第九部分解析几何(2)--两条直线位置关系
人教A版高考总复习一轮数学精品课件 第九章 平面解析几何 第二节 两条直线的位置关系 (2)

3.三种距离
此公式与两点的先后顺序无关
点点距
点线距
线线距
P1(x1,y1),P2(x2,y2)之间的距离 |P1P2|= (x2 -x1 )2 + (y2 -y1 )2
|0 + 0 + |
点P0(x0,y0)到直线
l:Ax+By+C=0的距离
d=
2 + 2
两条平行直线Ax+By+C1=0
式.
2 -1
提示
· = -1,
2 -1
1 +2
2
=
1 +2
·
+ .
2
常用结论
1.两种求直线方程的设法
(1)与直线Ax+By+C=0(A2+B2≠0)垂直的直线可设为Bx-Ay+m=0.
(2)与直线Ax+By+C=0(A2+B2≠0)平行的直线可设为Ax+By+n=0.
2.六种常见的对称点
(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).
(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).
(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).
(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为
1
1
l1:y=-2,直线 l2:x=-2,易知 l1⊥l2,满足条件;当
⊥l2,则两直线斜率乘积为-1,即- ×
2
2
a≠0 时,若 l1
=1≠-1,不满足.综上所述,a=0.故选 A.
高考数学一轮复习第九章解析几何第二节两直线的位置关系课后作业理21(2)

【创新方案】2017届高考数学一轮复习 第九章 解析几何 第二节两直线的位置关系课后作业 理[全盘巩固]一、选择题1.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +a 2-1=0垂直,则实数a =( ) A.23B .-1C .2D .-1或2 3.若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A .0B .1C .-1D .24.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为( ) A.12 B .-12C .2D .-2 5.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎪⎫0,10a ,则线段AB 的长为( )A .11B .10C .9D .8 二、填空题6.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8, l 1∥l 2,则实数m 的值为________.7.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 8.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是__________________________.三、解答题9.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.10.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在直线方程为x-2y-5=0,求直线BC的方程.[冲击名校]1.若动点P1(x1,y1),P2(x2,y2)分别在直线l1:x-y-5=0,l2:x-y-15=0上移动,则P1P2的中点P到原点的距离的最小值是( )A.522B.5 2 C.1522D.15 22.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点( ) A.(0,4) B.(0,2)C.(-2,4) D.(4,-2)3.设A,B是x轴上的两点,点P的横坐标为3,且|PA|=|PB|,若直线PA的方程为x -y+1=0,则直线PB的方程是( )A.x+y-5=0 B.2x-y-1=0C.x-2y+4=0 D.x+y-7=04.若在平面直角坐标系内过点P(1,3),且与原点的距离为d的直线有两条,则d 的取值范围为________.5.如图,已知A(-2,0),B(2,0),C(0,2),E(-1,0),F(1,0),一束光线从F点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为________.6.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是________.答案[全盘巩固]一、选择题1.解析:选B 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得交点为⎝⎛⎭⎪⎫k k -1,2k -1k -1.因为0<k <12,所以kk -1<0,2k -1k -1>0.故交点在第二象限. 2.解析:选A ∵a ×1+(a -1)×2=0,∴a =23.3.解析:选A ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去).∴m +n =0.4.解析:选A 因为l 1,l 2关于直线y =-x 对称,所以l 2的方程为-x =-2y +3,即y =12x +32,即直线l 2的斜率为12.5.解析:选B 依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎪⎨⎪⎧x -2y =0,2x +y =10,则A (4,8),B (-4,2),∴|AB |=4+42+8-22=10.二、填空题6.解析:由(3+m )(5+m )-4×2=0,得m =-1或m =-7, 当m =-1时,直线l 1与l 2重合,舍去; 当m =-7时,5-3m 4=132≠85+m ,两直线平行.答案:-77.解析:由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9. 答案:-98.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.答案:x +2y -3=0 三、解答题9.解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 10.解:依题意知:k AC =-2,A (5,1),∴l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3).设B (x 0,y 0),AB 的中点M 为⎝⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.[冲击名校]1.解析:选B 由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =102=5 2.2.解析:选B 直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).3.解析:选D 由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,∴直线PB 的方程为x +y -7=0.4.解析:因为原点到点P 的距离为2,所以过点P 的直线与原点的距离都不大于2,故d ∈(0,2).答案:(0,2)5.解析:从特殊位置考虑.如图,∵点A(-2,0)关于直线BC:x+y=2的对称点为A1(2,4),∴kA1F=4.又点E(-1,0)关于直线AC:y=x+2的对称点为E1(-2,1),点E1(-2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,∴k FD>kA1F,即k FD ∈(4,+∞).答案:(4,+∞)6.解析:易求定点A(0,0),B(1,3).当P与A和B均不重合时,因为P为直线x+my =0与mx-y-m+3=0的交点,且易知两直线垂直,则PA⊥PB,所以|PA|2+|PB|2=|AB|2=10,所以|PA|·|PB|≤|PA|2+|PB|22=5(当且仅当|PA|=|PB|=5时,等号成立);当P与A或B重合时,|PA|·|PB|=0,故|PA|·|PB|的最大值是5.答案:5。
