信道模型和信道容量
光通信中的信道建模与信道容量分析

光通信中的信道建模与信道容量分析光通信是一项现代通信技术,它采用光作为信号传输介质,其速度快、带宽宽、并且不受电磁干扰的特点使得其在很多应用场景中得到了广泛的应用。
如何对光通信中的信道进行建模和分析,是光通信领域的研究热点之一。
本文将阐述光通信中的信道建模和信道容量分析的相关内容。
一、光通信中的信道建模信道建模是对通信信道的特性进行描述和抽象的过程。
在光通信中,信道包含光纤、空气等传输介质。
光纤是光通信中最常用的传输介质之一。
根据信道的不同特点,光通信中的信道建模可以分为线性模型和非线性模型两种。
在光纤通信中,信道传输会受到各种噪声的影响,包括热噪声、自发噪声等。
为了对光纤通信中的信道进行建模,研究者通常采用线性模型。
线性模型是将光纤通信中的信号当成一个线性系统,其输入输出过程满足线性定理。
基于线性模型,研究者通常采用瑞利衰落模型或高斯白噪声模型进行分析,瑞利衰落模型适用于描述室内环境或者非常短距离的光纤传输,而高斯白噪声模型适用于描述长距离的光纤传输。
基于线性模型的推导,可以得到光强度和相位的三级统计特性,包括均值、方差和自相关函数等。
在某些情况下,非线性模型可能更适合描述光纤通信中的信道特性。
例如在光纤的高功率传输中,非线性效应会给信道带来一定影响。
非线性模型通常可以建立在薛定谔方程的基础上,对于一些常见的非线性效应,例如半波电流调制效应、自相位调制效应等,都可以采用非线性模型进行建模。
二、光通信中的信道容量分析信道容量是指单位时间内,发送端和接收端之间可以传输的有效信息量。
在光通信中,信道容量分析是评估光通信系统传输性能的重要指标。
光通信中信道容量分析的方法包括香农容量计算法和基于信息论的分析方法。
香农容量是指在理想情况下,对于一定的信道带宽和信道传输速率,通信系统可以最大化信息传输速率的极大值。
在光通信中,香农容量可以通过奈奎斯特公式进行计算。
该公式指出,当信道带宽为B,信号的传输速率为R时,理论最大的信息传输率C为2B log2 (1+SNR)。
信道容量(Channel Capacity)

信道容量(Channel Capacity)无线传输环境中,如果发端和收端均采用单天线发送和接收信号,接收信号y的数学模型可以表示为y=hx+n \tag{1} ,其中h为无线信道, x为发送信号,n为高斯加性白噪声服从正太分布 \mathcal{C}(0,\sigma^2) 。
通信相关专业的学生应该知道香农公式:公式(1)表示的无线信道容量(Channel Capacity)为C=B\log_2\left(1+\frac{P_t|h|^2}{\sigma^2} \right),\tag{2}其中B为信号带宽, P_t 为信号发射功率。
相信很多人知道结论(2),但是不明白它是怎么得到的。
下面将简单的阐述其推导过程。
阅读该过程之前,建议阅读“ 徐光宁:信息论(1)——熵、互信息、相对熵”中关于熵和互信息的定义。
对于接收端,发送信息x是一个随机变量,例如以概率p(x=a)发送x=a。
如果发送信息x对于接收端为一个确定值,那发送本身就没有任何意义。
因为发送信号x和噪声n 都是随机变量,接收信号y也是随机的。
可以引入熵来描述随机变量y所含的信息量,即H(y)=\int_y p(y)\log \frac{1}{p(y)}dy,\\其中p(y)为y的概率密度函数。
当某一时刻发送某一x后(x 此时是确定的), 收到的y的信息量为H(y|x)=\int_y p(y|x)\log \frac{1}{p(y|x)}dy,\\其中p(y|x)为y在给定x下的条件概率。
注意y因为是随机变量x和n的和,且x和n相互独立,其信息量为传输信号x和噪声n的信息量之和。
而y|x的随机性仅仅与噪声n有关,其信息量为噪声n的信息量。
互信息定义为I(x,y)=H(y)-H(y|x)\\ 。
其物理意义为随机变量y的信息量减去噪声n的信息量,等于x的信息量。
信道容量C指信道所实际传输信息量的最大值C=\max\limits_{p(x)} I(x,y) \tag{3}数学证明当x服从高斯分布 \mathcal{C}(0,P_t) 时,C in (3)取得最大值。
5-2 离散信道的信道容量

