元胞自动机(CA)代码及应用
元胞自动机应用概述

元胞自动机应用概述元胞自动机的应用概述元胞自动机自产生以来被广泛地应用到社会、经济、军事和科学研究的各个领域。
到目前为止其应用领域涉及生物学、生态学、物理学、化学、交通科学、计算机科学、信息科学、地理、环境、社会学、军事学以及复杂性科学等。
下面我们将对元胞自动机在这些领域中的应用分别做简要介绍。
1.生物学领域:因为元胞自动机的设计思想本来就来源于生物学自繁殖的现象所以它在生物学上的应用更为自然而广泛。
例如元胞自动机用于肿瘤细胞的增长机理和过程模拟、人类大脑的机理探索、艾滋病病毒HIV的感染过程、自组织、自繁殖等生命现象的研究以及最新流行的克隆技术的研究等。
另外还可以用来模拟植物生长的过程。
2.物理学领域:在元胞自动机基础上发展出来的格子自动机和格子—波尔兹曼方法在计算机流体领域获得了巨大的成功。
其不仅能够解决传统流体力学计算方法所能解决的绝大多数问题并且在多孔介质、多相流、微小尺度方面具有其独特的优越性。
另外元胞自动机还被用来模拟雪花等枝晶的形成。
3.生态学领域:元胞自动机被用于兔子—草、鲨鱼—小鱼等生态系统动态变化过程的模拟展示出令人满意的动态效果元胞自动机成功的应用于蚂蚁的行走路径大雁、鱼类洄游等动物的群体行为的模拟另外基于元胞自动机模型的生物群落的扩散模拟也是当前的一个应用热点。
4.化学领域:通过模拟原子、分子等各种微观粒子在化学反应中的相互作用进而研究化学反应的过程。
5.交通科学领域:因为涉及到车辆、司机、行人、道路条件等因素以及它们之间的相互影响和联系交通系统通常被看做是一个多粒子构成的复杂巨系统。
元胞自动机在交通中的应用沿着两条主线展开:对城市交通流的研究;对城市交通网络的研究。
由于交通元素从本质上来说是离散的而元胞自动机又是一个完全离散化的模型所以用元胞自动机理论来研究交通问题具有独特的优越性。
另外20世纪80年代以来计算机水平日新月异的发展为元胞自动机的应用提供了强有力的支持。
因此在进入20世纪90年代以后元胞自动机在交通流理论研究领域中得到了广泛的应用。
元胞自动机在复杂系统建模中的应用

元胞自动机在复杂系统建模中的应用元胞自动机(Cellular Automata,简称CA)是一种用来描述复杂系统行为的数学模型。
它由一组简单的单元(cell)组成,在一个由相同大小的正方形格子(grid)构成的网格上进行演化。
每个单元可以处于不同的状态,并通过更新规则与其邻居进行交互。
尽管元胞自动机的规则非常简单,但它已被广泛应用于生物、物理、社会科学等领域的复杂系统建模中。
本文将介绍元胞自动机在复杂系统建模中的应用,并探讨其优势和局限性。
元胞自动机最早由美国数学家John von Neumann和Stanislaw Ulam 于20世纪40年代提出。
它广泛应用于不同领域,例如生物学中的细胞生长模拟、物理学中的颗粒传输模拟、社会科学中的城市规划模拟等。
元胞自动机的简单规则和复杂行为之间的关系使其成为复杂系统建模中的强大工具。
首先,元胞自动机在生物学中的应用非常广泛。
生物系统中的许多现象可以通过元胞自动机来模拟和解释。
例如,在细胞生长过程中,细胞与周围细胞进行相互作用,从而形成特定的模式和结构。
通过模拟和研究这些交互作用,科学家可以更好地理解生物系统的发展和演化规律。
元胞自动机还可用于模拟病原体传播、生态系统动力学、遗传算法等生物学问题,为生物学研究提供了新的视角和方法。
其次,元胞自动机在物理学中的应用也非常突出。
在物质传输和分布的模拟中,元胞自动机可以精确地描述粒子之间的相互作用和运动规律。
通过定义单元的状态和更新规则,元胞自动机可以模拟物质在介质中的传输、扩散、聚集等复杂过程。
这种建模方法在材料科学、地球科学、天体物理学等领域得到了广泛应用,为研究人员提供了一种高效而有效的模拟工具。
此外,元胞自动机在社会科学中也有重要的应用。
社会系统是一种充满复杂性和非线性特征的系统,元胞自动机能够较好地刻画其内部的各种相互作用和演化规律。
例如,在城市规划模拟中,通过设定不同的元胞状态和邻居交互规则,可以模拟城市人口密度、交通流动、资源分配等问题,为城市规划者提供决策支持和优化方案。
CA元胞自动机优化模型原代码