2019版高考数学第9章平面解析几何2第2讲两直线的位置关系教案理

第2讲 两直线的位置关系1.两直线的平行、垂直与其斜率的关系3.三种距离(1)平行于直线Ax +By +C =0的直线系方程:Ax +By +λ=0(λ≠C ). (2)垂直于直线Ax +By +C =0的直线系方程:Bx -Ay +λ=0.(3)过两条已知直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不包括直线A 2x +B 2y +C 2=0).判断正误(正确的打“√”,错误的打“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( )(2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√(教材习题改编)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则直线l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析:选A.由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x+2y -1=0.已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )A. 2 B .2- 2 C.2-1D.2+1解析:选C.由题意知|a -2+3|2=1,所以|a +1|=2,又a >0,所以a =2-1.(教材习题改编)已知直线l1:ax +3y +1=0,l 2:2x +(a +1)y +1=0互相平行,则实数a 的值是________.解析:由直线l 1与l 2平行,可得⎩⎪⎨⎪⎧a (a +1)=2×3,a ×1≠2,解得a =-3.答案:-3若三条直线2x +3y +8=0,x -y -1=0和x +by =0相交于一点,则b =________.解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0解得⎩⎪⎨⎪⎧x =-1,y =-2. 将其代入x +by =0,得b =-12.答案:-12两条直线平行与垂直(高频考点)两条直线的平行与垂直是高考的热点,高考多出现在选择题、填空题或解答题中的一小问,一般难度较小.高考对两条直线的平行与垂直的考查主要有以下两个命题角度: (1)两条直线位置关系的判断; (2)由两条直线位置关系求直线方程.[典例引领]角度一 两条直线位置关系的判断设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 当m =2时,代入两直线方程中,易知两直线平行,即充分性成立.当l 1∥l 2时,显然m ≠0,从而有2m=m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立. 【答案】 C角度二 由两条直线位置关系求直线方程(2018·湖南东部十校联考)经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.【解析】 法一:由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0解得⎩⎪⎨⎪⎧x =-53,y =79,即交点为⎝ ⎛⎭⎪⎫-53,79,因为所求直线与直线3x +4y -7=0垂直, 所以所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝ ⎛⎭⎪⎫x +53,即4x -3y +9=0.法二:由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0可解得交点为⎝ ⎛⎭⎪⎫-53,79,代入4x -3y +m =0得m =9, 故所求直线方程为4x -3y +9=0.法三:由题意可设所求直线的方程为(2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0,① 又因为所求直线与直线3x +4y -7=0垂直, 所以3(2+λ)+4(3-3λ)=0,所以λ=2,代入①式得所求直线方程为4x -3y +9=0. 【答案】 4x -3y +9=0两直线平行、垂直的判断方法若已知两直线的斜率存在.(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1. [提醒] 判断两条直线位置关系应注意: (1)注意斜率不存在的特殊情况;(2)注意x ,y 的系数不能同时为零这一隐含条件.[通关练习]1.已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( )A .2或12B. 13或-1 C. 13D .-1解析:选B.因为直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或a =-1.故选B.2.求满足下列条件的直线方程.(1)过点P (-1,3)且平行于直线x -2y +3=0; (2)已知A (1,2),B (3,1),线段AB 的垂直平分线.解:(1)设直线方程为x -2y +c =0,把P (-1,3)代入直线方程得c =7, 所以直线方程为x -2y +7=0. (2)AB 中点为⎝⎛⎭⎪⎫1+32,2+12,即⎝ ⎛⎭⎪⎫2,32,直线AB 斜率k AB =2-11-3=-12,故线段AB 垂直平分线斜率k =2,所以其方程为y -32=2(x -2),即4x -2y -5=0.距离公式[典例引领](1)已知A (2,0),B (0,2),若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( ) A .4 B .3 C .2D .1(2)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.【解析】 (1)设点C (t ,t 2),直线AB 的方程是x +y -2=0, |AB |=2 2.由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式得2=|t +t 2-2|2,即|t +t 2-2|=2,即t 2+t -2=2或者t 2+t -2=-2.因为这两个方程各有两个不相等的实数根,故这样的点C 有4个. (2)依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313,因此c =2或-6. 【答案】 (1)A (2)2或-6距离的求法(1)点到直线的距离可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式.(2)两平行直线间的距离①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;②利用两平行线间的距离公式.[通关练习]1.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是( ) A .[-10,10] B .[-10,5] C .[-5,5]D .[0,10]解析:选D.由题意得,点P 到直线的距离为 |4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].2.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y-15=0.答案:12x +8y -15=03.l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________.解析:当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.