高一第一学期数学期末试卷(一)

合集下载

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。

高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)

高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)

高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0B .1C .2D .32.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y =B .3y x =C .cos y x =D .||y ln x =3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( )A .()0,2B .[]0,2C .(1+D .1⎡⎣6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .807.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .810.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)941451log log 3log 5log 272⋅--+. 19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值. (2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0 B .1C .2D .3【答案】B 【解析】{}1013M =-,,,,{}13N =-,{}1M N ∴⋂=故选:B2.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y = B .3y x =C .cos y x =D .||y ln x =【答案】D 【解析】根据题意,依次分析选项:对于A ,2x y =,为指数函数,其定义域为R ,不是偶函数,不符合题意; 对于B ,3y x =,为幂函数,是奇函数,不符合题意;对于C ,cos y x =,为偶函数,在(0,)+∞不是增函数,不符合题意; 对于D ,,0(),0lnx x y ln x ln x x ⎧==⎨-<⎩,为偶函数,且当0x >时,y lnx =,为增函数,符合题意;故选:D .3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -【答案】B 【解析】0((1))(0)1f f f e ===,故选:B4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .【答案】B 【解析】lg lg 0,lg 0a b ab +=∴=,即1ab =.∵函数()f x 为指数函数且()f x 的定义域为R ,函数()g x 为对数函数且()g x 的定义域为()0,∞+,A 中,没有函数的定义域为()0,∞+,∴A 错误;B 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递增,即01b <<,ab 可能为1,∴B 正确;C 中,由图象知指数函数()f x 单调递减,即01a <<,()g x 单调递增,即01b <<,ab 不可能为1,∴C 错误;D 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递减,即1b >,ab 不可能为1,∴D 错误. 故选:B.5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( ) A .()0,2B .[]0,2C .(12,12+D .12,12⎡⎤⎣⎦【答案】C 【解析】()11x f x e =->-,所以,()221g b b b =-+>-,整理得2210b b --<,解得1212b <故选:C.6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .80【答案】B 【解析】设此矩形面向河的一边的边长为x ,相邻的一边设为y , 由题意得200xy =, 设围栏总长为l 米,则240l x y =+≥=, 当且仅当2x y =时取等号, 此时20,10x y ==; 则围栏总长最小需要40米; 故选:B.7.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立, 即当[,2]x t t ∈+时,不等式22x t x +>恒成立 即2x t <恒成立 即22t t +< 解得2t >故实数t 的取值范围是(2,)+∞ 故选:A8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要【答案】A 【解析】∵1log log log log a b a a b a b b+=+,又1,1a b >>,∴log 0a b >,即1log 2log a a b b +≥=当且仅当a b =时等号成立, 而11,28a b ==时有110log log log 2log 3a b a a b a b b +=+=>,显然1,1a b >>不一定成立; 综上,所以有1,1a b >>是log log 2a b b a +≥充分不必要条件. 故选:A9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .8【答案】B 【解析】∵集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭, 集合{2,4,6}S =,|1,{0,1,2}2k T x x k S ⎧⎫==-∈=⎨⎬⎩⎭, ∴{}1,2,3,4,6ST =, ∴{}0,1,2,3,4,6ST T=. ∴集合STT ⋃元素的个数为6个.故选:B.10.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦【答案】D 【解析】 由t π=,可得2=2ππωω=⇒因为3y f x π⎛⎫=-⎪⎝⎭是奇函数 所以sin 23x πϕ⎛⎫+- ⎪⎝⎭是奇函数,即,3k k z πϕπ-=∈又因为()06f f π⎛⎫<⎪⎝⎭,即()2sin sin 3k k ππππ⎛⎫+<+⎪⎝⎭所以k 是奇数,取k=1,此时43πϕ= 所以函数()5sin 2sin 233f x x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭因为()f x 在[)0,t 上没有最小值,此时2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭所以此时432,332t πππ⎛⎤-∈ ⎥⎝⎦解得511,612t ππ⎛⎤∈ ⎥⎝⎦. 故选D.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.【答案】(,2)-∞ 【解析】由题设有20x ->,解得2x <,故函数的定义域为(),2-∞,填(),2-∞. 12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______. 【答案】2 【解析】()g x 的零点即为()0g x =的解.当1x ≤时,令322x -=,解得12x =,符合;当1x >,令22x =,解得x =()g x 的零点个数为2.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.