CA优化模型原代码:M=load(‘d:\ca\jlwm’)N=load(‘d:\ca\jlwn.asc’)lindishy=load(‘d:\ca\ldfj3.asc’)caodishy=load(‘d:\ca\cdfj3.asc’)gengdishy=load(‘d:\ca\htfj3.asc’)[m,n]=size(M);Xr=[1 1 -1 1 1 1 -1 -1 1 1;1 1 1 1 -1 -1 1 1 1 -1;-1 1 1 1 -1 -1 -1 1 -1 -1;1 1 1 1 1 1 -1 1 1 I; l -1 -1 1 1 -1 -1 -1 1 1;1 -1 -1 1 -1 1 -1 1 -1 -1;-1 1 -1 -1 -1 -1 1 -1 -1 -1;-1 1 1 1 -1 1 -1 1 -1 -1;1 1 -1 1 1 -1 -1 -1 1 1;1 -1 -1 1 1 -1 -1 -1 1 1];caodi=0;lindi=0;gengdi=0;for i=1:mforj=l:nif M(i,j)==4caodi=caodi+1;elseif M(i,j)==3lindi=lindi+1;elseif M(i,j)==2gengdi=gengdi+1;endendendfor i=1:mfor j=1:nif M(i,j)==4if lindishy(i,j)>gengdishy(i,j)if lindishy(i,j)>caodishy(i,j)z=0;for P=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if (M(p,q)~=0)&&xr(M(p,q),3)==-1z=1;endendendif z== 0caodi=eaodi-1;M(i,j)=3;lindi=lindi+1;endelseif lindishy(i,j)==caodishy(i,j)caoditemp=0;linditemp=0;gengditemp=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(i+1,n)if N(p,q)==4caoditemp=caoditemp+1;elseif N(p,q)==3linditemp=linditemp+1;elseif N(p,q)=2gengditemp=gengditemp+1;endendendif linditemp>=max(caoditemp,gengditemp) z=0;for p=max(1,j-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),3)==-1;z=1;endendendif Z==0caodi=caodi-1;M(i,j)=3;lindi=lindi+1;endendendelseif lindishy(i,j)==gengdishy(i,j)if lindishy(i,j)>caodishy(i,j)caoditemp=0:linditemp=0;gengditemp=0:for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if N(p,q)==4caoditemp=caoditemp+1;elseif N(p,q)==3linditemp=linditemp+1;elseif N(p,q)==2gengditemp=gengdltemp+1;endendendif linditemp>=gengditempfor p=max(1,j-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if (M(p,q)~=0)&&xr(M(p,q),3)==-1z=1;endendendif z==0caodi=caodi-1;M(i,j)=3;lindi=lindi+1;endendelseif lindishy(i,j)==caodishy(i,j) caoditemp=0;linditemp=0;gengditemp=0;for p=max(i,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if N(p,q)==4caoditemp=caoditemp+1;elseif N(p,q)==3linditemp=linditemp+1;elseif N(p,q)==2gengditemp=gengditemp+1;endendendif linditemp>=max(caoditemp,gengditemp) z=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),3)==-1z=1;endendendif z==0caodi=caodi-1;M(i,j)=3;lindi=lindi+1;endendendelseif M(i,j)==2if lindishy(i,j)>gengdishy(i,j)if lindishy(i,j)>caodishy(i,j)z=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),3)==-1z=1;endendendif z==0M(i,j)=3;Lindi=lindi+1;gengdi=gengdi-1;endelseif lindishy(i,j)==caodishy(i,j) caoditemp=0;linditemp=0;gengditemp=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if