1
离散信道的信道容量
一、离散信道容量的定义 二、信道模型 三、离散信道容量的表达式
2
离散信道的信道容量
一、离散信道容量的定义
定义1: C- 每个符号能够传输的平均信息量最大值
定义2: Ct -单位时间(秒)内能够传输的平均信息量最大值
两者之间可以互换:已知信道每秒能够传输的符号数
i =1
j=1
i =1
n
∑ H ( x ) = − P ( x i ) log 2 P ( x i ) i=1
-每个发送符号xi的平均信息量,称为信源的熵
m
n
∑ ∑ H( x / y) = − P( y j ) P( xi / y j )log2 P( xi / y j )
j =1
i =1
-接收yj符号已知后,发送符号xi的平均信息量
0
P(0/0) = 127/128
0
发 送 端 P(0/1) = 1/128
接
收
P(1/0) = 1/128
端
P(1/1) = 127/128
1
1
对称道模型
离散信道的信道容量
信源的平均信息量(熵)
∑ H
(x)
=
−
n i=1
P ( x i ) log
2
P ( xi
)
=
−
⎡ ⎢⎣
1 2
log
2
1 2
离散信道的信道容量
③ 无噪声信道 信道模型
发 x1
送 端
x2
x。 3
。
P(xi) 。 xn
P(y1/x1) P(yn/xn)
第三章 信道模型和信道容量

这是可知疑义度H(X/Y)=0,平均交互信息量达到最大值 I(X,Y)=H(X),C=logr。从平均意义上讲,这种信道可以把信源 的信息全部传递道信宿。这种每列只有一个非0元素的信道也 是一种无噪声信道,称为无噪声信道。
确定信道
这类信道的转移概率等于1或者等于0, 每一列的元素可有一个或多个1,可知其 噪声熵H(Y/X)=0,此时的平均交互信息 量达到最大值。
离散信道
X
P(Y/X)
Y
离散信道分类: 无干扰信道 有干扰无记忆信道 有干扰有记忆信道
离散信道三种表达方式
概率空间描述 X={a1,a2,……ar} P(Y/X)={p(bj/ai)}
j=1,2,……s) Y={b1,b2,……bs} 0≤p(bj/ai)≤1
(i=1,2,……r;
转移矩阵描述
信道组合
串联信道 并联信道
4.4 时间离散的无记忆连续 信道
可加噪声信道
P(y|x)=p(y-x)=p(z)
Hc (Y | X ) Hc (Z ) I (X ;Y ) Hc (Y ) Hc (Z )
可加噪声信道
高斯噪声信道
I
(X
;Y
)
H
(Y
)
Hc
(X
)
1 2
log(1
2 x 2 z
)
例已知一个二元信源连接一个二元信道, 如图给出。X={x1,x2}, [p(xi)]={1/2,1/2}
求I(X;Y),H(X,Y),H(X/Y),和H(Y/X)。
信道容量
C max R max I (X ;Y )bit / 符号
PX
PX
1
Ct
max PX
Rt
第3章 信道模型和信道容量 习题课(2)

3、解: (1)已知二元对称信道的传递矩阵,又已知输入的
3 1 概率分布 P (0) , P (1) , 就可以计算得出 Y 的概率 4 4
分布如下:
P ( y 0) P ( x ) P ( y 0 | x )
x
P( x 0) P( y 0 | x 0) P( x 1) P( y 0 | x 1)
0
1
0
1
1
1
(a)
2
解
( a ) 图,由信道线图可得转移概率矩阵如下:
1
1
该矩阵为行列排列阵,信道为准对称信道,可以把按列分 成两个子矩阵如下:
1
1
PS 10 log10 1 20 PN
得到
PS 1 100 PN
信道传送的最大信息速率
PS Ct W log(1 ) 3 103 log 2 100 19.93 103 bit/s PN
(1)
信道不变, Ct 仍应为 19.93 10 (比特/秒) ,而
21s?121lognkkkskmmcshppprr??????????????????????11222loglog1222211loglog12hh????????????????????????????????????设在平均功率受限高斯可加波形信道中信道带宽为3khz又设信号功率噪声功率噪声功率20db
•设在平均功率受限高斯可加波形信道 中,信道带宽为3kHz,又设(信号功 率+噪声功率)/噪声功率=20 dB。
(1)试计算该信道传送的最大信息率 (单位时间)19.93*103(bit/s)。 (2)若功率信噪比降为5dB,要达到 相同的最大信息传输率,信道带宽应 是多少(12KHz)。
信道与信道容量