【答案】10【解析】 由tan 1tan()241tan πααα--==+,解得tan 3α=-,因为22sin(2)2cos 2)(2sin cos cos sin )422πααααααα-=-=-+2222222sin cos cos sin 2tan 1tan 2cos sin 21tan ααααααααα-+-+=⨯=++222(3)1(3)21(3)10⨯--+-==+-. 14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.【答案】6,10000 【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA ﹣lgA 0=lg1000﹣lg0.001=3﹣(﹣3)=6. 设9级地震的最大的振幅是x ,5级地震最大振幅是y , 9=lgx+3,5=lgy+3,解得x=106,y=102,∴62101000010x y ==. 故答案耿:6,10000.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 【答案】2 9 【解析】因为34a =,所以3log 4a =,又2log 3b =, 因此32lg 4lg3log 4log 32lg3lg 2ab =⋅=⋅=;222log 32log 3log 944229b ====. 故答案为:2;9.16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 【答案】121- 【解析】根据题意,得3212A B A B ⎧-=⎪⎪⎨⎪+=-⎪⎩,解得1,12A B ==-.故答案为:1,12- 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.【答案】35247【解析】由已知得3cos 5α==-,所以445tan 335α==--,242243tan 27413α⎛⎫⨯- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭. 故答案为:35;247. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; (2)941451log log 3log 5log 272⋅--+. 【答案】(1)3;(2)174. 【解析】(1)根据指数幂的运算法则,可得()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭222333333(24441399)1[()]22--⎛⎫=--+ -⎪⎝-+⎭==.(2)根据对数的运算法则,可得941451log log 3log 5log 272⋅--+ 325211111log 2log log 5log 2414224341722=-⨯+-+=-+-+=.19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.【答案】(1)奇函数,证明见解析;(2)()0,1. 【解析】()1要使函数有意义,则{1010x x +>->,即{11x x >-<,即11x -<<, 即函数的定义域为()1,1-,则()()()()()()log 1log 1log 1log 1a a a a f x x x x x f x ⎡⎤-=-+-+=-+--=-⎣⎦, 则函数()f x 是奇函数.()2若1a >,则由()0.f x >得()()log 1log 10a a x x +-->,即()()log 1log 1a a x x +>-, 即11x x +>-,则0x >, 定义域为()1,1-,01x ∴<<,即不等式的解集为()0,1.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值.(2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 【答案】(1)12sin 13α=,12tan 5α=-(2)3πβ=【解析】 (1)55cos 132x α==-⇒=-, ∴5,62P ⎛⎫- ⎪⎝⎭∴12sin 13α==,612tan 552α==--;(2)由1cos 7α=,02πα<<,得sin 7α=, 由13cos()14αβ-=,02πβα<<<,得02παβ<-<,得sin()αβ-=所以cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+-11317142=⨯=, 又02πβ<<,∴3πβ=.21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.【答案】(1)T π=;单调递增区间为[,]63k k ππππ-+,k Z ∈;单调递减区间为5[,]36k k ππππ++ ,k Z ∈; (2)6x k ππ=+或2x k π=+π,k Z ∈.【解析】(1)2()cos cos f x x x x -cos 21222x x +=-1sin 262x π⎛⎫=-- ⎪⎝⎭,即()1sin 262f x x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. 因为sin y x =的单调增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,令222262k x k πππππ-≤-≤+,解得63k xk ππππ,k Z ∈.因为sin y x =的单调减区间为32,222k k ππππ⎡⎤+⎢⎥⎣⎦+,k Z ∈,令3222262k x k πππππ-++≤≤, 解得536k x k ππππ++≤≤,k Z ∈. 所以()f x 的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)函数1()sin 262f x x π⎛⎫=-- ⎪⎝⎭的零点, 令1sin(2)062x π--=,即1sin(2)62x π-=.2266x k πππ-=+或52266x k πππ-=+,k Z ∈ 解得6x k ππ=+或2x k π=+π,k Z ∈所以()f x 的零点为6x k ππ=+或2x k π=+π,k Z ∈22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.【答案】(1)±1;(2)1,5⎛⎫-∞- ⎪⎝⎭. 【解析】(1)由函数2()21x xaf x a -=⋅+为奇函数,可得()()f x f x -=-, 代入可得:222121x x x xa aa a ----=⋅+⋅++, 整理可得:2222(2)1(2)x a a x -=-,所以21a =, 解得:1a =±;(2)若0a >,由(1)知1a =,所以212()12121x x xf x -==-++, 由2x 为增函数,21x u =+为增函数且210x u =+>, 又因为2u 为减函数,所以2u-为增函数, 所以()f x 为增函数, 又因为()f x 为奇函数,由()(())20xf f x f t +⋅<可得:()20x f x t +⋅<,即21+2021x x x t -⋅<+在[1,1]x ∈-上恒成立, 若0t ≥,1x =时不成立,故0t <, 令2x s =,则1(,2)2s ∈, 整理可得:2(1)10t s t s ⋅++-<, 令2()(1)1g s t s t s =⋅++-,若1122t t +-≤或122t t +-≥ 需131()0242g t =-<,(2)610g t =+<,可得1156t -≤<-或12t ≤-,若11222t t +<-<,需1()02t g t+-<, 解得1125t -<<-,综上可得:实数t 的取值范围为1,5⎛⎫-∞- ⎪⎝⎭.。