N(p,q)==4caoditemp=caoditemp+1;elseif N(p,q)==3linditemp=linditemp+1;elseif N(p,q)==2gengditemp=gengditemp+1;endendendif linditemp>=max(caoditemp,gengditemp) z=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),3)==-1z=1;endendendif z==0M(i,j)=3;lindi=lindi+1;gengdi=gengdi-1endelseif caoditemp>= gengditemp biaoji=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),4)==-1 z=1;endendendif z==0M(i,j)=4;caodi=caodi+1;gengdi=gengdi-1;endendelseif lindishy(i,j)<caodishy(i,j)z=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),4)==-1 z=1;endendendif z==0M(i,j)=4;caodi=caodi+1;gengdi=gengdi-1;endendelseif lindishy(i,j)==gengdishy(i,j) if lindishy(i,j)<caodishy(i,j)z=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),4)==-1 z=1;endendendif biaoji==0M(i,j)=4;caodi=caodi+1;gengdi=gengdi-1;endelseif lindishy(i,j)>caodishy(i,j) caoditemp=0;linditemp=0;gengditemp=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if N(p,q)==4caoditemp=caoditemp+1;elseif N(p,q)==3linditemp=linditemp+1;elseif N(p,q)==2gengditemp=gengditemp+1; endendendif linditemp>= gengditempz=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),3)==-1 z=1;endendendif z==0M(i,j)=3;lindi=lindi+1;gengdi=gengdi-1endendelsecaoditemp=0;linditemp=0;gengditemp=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if N(p,q)==4caoditemp=caoditemp+1;elseif N(p,q)==3linditemp=linditemp+1;elseif N(p,q)==2gengditemp=gengditemp+1;endendendif linditemp>=max(caoditemp,gengditemp) z=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),3)==-1z=1;endendendif z==0M(i,j)=4;lindi=lindi+1;gengdi=gengdi-1endelseif caoditemp>= gengditempz=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),4)==-1z=1;endendendif z==0M(i,j)=4;caodi=caodi+1;gengdi=gengdi-1;endendendelseifgengdishy(i,j)<caodishy(i,j)z=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(M(p,q)~=0)&&xr(M(p,q),4)==-1z=1;endendendif z==0M(i,j)=4;caodi=caodi+1;gengdi=gengdi-1;endelseif gengdishy(i,j)==caodishy(i,j) elseif lindishy(i,j)==caodishy(i,j) caoditemp=0;linditemp=0;gengditemp=0;for