又k AB =-1-10-1=2,所以两条平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=0对称问题[典例引领]已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.【解】 (1)设A ′(x ,y ),由已知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.所以A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0. (3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ), 因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.[通关练习]1.(2018·河北五校联考)直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( ) A .2x +3y -12=0 B .2x -3y -12=0 C .2x -3y +12=0D .2x +3y +12=0解析:选D.由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y=1,所以M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),所以所求方程为2x +3y +12=0,故选D.2.如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程是________.解析:直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.答案:210由一般式确定两直线位置关系的方法(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据相应公式或性质判断,若直线无斜率,要单独考虑. (2)求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.(3)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数化为相同的形式.1.(2018·石家庄模拟)已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( )A .x -y +1=0B .x -y =0C .x +y +1=0D .x +y =0解析:选A.由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1,所以直线l 的斜率k =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.2.已知过点A (-2,m )和点B (m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( ) A .-10 B .-2 C .0D .8解析:选A.因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n×(-2)=-1,解得n =-2,所以m +n =-10.3.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为( ) A.12 B .-12C .2D .-2解析:选A.直线y =2x +3与y =-x 的交点为A (-1,1),而直线y =2x +3上的点(0,3)关于y =-x 的对称点为B (-3,0),而A ,B 两点都在l 2上,所以kl 2=1-0-1-(-3)=12.4.已知点A (-1,2),B (3,4).P 是x 轴上一点,且|PA |=|PB |,则△PAB 的面积为( ) A .15 B.552 C .6 5D.152解析:选D.设AB 的中点坐标为M (1,3),k AB =4-23-(-1)=12,所以AB 的中垂线方程为y -3=-2(x -1). 即2x +y -5=0.令y =0,则x =52,即P 点的坐标为(52,0),|AB |=(-1-3)2+(2-4)2=2 5.P 到AB 的距离为|PM |=(1-52)2+32=352.所以S △PAB =12|AB |·|PM |=12×25×352=152.5.(2018·河南安阳模拟)两条平行线l 1,l 2分别过点P (-1,2),Q (2,-3),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间距离的取值范围是( )A .(5,+∞)B .(0,5]C .(34,+∞)D .(0,34 ]解析:选D.当PQ 与平行线l 1,l 2垂直时,|PQ |为平行线l 1,l 2间的距离的最大值,为(-1-2)2+[2-(-3)]2=34, 所以l 1,l 2之间距离的取值范围是(0,34 ]. 故选D.6.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析:设点P 的坐标为⎝⎛⎭⎪⎫x 0,1x,x 0>0,曲线y =1x在点P 处的切线斜率k 2=-1x 20(x 0>0). 又因为曲线y =e x 在点(0,1)处的切线斜率k 1=e x|x =0=1,k 1k 2=-1,所以x 20=1,所以x 0=1,所以点P 的坐标为(1,1). 答案:(1,1)7.已知一直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________.解析:若所求直线的斜率存在,则可设其方程为:y -2=k (x -1),即kx -y -k +2=0,由题设有|2k -3-k +2|1+k 2=|0+5-k +2|1+k 2, 即|k -1|=|k -7|,解得k =4. 此时直线方程为4x -y -2=0.又若所求直线的斜率不存在,方程为x =1, 满足题设条件.故所求直线的方程为4x -y -2=0或x =1. 答案:4x -y -2=0或x =18.(2018·山西四校联考)若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕垂直平分点(0,2)与点(4,0)的连线,可得折痕所在直线为y =2x -3,又折痕也垂直平分点(7,3)与点(m ,n )的连线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,所以m +n =345.答案:3459.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14,因为a 2≥0,所以b ≤0. 又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0]. (2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0, 显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立, 因此|ab |的最小值为2.10.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P . (1)点A (5,0)到直线l 的距离为3,求直线l 的方程; (2)求点A (5,0)到直线l 的距离的最大值. 解:(1)因为经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, 所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2. 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离, 则d ≤|PA |(当l ⊥PA 时等号成立). 所以d max =|PA |=10.1.