2023-2024学年上海建平中学高一上学期数学期末试卷及答案(2024.01)

2023-2024学年上海建平中学高一上学期数学期末试卷及答案(2024.01)

1建平中学2023学年第一学期高一数学期末2024.1一、填空题(每题3分,满分36分)1.已知扇形的面积是4,半径为2,则扇形的圆心角为________弧度.2.已知α是第二象限角,且35sin α=,则tan α=________.3.若函数()()23(0a f x log x a =−−>且1)a ≠的图像恒过定点A ,则A 的坐标是______.4.已知02,πα∈−,若728cos α=,则sin α=________.5.方程)20sin xx =≤≤π的解集为________. 6.函数()2f x x =+的值域是________. 7.已知α为锐角,167cos πα+=,则cos α=________.8.已知函数()9999999f x ax bx x =+−+,且()210f −=,则()2f =________. 9.若存在x R ∈,使34cosx sinx k =+成立,则实数k 的取值范围是________.10.已知函数()(2x f x ln x =+,若()2561f m m +−<,则实数m 的取值范围是_____.11.已知函数()()242,1,23,1xx f x g x x ax x x −< ==++ −≥ ,若函数()()y g f x =有6个零点,则实数a 的取值范围是________.12.若存在实数,a b ,对任意实数[]01x ,∈,不等式32x m ax b x −≤+≤恒成立,则实数m 的取值范围是________.二、选择题(每题3分,满分12分) 13.“1sinx =”是“0cosx =”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件214.已知实数,a b 满足a b >,则下列不等式恒成立的是( )A.11a b −−>;B.22a b >;C.33a b >;D.a b >.15.对于ABC ∆,角,,A B C 的对边分别为,,a b c ,有如下判断:(1)若cosA cosB =,则ABC ∆为等腰三角形;(2)若A B >,则sin sinA B >;(3)若8,10,60a c B === ,则符合条件的ABC ∆有两个;(4)若sinAsinB cosAcosB <,则ABC ∆是钝角三角形.其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个16.已知集合S 是由某些正整数组成的集合,且满足:若a S ∈,则当且仅当(a m n =+其中正整数,m n S ∈,且)m n ≠或(a p q =+其中正整数,p q S ∉,且)p q ≠.现有如下两个命题:(1)5S ∈;(2)集合{}*3xx n,n N S =∈⊆∣.则下列判断正确的是( ) A.(1)是真命题,(2)是真命题. B.(1)是真命题,(2)是假命题. C.(1)是假命题,(2)是真命题. D.(1)是假命题,(2)是假命题. 三、解答题(本题共有5大题,满分52分) 17.已知角α的终边经过点()12M ,−, (1)求()23sin cos cos sin α+π−αα−α的值.(2)求24tan πα+的值.18.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2sin B =. (1)求角B 的大小.(2)若ABC ∆的面积为6,4a =,求b 的长.319.某乡镇响应“绿水青山就是金山银山”的号召,将该镇打造成“生态水果特色小镇”.经调研发现,某水果的产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()2217,02850,251x x W x x x +≤≤=−<≤−,且施用肥料及其它成本总投入为20x 元.已知这种水果的市场售价大约10元/千克,且生产的水果都能售出.记该水果利润为()f x (单位:元)(利润=销售额-成本)(1)写出利润()f x (元)关于施用肥料x (千克)的关系式.(2)当施用肥料为多少千克时,该水果利润最大?最大利润是多少?20.对于函数()f x ,若存在0x R ∈,使()00f x x =成立,则称0x 为()f x 的不动点. (1)已知函数()23f x x x =−−,求函数()f x 的不动点.(2)若对于任意的b R ∈,二次函数()()()2180f x ax b x b a =+−+−≠恒有两个相异的不动点,求实数a 的取值范围.(3)若函数()()211f x mx m x m =−+++在区间()02,上有唯一的不动点,求实数m 的取值范围.421.若函数()f x 满足:对任意正数,s t ,都有()()()f s f t f s t +<+,则称函数()f x 为“H 函数”. (1)试判断函数()21f x x =与()()21f x ln x =+是否为“H 函数”,并说明理由. (2)若函数33x y x a =+−是“H 函数”,求实数a 的取值范围.(3)若函数()f x 为“H 函数”,()11f =,对任意正数,s t ,都有()()0,0f s f t >>,求证:对任意()()122k k x ,k N +∈∈,都有()122x f x f x x −>−.5参考答案一、填空题 1.2 ; 2. 34−3.()33,−4.14−;5.388,ππ ;6.54,⋅−∞; 8.8; 9.[]55,⋅−; 10.()61,−;11.(3,⋅−− 12.14,+∞二、选择题13.A 14. C 15. C 16.A 三.解答题17.