,∴⎩⎨⎧a +b =3,3a +b =1,解得⎩⎨⎧a =-1,b =4,∴直线的解析式为y =-x +4.令y =0,则x =4,∴点P 的坐标为(4,0).(4分)(2)如图,过点A 作AD ⊥y 轴于点D ,AE ⊥x 轴于点E ,则AD ∥x 轴,∴CD OC=ADOP.由题意知DO =AE =y 1,AD =x 1,OP =6,OC =b =y 1+1,AB =BP ,∴CD =OC -O D =y 1+1-y 1=1,∴1y1+1=x16.∵AB =BP ,∴点B 的坐标为⎝⎛⎭⎫6+x12,12y1.(7分)∵A ,B 两点都是反比例函数图象上的点,∴x 1·y 1=6+x12·12y 1,解得x 1=2,代入1y1+1=x16,解得y 1=2,∴点A 的坐标为(2,2),点B 的坐标为(4,1).(11分) 26.解:(1)①DF =2AE (2分) ②DF =2AE .(3分)理由如下:∵△EBF 绕点B 逆时针旋转到图②所示的位置,∴∠ABE =∠DBF .∵BF BE=2,BD AB =2,∴BF BE =BD AB ,∴△ABE ∽△DBF ,∴DF AE =BFBE=2,即DF =2AE .(6分)(2)草图如图所示,∵四边形ABCD 为矩形,∴AD =BC =mAB ,∴BD =AB2+AD2=1+m2AB .∵EF ⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BA =BF BD ,∴BF BE =BDBA=1+m2.(9分)∵△EBF 绕点B 逆时针旋转α(0°<α<90°)得到△E ′BF ′,∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF′BE′=BDBA=1+m2,∴△ABE ′∽△DBF ′,∴DF′AE′=BDBA=1+m2,即DF ′=1+m2AE ′.(12分)。

相关文档
最新文档