(2018·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( ) A .过点P 且与l 垂直的直线 B .过点P 且与l 平行的直线 C .不过点P 且与l 垂直的直线 D .不过点P 且与l 平行的直线解析:选D.因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P ,排除A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行,排除C ,故选D.2.(2018·湖北孝感五校联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C.设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,所以BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),所以AC 所在直线方程为y -2=3-2-1-(-4)·(x +4),即x -3y +10=0.联立得⎩⎪⎨⎪⎧3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4).故选C.3.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程. 解:依题意知,k AC =-2,A (5,1), 所以l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,所以C (4,3).设B (x 0,y 0),AB 的中点M 为⎝⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,所以⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,所以B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.4.在直线l :3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小.解:(1)如图,设B 关于l 的对称点为B ′,AB ′的延长线交l 于P 0,在l 上另任取一点P ,则|PA |-|PB |=|PA |-|PB ′|<|AB ′|=|P 0A |-|P 0B ′|=|P 0A |-|P 0B |,则P 0即为所求. 易求得直线BB ′的方程为x +3y -12=0, 设B ′(a ,b ),则a +3b -12=0,①又线段BB ′的中点⎝ ⎛⎭⎪⎫a 2,b +42在l 上,故3a -b -6=0.②由①②解得a =3,b =3,所以B ′(3,3). 所以AB ′所在直线的方程为2x +y -9=0.由⎩⎪⎨⎪⎧2x +y -9=0,3x -y -1=0可得P 0(2,5). (2)设C 关于l 的对称点为C ′,与(1)同理可得C ′⎝ ⎛⎭⎪⎫35,245.连接AC ′交l 于P 1,在l 上另任取一点P ,有|PA |+|PC |=|PA |+|PC ′|>|AC ′|=|P 1C ′|+|P 1A |=|P 1C |+|P 1A |,故P 1即为所求. 又AC ′所在直线的方程为19x +17y -93=0,故由⎩⎪⎨⎪⎧19x +17y -93=0,3x -y -1=0可得P 1⎝ ⎛⎭⎪⎫117,267.。
2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系

2024年高考数学总复习第九章《平面解析几何》§9.2两条直线的位置关系最新考纲1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组1x +B 1y +C 1=0,2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.概念方法微思考1.若两条直线l 1与l 2垂直,则它们的斜率有什么关系?提示当两条直线l 1与l 2的斜率都存在时,12l l k k ⋅=-1;当两条直线中一条直线的斜率为0,另一条直线的斜率不存在时,l 1与l 2也垂直.2.应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示(1)将方程化为最简的一般形式.(2)利用两平行线之间的距离公式时,应使两平行线方程中x ,y 的系数分别对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×)(2)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.(√)题组二教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于()A.2B .2-2 C.2-1D.2+1答案C 解析由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.答案1解析由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.4.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案-9解析=2x ,+y =3,=1,=2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.题组三易错自纠5.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于()A .2B .-3C .2或-3D .-2或-3答案C解析直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2m =2或-3.故选C.6.直线2x +2y +1=0,x +y +2=0之间的距离是______.答案324解析先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.7.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.答案0或1解析由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一两条直线的平行与垂直例1已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.解(1)方法一当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2-a2=11-a ,3≠-(a +1),解得a =-1,综上可知,当a=-1时,l1∥l2,a≠-1时,l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2(a-1)-1×2=0,(a2-1)-1×6≠0,2-a-2=0,(a2-1)≠6,可得a=-1,故当a=-1时,l1∥l2.a≠-1时,l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),·11-a=-1,得a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0,可得a=23.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练1(1)(2018·潍坊模拟)直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由题意,当直线l1∥l2时,满足3+m2=45+m≠5-3m8,解得m=-7,所以“m=-1或m=-7”是“l1∥l2”的必要不充分条件,故选B.(2)(2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.①l1⊥l2,且直线l1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.