【答案】(1)-1 (2)-7【解析】(1)由已知得2tan α=−,()22211333sin cos sin cos tan cos sin cos sin tan α+π−αα−αα−∴===−α−αα−α−α;(2)2tan α=− ,224231tan tan tan α∴α==−α,则2127412tan tan tan πα+α+==− −α. 18.【答案】(1)4B π=(2)b = 【解析】(1)因为2sin B =,所以2sinBcosB =. 因为0sinB ≠,所以cosB =,又,0B <<π,所以4B π=.(2)因为114622ABC S acsinB c ∆==××=,所以c =由余弦定理可得222216182410b a c accosB +−+−××,所以b =. 19.【答案】(1)()22020340,028050020,251x x x f x x x x −+≤≤= −−<≤−(2)肥料为3千克时,该水果的利润最大,最大利润是400元【解析】(1)由已知()()1020f x W x x =−,又()()2217,02850,251x x W x x x +≤≤= −<≤ −,6所以()()2201720,028050020,251x x x f x x x x +−≤≤= −−<≤ − ,整理得()22020340,028050020,251x x x f x x x x −+≤≤ = −−<≤− . (2)当02x ≤≤时,()2212020340203352f x x x x−+−+,∴当02x ≤≤时,()()2380f x f ≤=,当25x <≤时,()80500201f x x x =−−−, ()80500201201x x =−+−+ − ()804802014804001x x−+−≤− −当且仅当()802011x x =−−,即3x =时等号成立,()400max f x =,因为380400<综上,所以()f x 的最大值为400.故当施用肥料为3千克时,该水果的利润最大,最大利润是400元. 20.【答案】(1)1,3− (2)()06,(3)11m −<≤或m =【解析】(1)设0x 为不动点,因此20003x x x −−=,解得01x =−或03x =,所以1,3−为函数()f x 的不动点.(2)方程()f x x =,即()218ax b x b x +−+−=,有()22800ax b x b a +−+−=≠,, 于是得方程()2280ax b x b +−+−=有两个不等实根, 即()()()22(2)480414810Δb a b b a b a =−−−>⇔−+++>, 依题意,对于任意的b R ∈,不等式()()2414810b a b a −+++>恒成立, 则()216(1)16810,Δa a ′=+−+<整理得260a a −<,解得06a <<, 所以实数a 的取值范围是()06,.(3)由于函数()f x 有且只有一个不动点在()02,上所以()211mx m x m x −+++=, 即()2210mx m x m −+++=在()02,上有且只有一个解令()()221g x mx m x m =−+++7①()()020g g ⋅<,则()()110m m +−<,解得11m −<<;②()00g =即1m =−时,方程可化为20x x −−=,另一个根为-1,不符合题意,舍去; ③()20g =即1m =时,方程可化为2320x x −+=,另一个根为1,满足; ④0∆=,即()()22410m m m +−+=,解得m =(I)当m =时,方程的根为()2222m m x m m −++=−=,满足; (II)当m =时,方程的根为()2222m m x m m −++=−=,不符合题意,舍去; 综上,m 的取值范围是11m −<≤或m =. 21.【答案】(1)不是 (2)13a ≥(3)见解析【解析】(1)对于任意()()()()()222111,0,,s t ,f s f t s t f s t s t ∈+∞+=++=+,()()()()222111()20f s t f s f t s t s t st ∴+−+=+−+=> ,即()()()111f s f t f s t +<+成立;故()21f x x =是“H 函数”.对于()()21f x ln x =+,取1s t ==,则()()()22222,3f s f t ln f s t ln +=+=. 因为22ln 3ln >,故()()21f x ln x =+不是“H 函数”.(2)因为函数33x y x a =+−是“H 函数”,故对于任意的(),0s t ,∈+∞有 ()333333s t s t s t a s a t a +++−>+−++−恒成立,即3333s t s t a +−−>−恒成立所以()()313113s t a −−>−恒成立.又(),0s t ,∈+∞,故()3,31s t ,∈+∞,则()()()31310s t ,−−∈+∞则130a −≤,即13a ≥. (3)由函数()f x 为“H 函数”,可知对于任意正数,s t , 都有()()0,0f s f t >>,且()()()f s f t f s t +<+,8令s t =,可知()()22f s f s >,即()()22f s f s >,故对于自然数k 与正数s ,都有()()()()()()()()111122222,22k k k k k k f s f s f s f s f s f s f s f s +++−=⋅>对任意()()122k k x ,k N +∈∈,可得111122k k,x +∈,又()11f =, 所以()()()()()122222122k kkkkxf x f x f f f +>−+>≥=>,同理()1111111122222222k k k k k k f f f f f x x x + <−−<≤==< ,故()122x f x f x x−>− .。