p=max(1,i-1):min(i+1,m)for q=max(j-1,1):min(i+1,n)if N(p,q)==4caoditemp=caoditemp+1;elseif N(p,q)==3linditemp=linditemp+1;elseif N(p,q)=2gengditemp=gengditemp+1; endendendif caoditemp>= caoditempz=0;for p=max(1,j-1):min(i+1,m)for q=max(j-1,1):min(j+1,n)if(N(p,q)~=0)&&xr(M(p,q),4)==-1; z=1;endendendif Z==0M(i,j)=4;caodi=caodi+1;gengdi=gengdi-1;endendendendendendendfid=fopen(‘d:\ca\lucc’,’at+’)for i=1:mfor j=1:nif M(i,j)>4.5M(i,j)=N(i,j);endfprintf(fid,’%d’, M(i,j)); endfprintf(fid,,’\n’);endfclose(fid);。
元胞自动机沙堆matlab代码

一、介绍元胞自动机及其在沙堆模拟中的应用元胞自动机(Cellular Automaton)是一种由一些简单的规则控制的离散计算模型。
它由一个二维或三维的规则阵列、一组在这个阵列上移动的“元胞”以及一组确定元胞状态变化的规则组成。
元胞自动机最早由数学家约翰·冯·诺伊曼提出,后来由斯蒂芬·沃尔夫勒姆等人进行了大量的研究和应用。
在沙堆模拟中,元胞自动机可以用来模拟沙堆的堆积和坍塌过程。
沙堆模型是一个简单而又重要的研究对象,在物理学和复杂系统中有着广泛的应用。
通过元胞自动机模拟沙堆的行为,可以观察到沙堆中颗粒的运动规律、堆积形态和临界状态等重要现象。
二、沙堆模型的基本原理沙堆模型的基本原理是将一定数量的颗粒投放到一个局部平坦的表面上,通过不断的增加颗粒数目,观察颗粒的堆积和坍塌过程。
在这个过程中,一些稳定的结构和现象会逐渐显现出来。
通过模拟沙堆的行为,可以研究出现这些结构和现象的规律,并且揭示出复杂系统中的一些普遍规律。
三、元胞自动机沙堆模拟的基本原理元胞自动机沙堆模拟的基本原理是将沙堆表面分割成一个个的格子,每个格子就是一个元胞。
在元胞自动机模拟中,每个元胞有一个状态变量表示其高度,而且每个元胞的状态都受到相邻元胞状态的影响。
通过设定适当的规则,可以模拟出沙堆颗粒的堆积和坍塌过程。
四、元胞自动机沙堆模拟的matlab代码```matlab创建一个10x10的元胞数组cells = zeros(10,10);设置沙堆初始高度为5cells(5,5) = 5;模拟沙堆的坍塌过程for i = 1:100遍历每个元胞for x = 1:10for y = 1:10如果当前元胞高度大于3,则进行坍塌if cells(x,y) > 3当前元胞高度减4cells(x,y) = cells(x,y) - 4;上方元胞高度加1if x > 1cells(x-1,y) = cells(x-1,y) + 1;end下方元胞高度加1if x < 10cells(x+1,y) = cells(x+1,y) + 1;end左方元胞高度加1if y > 1cells(x,y-1) = cells(x,y-1) + 1;end右方元胞高度加1if y < 10cells(x,y+1) = cells(x,y+1) + 1;endendendendend输出模拟结果cells```以上是一个简单的用matlab实现的元胞自动机沙堆模拟代码。
元胞自动机 python 枝晶

元胞自动机 python 枝晶元胞自动机(Cellular Automaton)是一种离散空间和时间的数学模型,它由一系列相同的元胞组成,每个元胞都有自己的状态,并通过一组规则与相邻元胞进行交互。
本文将以Python编写一个枝晶的元胞自动机模拟程序,并详细介绍其原理和实现过程。
一、枝晶的定义枝晶是一种生物现象,通常指植物的分枝生长。
枝晶的形态多样,可以呈现出分枝、叶片等特征。
在元胞自动机中,我们可以使用简化的模型来模拟枝晶的生长过程。
二、元胞自动机模型在枝晶的元胞自动机模型中,我们将空间划分为一个二维的方格网格,每个方格被称为一个元胞。
每个元胞可以处于不同的状态,代表不同的细胞类型或状态。
三、枝晶的生长规则枝晶的生长过程受到一定的规则限制,这些规则可以通过元胞自动机的状态转换函数来实现。
在我们的模型中,我们将使用Moore 邻居方式,即每个元胞的八个相邻元胞都会影响它的状态转换。
四、程序实现我们需要导入必要的库,包括numpy和matplotlib。
然后,我们可以定义一个二维的数组来表示元胞空间,并初始化每个元胞的初始状态。
接下来,我们可以编写一个函数来更新元胞的状态。
在每一次迭代中,我们会遍历整个元胞空间,并根据生长规则来更新每个元胞的状态。