解①∵l 1⊥l 2,∴a (a -1)-b =0,又∵直线l 1过点(-3,-1),∴-3a +b +4=0.故a =2,b =2.②∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在.∴k 1=k 2,即ab=1-a .又∵坐标原点到这两条直线的距离相等,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.题型二两直线的交点与距离问题1.(2018·西宁调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是()A .-23 B.23C .-32D.32答案A解析由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得1,又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295答案C解析因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.3.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.答案-16,解析方法一=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴又∵交点位于第一象限,,,解得-16<k <12.方法二如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB .∵k P A =-16,k PB =12.∴-16<k <12.4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P点坐标为________________.答案(1,-4)解析设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②a =1,b =-4a =277,b =-87.∴所求点P 的坐标为(1,-4)277,-87思维升华(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三对称问题命题点1点关于点中心对称例2过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案x +4y -4=0解析设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.命题点2点关于直线对称例3如图,已知A (4,0),B(0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .33B .6C .210D .25答案C解析直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3直线关于直线的对称问题例4直线2x -y +3=0关于直线x -y +2=0对称的直线方程是______________.答案x -2y +3=0解析设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),-y +y 02+2=0,(y -y 0),0=y -2,0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.思维升华解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有1,B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.跟踪训练2已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解(1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②′=-4x +3y -95,③′=3x +4y +35.④把x =4,y =5代入③④得x ′=-2,y ′=7,∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3),关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.妙用直线系求直线方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过直线交点的直线系.一、平行直线系例1求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.解由题意,设所求直线方程为3x +4y +c =0(c ≠1),又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11.因此,所求直线方程为3x +4y -11=0.二、垂直直线系例2求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C =0,又直线过点A (2,1),所以有2-2×1+C =0,解得C =0,即所求直线方程为x -2y =0.三、过直线交点的直线系例3求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解方法一-2y +4=0,+y -2=0,得P (0,2).∵l 3的斜率为34,且l ⊥l 3,∴直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是()A .平行B .垂直C .相交但不垂直D .不能确定答案C解析直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C.2.已知直线l 1:x +my +7=0和l 2:(m -2)x +3y +2m =0互相平行,则实数m 等于()A .-1或3B .-1C .-3D .1或-3答案A解析当m =0时,显然不符合题意;当m ≠0时,由题意得,m -21=3m ≠2m7,解得m =-1或m =3,故选A.3.已知过点A (-2,m )和B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为()A .-10B .-2C .0D .8答案A解析因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.4.过点M (-3,2),且与直线x +2y -9=0平行的直线方程是()A .2x -y +8=0B .x -2y +7=0C .x +2y +4=0D .x +2y -1=0答案D 解析方法一因为直线x +2y -9=0的斜率为-12,所以与直线x +2y -9=0平行的直线的斜率为-12,又所求直线过M (-3,2),所以所求直线的点斜式方程为y -2=-12(x +3),化为一般式得x +2y -1=0.故选D.方法二由题意,设所求直线方程为x +2y +c =0,将M (-3,2)代入,解得c =-1,所以所求直线为x +2y -1=0.故选D.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为()A.423B .42 C.823D .22答案C解析∵l 1∥l 2,∴a ≠2且a ≠0,∴1a -2=a 3≠62a,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=823.6.已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为()A.1 2B.-12C.2D.-2答案A解析直线y=2x+3与y=-x的交点为A(-1,1),而直线y=2x+3上的点(0,3)关于y=-x的对称点为B(-3,0),而A,B两点都在l2上,所以kl2=1-0-1-(-3)=12.7.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=________,此时点P的坐标为________.