2021-2022学年江苏省连云港市高一上学期期末考试调研数学试卷(1)带讲解

2021-2022学年江苏省连云港市高一上学期期末考试调研数学试卷(1)带讲解
故选:B.
(必修1P92页例9改编)
7.2000年我国国内生产总值(GDP)为89 442亿元,如果我国GDP年均增长7.8%,那么按照这个增长速度,在2000年的基础上,我国GDP要实现比2000年翻两番的目标,需要经过()(参考数据:lg2≈0.301 0,lg1.078≈0.032 6,结果保留整数)
连云港市2021—2022学年第一学期期末调研考试(1)
高一数学试题
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(必修1P18页T11改编)
1.已知集合 , ,则 ()
A. 3}B.
C. D. }
【答案】A
【解析】
【分析】根据集合交集概念求解即可.
(1)将 表示为关于 的函数;
(2)当 取何值时,总造价最低,并求出最低总造价.
【答案】(1) ;(2)当 时,总造价最低且最低为 .
【解析】
【分析】
(1)根据题设先计算出绿化的面积和硬化地面的面积,从而可得 表示为关于 的函数;
(2)利用基本不等式可求何时取何最值.
【详解】(1)因为矩形区域 面积为 ,故矩形的宽为 ,
绿化的面积为 ,
中间区域硬化地面的面积为 ,
故 ,
整理得到 ,
由 可得 ,
故 .
(2)由基本不等式可得
,当且仅当 时等号成立,
故当 时,总造价最低且最低为 .
【点睛】方法点睛:利用基本不等式解决应用问题时,注意合理构建数学模型,求最值时注意“一正二定三相等”,特别是检验等号是否可取.
(必修1P74页T13改编)
(2)对二次项系数进行分类讨论,结合判别式和开口方向,求得 的取值范围.