1.6.2 信道容量
根据香农信息论,对于连续信道,如果信道带宽为B, 并且受到加性高斯白噪声的干扰,则信道容量的理论公式为
C=B㏒2(1+S/N)(b/s) 式中。 N为白噪声的平均功率; S是信号的平均功率; S/N 为信噪比。信道容量C是指信道可能传输的最大信息速率 (即信道能达到的最大传输能力)。虽然上式是在一定条件 下获得的(要求输入信号也为高斯信号才能实现上述可能 性),但对其他情况也可作为近似式使用。
例1 已知彩色电视图象由5ⅹ105个像素组成。设每个像素有 64种彩色度,每种彩色度有16个亮度等级。设所有彩色度和 亮度等级的组合机会均等,并统计独立。(1)试计算每秒 传送100个画面所需信道容量;(2)如果接受机信噪比为 30dB,为了传送彩色图象所需信道带宽为多少?
例2 设有一个图像要在电话线路中实现传真传输。大约要传输2.25ⅹ106个 像素,每个像素有12个亮度等级。假设所有亮度等级都是等概率的,电 话电路具有3kHz带宽和30dB信噪比。试求在该标准电话线路上传输一 张传真图片需要的最小时间。
在数字通信系统中,如果仅研究编码和解码问题, 可得到另一种广义信道---编码信道。编码信道的范围是 从编码器输出端至解码器输入端。这是因为从编码和解 码角度来看,编码器是把信源产生的消息信号转化为数 字信号。反之,解码器是将数字信号恢复原来的消息信 号;而编码器输出端至解码器输入端之间的一切环节只 是起了传输数字信号的作用,所以可以把它看成一个整 体---编码信道。当然,根据研究问题的不同,还可以定 义其他广义信道。
解: Rb = RBN㏒2N
RBN= Rb/×106 / 29.9 ×103=0.269 ×103s=4.5min
例3 已知八进制数字信号的传输速率为1600波 特。试问变换成二进制数字信号时的传输速率为多 少? 解: Rb = RBN㏒2N = 1600× ㏒28 = 4800 b/s
信道、信道容量、数据传输速率

信道、信道容量、数据传输速率简介:信道、信道容量、数据传输速率(比特率)、电脑装置带宽列表一、信道的概念信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。
广义信道的定义除了包括传输媒质,还包括信号传输的相关设备。
信道容量是在通信信道上可靠地传输信息时能够达到的最大速率。
根据有噪信道编码定理,给定信道的信道容量是其以任意小的差错概率传输信息的极限速率。
信道容量的单位为比特每秒、奈特每秒等等。
香农在第二次世界大战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。
他指出,信道容量是信道的输入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
二、信道的分类(一)狭义信道的分类狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。
1. 有线信道有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附近,因此传输效率高,但是部署不够灵活。
这一类信道使用的传输媒质包括用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。
2. 无线信道无线信道主要有以辐射无线电波为传输方式的无线电信道和在水下传播声波的水声信道等。
无线电信号由发射机的天线辐射到整个自由空间上进行传播。
不同频段的无线电波有不同的传播方式,主要有:地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地面传播并绕过地面的障碍物。
长波可以应用于海事通信,中波调幅广播也利用了地波传输。
天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。
短波电台就利用了天波传输方式。
天波传输的距离最大可以达到400千米左右。
电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。
MIMO系统信道模型与信道容量

码
空时分组
1简介
由于移动通信的迅猛发展, 通信业务的爆 炸式蹭长陡得国 西 信业正在发生前所未有的重大 变革。 世界各国已 把研究重点转入 超三代移动=信的先冀 院。欧盟于20 年启动了‘ i 匿 嘞 02 ‘ 第六框架 砌贫凇 !,ⅡU 明确 了B yn -00 究的基 担 ,日本费减 了4 r ’ eodMT20 硼: I 架 G柜 錾 电议,韩国提出 4 G研究计 划, 我国也启动了FT R 计划。 UU E 为满足各方面技术需求, 超三 代移动j信应具有全 萤 撕面貌,为适应未来发展, 超三代移动通信必须能达到以下技术要求: 支持全 I高速分组数据 P 传输,数据速率为数十兆bs p甚至数百兆bs 支持高的终端移动.,移动速度高 p; 陛 达每小时几百 公里; 支持高的传输质量 , 数据业务的误爵啐 溯 1-; 06 支持高的传输质量 , 数据业务的 低于 1-; 06 支持在用户数据速率、 容量、 服务质量和移动速度等方面大动态范围的 变化; 提供高 的频谱利用率和功率效率, 发射功率降低 l B以 O d 上。 从近年来无线通信哩论的发展趋势看,多 天线技术必将在无线通信领域得到广泛的应用。特别是对在收发端同时放置多个天线的M M IO ( l lI uM l lO t t Muien t uie u u t p p t p p )系统的 酰 未 艾。 MI 在 MO无线逦信系统理论 研究 g 中, 建立室内、室外、城市、郊区、山区等各 种无线环境下的MI O多径衰落时变系统模型, M 分析各种典型的MI O多径衰落时变信道的信道容量, M 是未来移动 通信系统研究中的重要课题
hl I h} 2
H :