答案1(3,3)解析∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,即a=1+y-6=0,-y=0,易得x=3,y=3,∴P(3,3).8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.答案34 5解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,2×7+m2-3,=-12,=35,=315,故m+n=34 5 .9.直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为______________.答案x-2y=0解析=2x+3,=x+1,解得直线l1与l的交点坐标为(-2,-1),所以可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1,l2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),所以直线l 2的方程为x -2y =0.10.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为______________.答案6x -y -6=0解析设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,=-1,-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于42.(1)解显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,x -y -6=0,-y -4=0,=2,=-2,故直线经过的定点为M (2,-2).(2)证明过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =7510,所以|a +12|5=7510,即|a +12|=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12|c +12|5,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,0=-3,0=12,(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,=19,0=3718.所以存在点P 13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C的坐标为()A.(-2,4)B.(-2,-4) C.(2,4)D.(2,-4)答案C解析设A(-4,2)关于直线y=2x的对称点为(x,y),则2=-1,2×-4+x2,解得=4,=-2,∴BC所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),∴AC所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0.x+y-10=0,-3y+10=0,=2,=4,则C(2,4).故选C.14.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为()A.5B.6C.23D.25答案A解析=2x,+y=3,解得x=1,y=2.把(1,2)代入mx+ny+5=0可得,m+2n+5=0.∴m=-5-2n.∴点(m,n)到原点的距离d=m2+n2=(5+2n)2+n2=5(n+2)2+5≥5,当n=-2,m=-1时取等号.∴点(m,n)到原点的距离的最小值为 5.15.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为()A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0答案B解析因为AC =BC ,所以欧拉线为AB 的中垂线,又A (1,0),B (0,2),故AB k AB =-2,故AB 的中垂线方程为y -1即2x -4y +3=0.16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,4)对称,求直线l 的方程.解由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点,b P 关于点(2,4)-m ,8-b ∴8-b -3m 4=34(4-m )+b +114,解得b =98.∴直线l 的方程是y =34x +98,即6x -8y +9=0.。
解析几何中的直线与直线的位置关系

解析几何中的直线与直线的位置关系解析几何中,直线与直线间的位置关系是一个重要的研究课题。
直线的位置关系可以分为三种基本情况:平行、相交和重合。
在本文中,我们将深入探讨这三种情况,并给出相应的例子和证明。
1. 平行的直线在解析几何中,如果两条直线的斜率相等且不相交,我们称它们为平行直线。
平行直线永远不会相交,它们在平面内或空间中始终保持相同的距离。
下面我们举个例子来说明平行直线的情况。
例1:已知直线L1的方程为y = 2x + 3,直线L2的方程为y = 2x + 5,证明L1与L2平行。
解:我们需要比较L1和L2的斜率以判断它们的位置关系。
可以观察到L1和L2的斜率都是2,且不相等。
因此,根据定义,L1与L2是平行的。
2. 相交的直线相交的直线是指两条直线在平面内或空间中有一个公共点。
相交的直线可以进一步分为两种情况:相交于一点和相交于一条直线。
2.1 相交于一点如果两条直线在平面内或空间中有且仅有一个公共点,我们称它们为相交于一点的直线。
下面我们给出一个例子。
例2:已知直线L3的方程为y = 2x + 3,直线L4的方程为y = -x + 5,证明L3与L4相交于一点。
解:为了证明L3与L4相交于一点,我们需要找到它们的交点。
将L3和L4的方程联立解方程组:2x + 3 = -x + 53x = 2x = 2/3将x的值代入L3或L4的方程中,可以求得y的值:y = 2(2/3) + 3y = 8/3因此,L3与L4相交于点(2/3, 8/3)。
2.2 相交于一条直线有时候,两条直线有无数个公共点,我们称它们为相交于一条直线的直线。
这种情况经常出现在平面解析几何中,例如两条直线分别表示平面上的两个边界。
例3:已知直线L5的方程为y = 2x + 3,直线L6的方程为y = 2x - 1,证明L5与L6相交于一条直线。
解:我们可以观察到L5和L6的方程中,它们的斜率相等。
因此,直线L5和L6的斜率相等且不相交,根据定义,它们相交于一条直线。
002--解析几何第二讲--两条直线之间的位置关系

例 4、已知正方形的中心坐标是(1,1),一边所在的直线方程是 3x-4y-5=0,求其余三边所在 的直线方程.
第2页
学习 让人生更美好
三、典型习题导练 1. 已知点 A(-2, 1), P 是直线 12 x + 5 y − 33 = 0 上一点, 点 A 到点 P 的最短距离是______
(2). l1 到 l 2 所成的角 α :设 l1 与 l 2 的交点为 A 点, l1 绕点 A 按逆时针方向旋转 到与 l 2 重合时所转的角 α 叫做 l1 到 l 2 所成的角 α ∈ [0, π ]
二、经典例题导讲 例 1、① 已知直线 ax+3y+1=0 与 x+(a-2)y+a=0,当 a 为何值时两直线平行、重合、相交、 垂直? ②若直线 3x-2y=5,6x+y=5 与直线 3x+my=1 不能围成三角形,则 m 的值是
25 . 2
9、直线 l1: 2 x + y − 4 = 0 ,求 l1 关于直线 l: 3 x + 4 y − 1 = 0 对称的直线 l2 的方程.
第7页
学习 让人生更美好
10、不论 m 取什么实数,直线 (2m − 1) x + (m + 3) y − (m − 11) = 0 都经过一个定点,并求 出这个定点.