高一期末数学试卷及答案

高一期末数学试卷及答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. √-1D. 0.1010010001…2. 若 a > b > 0,则下列不等式成立的是:A. a² > b²B. a - b > 0C. a/b > 1D. ab > 03. 已知函数 f(x) = 2x - 3,若 f(x) + f(2 - x) = 0,则 x 的值为:A. 1B. 2C. 3D. 44. 在直角坐标系中,点 A(2,3),B(4,5),则线段 AB 的中点坐标为:A. (3,4)B. (4,3)C. (3,5)D. (4,4)5. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为:A. 100B. 105C. 110D. 1156. 若复数 z 满足 |z - 1| = |z + 1|,则 z 在复平面上的位置是:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 下列函数中,是奇函数的是:A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = 1/x8. 在△ABC中,若 a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形9. 已知函数f(x) = x² - 4x + 4,其图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 410. 若等比数列 {an} 的前三项分别是 2, 6, 18,则其公比为:A. 2B. 3C. 6D. 9二、填空题(每题5分,共50分)1. 若 a + b = 5,a - b = 1,则a² - b² 的值为________。

2. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为________。

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷XXX2017-2018学年第一学期期末考试高一年级数学试卷第I卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知向量a=(2,1),b=(λ−1,2),若a+b与a−b共线,则λ=()A.−2B.−1C.1D.2改写:向量a=(2,1),向量b=(λ-1,2),若a+b和a-b共线,则λ=() A。

-2 B。

-1 C。

1 D。

22.已知3sinα+4cosα=2,则1-sinαcosα-cos2α的值是() A。

- B。

C。

-2 D。

2改写:已知3sinα+4cosα=2,求1-sinαcosα-cos2α的值,答案为() A。

- B。

C。

-2 D。

23.已知在△ABC中,AB=AC=1,BC=3,则AB·AC=() A。

1/33 B。

- C。

-2 D。

-改写:在△ABC中,AB=AC=1,BC=3,求XXX的值,答案为() A。

1/33 B。

- C。

-2 D。

-4.在△ABC中,若AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定改写:在△ABC中,如果AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanA-tanB=3,则△ABC的面积为() A。

3/33 B。

- C。

3 D。

33/2改写:已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanB=3,求△ABC的面积,答案为() A。

3/33 B。

- C。

高一必修一数学期末试卷及答案

高一必修一数学期末试卷及答案

高一必修一数学期末试卷及答案第一部分:选择题(共80分)1.解下列各方程:5x+8=3x+12. A. x=3B. x=2C. x=−3D. x=13.若x+3=2x−1,则x= A. 2B. 4C. -4D. -24.已知a=2,当x=3时,y=ax2的值是: A. 18B. 54C. 36D. 125.若f(x)=3x+4,则f(−2)= A. -2B. -6C. -2D. -10第二部分:填空题(共20分)1.已知直线y=2x+3与y=−x+1的交点坐标为(a,b),则a=(填入具体数字)2.设x是保证2x+5>3x成立的x的取值范围,x的范围是(m,n),则m=(填入具体数字),n=(填入具体数字)第三部分:计算题(共60分)1.已知a+b=5,a−b=1,求a与b的值。

2.计算$\\frac{3}{5} \\div \\frac{4}{9}$的结果。

3.若y=x2−3x+2,求当x=2时,y=?第四部分:简答题(共40分)1.简述解一元一次方程的基本步骤。

2.什么是函数?函数的概念及符号表示是什么?高一必修一数学期末试卷参考答案第一部分:选择题答案1. A. x=32. B. 43. C. 364. B. -2第二部分:填空题答案1.$(\\frac{2}{3}, \\frac{7}{3})$2.$(5, \\infty)$第三部分:计算题答案1.a=3,b=22.$\\frac{27}{20}$3.y=0第四部分:简答题答案1.解一元一次方程的基本步骤包括化简方程、移项、合并同类项、求解等。