这里我们可以使用numpy的数组操作来提高效率。
我们可以使用matplotlib库来可视化元胞的状态。
我们可以将元胞空间中不同状态的元胞用不同的颜色来表示,从而呈现出枝晶的生长过程。
五、实验结果经过多次迭代,我们可以观察到元胞空间中枝晶的生长过程。
初始时,只有少数几个元胞处于活跃状态,随着迭代的进行,这些活跃的元胞会逐渐扩散并形成分枝。
最终,整个元胞空间将被枝晶所覆盖。
六、总结通过本文,我们使用Python编写了一个枝晶的元胞自动机模拟程序,并详细介绍了其原理和实现过程。
元胞自动机是一种强大的工具,可以用来模拟各种复杂的生物现象和物理过程。
通过不断调整生长规则和初始状态,我们可以观察到不同形态的枝晶在元胞空间中的生长和演化。
基于元胞自动机-概述说明以及解释

基于元胞自动机-概述说明以及解释1.引言1.1 概述概述:元胞自动机(Cellular Automaton,CA)是一种模拟分布式系统的计算模型,由数学家约翰·冯·诺伊曼(John von Neumann)和斯坦利斯拉夫·乌拉姆(Stanislaw Ulam)于20世纪40年代末提出。
它被广泛应用于各个领域,如物理学、生物学、社会科学等,并且在计算科学中也具有重要地位。
元胞自动机模型由一系列的离散的、相互联系的简单计算单元组成,这些计算单元分布在一个规则的空间中,每个计算单元被称为细胞。
细胞根据一组规则进行状态转换,通过与其相邻细胞的相互作用来改变自身的状态。
这种相邻细胞之间的相互作用可以通过直接交换信息实现,也可以通过间接地通过规则来实现。
元胞自动机的基本原理是根据细胞的局部状态和相邻细胞的状态来决定细胞下一时刻的状态。
这种局部的状态转换会逐步扩散并影响整个空间,从而产生出复杂的全局行为。
元胞自动机非常适合用于模拟大规模复杂系统中的行为,如群体行为、自组织系统、流体力学等。
元胞自动机的应用领域非常广泛。
在物理学中,它可以用于模拟晶体的生长、相变过程等。
在生物学中,元胞自动机可以模拟细胞的生命周期、生物群体的演化过程等。
在社会科学中,它可以模拟群体行为的形成、传播等。
此外,元胞自动机还被应用于计算科学中,用于解决许多复杂的计算问题,如图像处理、数据挖掘等。
尽管元胞自动机具有许多优势和广泛的应用,但它也存在一些局限性。
首先,由于元胞自动机的状态转换是基于局部规则进行的,因此难以精确地模拟某些复杂系统中的具体行为。
其次,元胞自动机的规模和计算复杂度随着细胞数量的增加而增加,这限制了其在大规模系统中的应用。
此外,元胞自动机模型的抽象性也使得人们难以解释其内部机制及产生的全局行为。
在未来,元胞自动机仍将继续发展。
随着计算能力的提高,我们可以采用更精确的数值方法和更复杂的规则来描述系统的行为。
元胞自动机法2篇

元胞自动机法2篇元胞自动机是一种重要的数学工具,它在许多领域都有广泛的应用。
本文将为大家介绍元胞自动机的定义、原理和应用,并分别以两个不同的角度展开讨论。
第一篇:元胞自动机(Cellular Automaton,CA)是一种离散的计算模型,由一组规则和一片被分割成小方格的空间组成。
每个小方格称为元胞,每个元胞可以处于不同的状态。
元胞自动机在离散的时间步骤中,根据预先定义好的局部规则,自动地更新元胞的状态。
元胞自动机的最基本的规则是由两个因素决定的:元胞的邻居和元胞的状态转移函数。
元胞的邻居可以包括水平、垂直和对角线方向上相邻的元胞。
元胞的状态转移函数根据元胞本身以及其邻居的状态,确定元胞在下一个时间步骤时的状态。
这种状态转移可以根据局部规则同时发生,也可以融合其他因素如时间、空间等进行更新。
元胞自动机最早由丘奇(Alonzo Church)和冯·诺依曼(John von Neumann)在1950年代提出。
当时,他们主要研究的是一维元胞自动机。
但自那以后,元胞自动机的一维和多维的拓展研究已经取得了很大的进展,成为复杂系统和非线性动力学等研究领域的基础工具。
元胞自动机的应用非常广泛。
在物理学领域,元胞自动机可以模拟粒子的行为和统计力学过程。
在生物学领域,元胞自动机可以用于模拟生物系统中的细胞生长、组织发育等过程。
在计算机科学领域,元胞自动机可以用于设计产生随机数列的伪随机数发生器。
此外,元胞自动机还可以在城市规划、交通仿真、分子动力学等诸多领域作出重要的贡献。
第二篇:元胞自动机作为一种数学模型,其研究逐渐涉及了计算机科学、物理学、生物学等多个学科领域。
不同学科中对元胞自动机的研究角度也各有侧重。
在计算机科学领域,元胞自动机被广泛用于图像处理、模式识别和人工生命等方面的研究。
通过元胞自动机的模拟,可以有效处理图像噪声、图像分割和图像恢复等技术问题。
同时,元胞自动机也被应用于模式识别中的特征提取、目标跟踪等方面。
元胞自动机matlab代码

元胞自动机matlab代码细胞自动机,也称作细胞状态模型,是一种描述系统的动态行为的模型。