6 x − 8 y + 1 = 0 垂直,则 l 方程是______
8. 直线 l 过点 P(-2, 当d =
1),且与点 A(-1,
-2)的距离为 d,
2 时, 直线 l 的方程是______;
当 d=1 时, 直线 l 的方程是______;
第3页
学习 让人生更美好
高考数学考点突破——解析几何:两条直线的位置关系

两条直线的位置关系【考点梳理】1.两条直线平行与垂直的判定(1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.(2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.距离考点一、两条直线的平行与垂直【例1】 (1)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 (2)过点(-1,3)且垂直于直线x -2y +3=0的直线方程为( )A .2x +y -1=0B .2x +y -5=0C .x +2y -5=0D .x -2y +7=0[答案] (1)A(2)A[解析] (1)当a=1时,显然l1∥l2,若l1∥l2,则a(a+1)-2×1=0,所以a=1或a=-2.所以a=1是直线l1与直线l2平行的充分不必要条件.(2)直线x-2y+3=0的斜率为12,从而所求直线的斜率为-2.又直线过点(-1,3),所以所求直线的方程为y-3=-2(x+1),即2x+y-1=0.【类题通法】1.判定直线间的位置关系,要注意直线方程中字母参数取值的影响,不仅要考虑到斜率存在的一般情况,还要考虑到斜率不存在的特殊情况,同时还要注意x,y 的系数不能同时为零这一隐含条件.2.在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论,可避免讨论.另外当A2B2C2≠0时,比例式A1A2与B1B2,C1C2的关系容易记住,在解答选择、填空题时,有时比较方便.【对点训练】1. 已知过点A(-2,m)和点B(m,4)的直线为l1,直线2x+y-1=0为l2,直线x +ny+1=0为l3.若l1∥l2,l2⊥l3,则实数m+n的值为()A.-10B.-2C.0D.8[答案] A[解析] ∵l 1∥l 2,∴k AB =4-m m +2=-2,解得m =-8. 又∵l 2⊥l 3,∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1, 解得n =-2,∴m +n =-10.考点二、两直线的交点与距离问题【例2】 (1)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.(2)过点P (3,0)作一直线l ,使它被两直线l 1:2x -y -2=0和l 2:x +y +3=0所截的线段AB 以P 为中点,求此直线l 的方程.[答案] (1)x +3y -5=0或x =-1 (2) 8x -y -24=0[解析] (1) 法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 即|3k -1|=|-3k -3|,∴k =-13,∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.法二:当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4),∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.(2)设直线l 与l 1的交点为A (x 0,y 0),则直线l 与l 2的交点B (6-x 0,-y 0),由题意知⎩⎪⎨⎪⎧ 2x 0-y 0-2=0,6-x 0-y 0+3=0,解得⎩⎪⎨⎪⎧ x 0=113,y 0=163,即A ⎝ ⎛⎭⎪⎫113,163,从而直线l 的斜率k =163-0113-3=8, 直线l 的方程为y =8(x -3),即8x -y -24=0.【类题通法】1.求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程;也可利用过交点的直线系方程,再求参数.2.利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.【对点训练】2.若直线l 过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB |=5,求直线l 的方程.[解析] ①过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4), 此时|AB |=5,即直线l 的方程为x =1.②设过点A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1),得x =k +7k +2且y =4k -2k +2(k ≠-2,否则l 与l 1平行). 则B 点坐标为⎝ ⎛⎭⎪⎪⎫k +7k +2,4k -2k +2. 又A (1,-1),且|AB |=5,所以⎝ ⎛⎭⎪⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎪⎫4k -2k +2+12=52,解得k =-34. 因此y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.考点三、对称问题【例3】 (1)平面直角坐标系中直线y =2x +1关于点(1,1)对称的直线方程是________.(2)光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),则BC 所在的直线方程是________.[答案] (1)y =2x -3 (2)10x -3y +8=0[解析] (1)法一:在直线l 上任取一点P ′(x ,y ),其关于点(1,1)的对称点P (2-x,2-y )必在直线y =2x +1上,∴2-y =2(2-x )+1,即2x -y -3=0.因此,直线l 的方程为y =2x -3.法二:由题意,l 与直线y =2x +1平行,设l 的方程为2x -y +c =0(c ≠1),则点(1,1)到两平行线的距离相等, ∴|2-1+c |22+1=|2-1+1|22+1,解得c =-3. 因此所求直线l 的方程为y =2x -3. 法三:在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于点(1,1)对称的点M (2,1),B 关于点(1,1)对称的点N (1,-1).由两点式求出对称直线MN 的方程为y +11+1=x -12-1,即y =2x -3.(2)作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -6-4-6=x -1-2-1,即10x -3y +8=0.【类题通法】1.第(1)题求解的关键是利用中点坐标公式,将直线关于点的中心对称转化为点关于点的对称.2.解决轴对称问题,一般是转化为求对称点问题,关键是要抓住两点,一是已知点与对称点的连线与对称轴垂直;二是已知点与对称点为端点的线段的中点在对称轴上.【对点训练】3.直线x -2y +1=0关于直线x +y -2=0对称的直线方程是( )A .x +2y -1=0B .2x -y -1=0C .2x +y -3=0D .x +2y -3=0[答案] B [解析] 由题意得直线x -2y +1=0与直线x +y -2=0的交点坐标为(1,1). 在直线x -2y +1=0上取点A (-1,0),设A 点关于直线x +y -2=0的对称点为B (m ,n ), 则⎩⎪⎨⎪⎧ n -0m +1×(-1)=-1,m -12+n 2-2=0,解得⎩⎪⎨⎪⎧ m =2,n =3. 故所求直线的方程为y -13-1=x -12-1,即2x -y -1=0.。
高考数学 第九章 解析几何 9.2 两直线的位置关系课件 文

判定两条直线的位置关系 (1)两条直线的平行. ①若 l1:y=k1x+b1,l2:y=k2x+b2,则 l1∥l2
k1=k2 且
b1≠b2,l1 与 l2 重合 k1=k2 且 b1=b2.