2.函数是自变量和因变量之间的对应关系,通常用f(x)表示。

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。

(−∞,3)∪(5,+∞)B。

(−∞,3)∪[5,+∞)C。

(−∞,3]∪[5,+∞)D。

(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。

a^3B。

a^3/2C。

a^3/4D。

都不对3.下列指数式与对数式互化不正确的一组是A。

e=1与ln1=0B。

8^(1/3)=2与log2^8=3C。

log3^9=2与9=3D。

log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。

x^2B。

x^3C。

e^xD。

1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。

log2B。

−1/lg2C。

lg2D。

−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。

y=−3x^−2B。

y=3^xC。

y=log_3xD。

y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

:Y
高一第一学期数学期末试卷(一)
第I 卷(选择题,共60分)
一、选择题(每小题5分,共60分)
1、设集合{|08},{1,2,3,4,5},{3,5,7}U x N x S T =∈<≤==则()U S
C T =( )
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}
2、已知三个数20.320.3log 0.32、
、,则下列选项正确的是( ) A.0.322log 0.320.3<< B.20.320.3log 0.32<< C.20.32log 0.30.32<< D.20.320.32log 0.3<<
3、下列各组函数中,表示相等函数的为( )
A.1y =和0y x =
B.y x =和ln x y e =
C.y x =和2
x y x = D.||y x =
和2y =
4、方程3log 3x x =-+的解所在的区间为( ) A.(0,1) B.(1,2) C.(2,3) D.(3,)+∞ 5下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是
A. 1
y x
=
B.x y e -=
C.lg ||y x =
D.21y x =-+ 6.
函数1
f (x )l
g x
=
+ A.(0,2] B.(0,2) C.(01)(12],, D.(2],-∞
7.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,2()2sin f x x x =-,则当
0<x 时,)(x f =
A .22sin x x --
B .22sin x x -+
C . 22sin x x +
D .22sin x x -
8、定义在R 上的偶函数()f x 在[0,7]上是增函数,在[7,)+∞上是减函数,又
(7)6f =,则函数()f x ( )
A.在[7,0]-上是增函数,且最大值是6
B.在[7,0]-上是增函数,且最小值是6
C.在[7,0]-上是减函数,且最小值是6
D.在[7,0]-上是减函数,且最大值是6
9.函数2()(31)2f x x a x a =+++在区间(4)-,∞上为减函数,则实数a 的取值范围是( )
A.3a -≤
B.3a ≤
C.5a ≤
D.3a =-
10、函数||()x
x e f x x
=的图象的大致形状是( )
11.已知函数()1
2
ax f x x +=
+在区间()2,-+∞上为增函数,则实数a 的取值范围是 A.1,2⎛
⎤-∞ ⎥⎝⎦
B. 1,2⎛
⎫-∞ ⎪⎝⎭
C.1,2⎡⎫
+∞⎪⎢⎣⎭
D.1,2⎛⎫
+∞ ⎪⎝⎭
12、已知函数12log ,0
()2,0x x x f x x >⎧⎪
=⎨⎪⎩≤,若关于x 的方程()f x k =有两个不等的实根,
则实数k 的取值范围是
A.(0,)+∞
B.(,1)-∞
C. (1,)+∞
D.(0,1]
第II 卷(非选择题,共90分)
二、填空题(每小题5分,共20分)
13、计算:41
0.25()lg83lg52
-⨯-++= 。

14.f (x )=,则f {f [f (﹣1)]}= .
15.函数3
2
-=-a
y x (a >0且a ≠1)一定过定点 .
16.已知定义域为R 的奇函数f (x )在(0,+∞)上是增函数,且f ()=0,
则不等式f (log 4x )>0的解集是 .
二、解答题
本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17、(10分)已知集合{|32}A x x =-≤≤,集合{|131}B x m x m =--≤≤。

(1)当3m =时,求,A B A B ; (2)若A B =A ,求实数m 的取值范围。

18.(10分)已知函数f (x )=log 2.
(1)求函数的定义域; (2)判断并证明函数的奇偶性.
19、(本小题满分12分)
用定义证明在23
()1
x f x x +=+在(0,)+∞上是减函数。

20、(本小题满分12分)
已知函数()()
()log 10,1x a f x a a a =->≠且
(1)求函数()f x 的定义域;
(2)若函数()f x 的函数值大于1,求x 的取值范围。

21.(本小题满分12分)
已知函数f (x )=﹣x 2+2ax +1﹣a ,
(1)若a=2,求f (x )在区间[0,3]上的最小值; (2)若f (x )在区间[0,1]上有最大值3,求实数a 的值.
22.(本小题满分12分)
已知f (x )是定义在[]1,1-上的奇函数,且f (1)=1,若a ,b ∈[]1,1-,0a b +≠时,有
f (a )+f (b )
a +b
>0成立.
(1)判断f (x )在[]1,1-上的单调性,并证明它; (2)解不等式:(21)(13)f x f x -<-;
(3)若f (x ) ≤ m 2
-2am +1对所有的a ∈[]1,1-恒成立,求实数m 的取值范围.。

相关文档
最新文档