第5页
高考调研 ·高三总复习 ·数学 (文)
②当 l1,l2 都垂直于 x 轴且不重合时,则有 l1∥l2. ③若 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则 l1∥l2 A1B2=A2B1 且 B1C2≠B2C1,l1 与 l2 重合 A1=λA2,B1=λB2, C1=λC2(λ≠0).
第6页
高考调研 ·高三总复习 ·数学 (文)
(2)两条直线的垂直. ①若 l1:y=k1x+b1,l2:y=k2x+b2,则 l1⊥l2 k1·k2= -1. ②若两条直线中,一条斜率不存在,同时另一条斜率等于零, 则两条直线垂直. ③若 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则 l1⊥l2 A1A2+B1B2=0.
第40页
高考调研 ·高三总复习 ·数学 (文)
【解析】 由题意,得 a26+a4=|4a-a2a+2+a46|,即 4a-a2+6 =±6,解之得 a=0 或-2 或 4 或 6.检验得 a=0 不合题意,所以 a=-2 或 4 或 6.
【答案】 -2 或 4 或 6
第41页
高考调研 ·高三总复习 ·数学 (文)
第31页
高考调研 ·高三总复习 ·数学 (文)
【答案】 (1)m≠-1 且 m≠3 (2)m=12 (3)m=-1 (4)m=3
第32页
高考调研 ·高三总复习 ·数学 (文)
题型二 距离公式 例 2 已知点 P(2,-1). (1)求过点 P 且与原点的距离为 2 的直线 l 的方程; (2)求过点 P 且与原点的距离最大的直线 l 的方程,最大距离 是多少? (3)是否存在过点 P 且与原点的距离为 6 的直线?若存在,求 出方程;若不存在,请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学人教B版一轮复习
第九部分解析几何(2)
二、两条直线位置关系
1.平行与垂直:若直线,则
(1)直线的充要条件是:且
(2)直线的充要条件是:
注:(1)若两直线相交,则
(2)两条直线重合的充要条件是:且
若直线,直线,则
(1)直线的充要条件是:或
(2)直线的充要条件是:
注:(1)若两直线相交,则
(2)两条直线重合的充要条件是:或
特别地:若都没有斜率,则平行或重合
若中有一条没有斜率,而另一个条斜率为,则
2. 两直线相交
直线,直线的公共点的坐标是由方程组求得的
若两直线平行时,方程组无解;若两直线重合时,方程有无数解。
3. 距离公式:
(1)两点间距离公式:若,则
(2)点到直线的距离公式:
若,直线,则点到直线的距离为
(3)两平行线间距离公式:
两条平行直线和间的距离为
练习:
1. 判断两条直线的位置关系,若相交,求出交点坐标:
(1),
(2),
(3),
2. 直线,的交点在第四象限,则的取值范围是
3. 直线,平行,则需要满足的条件是
4. 与直线平行,且在两坐标轴上的截距之和为的直线方程为
5. ,互相垂直时,值为
6. ,,当为何值时,(1),相交,(2),垂直,(3),平行,(4),重合
7. 已知点,直线,则过点和直线平行的直线方程,过点和直线垂直
的直线方程
8. 直线,互相垂直,则
9. 直线,的位置关系是
10. 直线,互相垂直,且垂足为,则
11. 过点且和直线垂直的直线方程是。