它具有一种元胞状态,涉及到一组计算机运算,可以用来模拟系统的复杂行为。
Matlab实现此模型首先要了解以下重要步骤:(1)设定空间参数和规则:定义空间网格(如1x1网格),以及每个网格中单元细胞的状态变化(如活动/不活动)。
(2)初始状态:给定空间网格内的各个单元细胞的初始状态,可以设定为活动或不活动。
(3)迭代:计算每个空间网格上单元细胞的新状态,根据指定的规则和网格上其他单元细胞的当前状态。
(4)展示图形:展示计算出的单元细胞和网格状态,使用不同颜色来区分不同状态。
%初始化space_x = 1; %定义空间域单元的x坐标space_y = 1; %定义空间域单元的y坐标space = zeros(space_x,space_y); %定义模型空间,x行,y列,数值全置0%设定初始状态space(1,1)=1; %定义空间[1,1]单元状态为1,活动;定义空间[1,1]单元状态为0,不活动%迭代,计算当前单元状态for x = 1:space_xfor y = 1:space_y%计算伴随单元的状态值s = 0; %活动周围的单元状态值%周围单元的状态值s = s+space(x-1,y)+space(x+1,y)+space(x,y-1)+space(x,y+1);%计算当前单元状态if s == 2 %周围单元的状态值为2时,当前单元保持不变 space(x,y) = space(x,y);endif s == 3 %周围单元的状态值为3时,当前单元活动space(x,y) = 1;endendend%展示图形pcolor(space); %展示模型空间axis([0 space_x 0 space_y]);%设定X和Y轴坐标colormap([1 0 0;0 1 0]);%设定模型空间中活动单元的颜色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元胞自动机(CA)代码及应用引言元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。
典型的元胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状态。
变化规则适用于每一个元胞并且同时进行。
典型的变化规则,决定于元胞的状态,以及其(4或8 )邻居的状态。
元胞自动机已被应用于物理模拟,生物模拟等领域。
本文就一些有趣的规则,考虑如何编写有效的MATLAB的程序来实现这些元胞自动机。
MATLAB的编程考虑元胞自动机需要考虑到下列因素,下面分别说明如何用MATLAB实现这些部分。
并以Conway的生命游戏机的程序为例,说明怎样实现一个元胞自动机。
●矩阵和图像可以相互转化,所以矩阵的显示是可以真接实现的。
如果矩阵cells的所有元素只包含两种状态且矩阵Z含有零,那么用image函数来显示cat命令建的RGB图像,并且能够返回句柄。
imh = image(cat(3,cells,z,z));set(imh, 'erasemode', 'none')axis equalaxis tight●矩阵和图像可以相互转化,所以初始条件可以是矩阵,也可以是图形。
以下代码生成一个零矩阵,初始化元胞状态为零,然后使得中心十字形的元胞状态= 1。
z = zeros(n,n);cells = z;cells(n/2,.25*n:.75*n) = 1;cells(.25*n:.75*n,n/2) = 1;●Matlab的代码应尽量简洁以减小运算量。
以下程序计算了最近邻居总和,并按照CA规则进行了计算。
本段Matlab代码非常灵活的表示了相邻邻居。
x = 2:n-1;y = 2:n-1;sum(x,y) = cells(x,y-1) + cells(x,y+1) + ...cells(x-1, y) + cells(x+1,y) + ...cells(x-1,y-1) + cells(x-1,y+1) + ...cells(x+1,y-1) + cells(x+1,y+1);cells = (sum==3) | (sum==2 & cells);●加入一个简单的图形用户界面是很容易的。
在下面这个例子中,应用了三个按钮和一个文本框。
三个按钮,作用分别是运行,停止,程序退出按钮。
文框是用来显示的仿真运算的次数。
%build the GUI%define the plot buttonplotbutton=uicontrol('style','pushbutton',...'string','Run', ...'fontsize',12, ...'position',[100,400,50,20], ...'callback', 'run=1;');%define the stop buttonerasebutton=uicontrol('style','pushbutton',...'string','Stop', ...'fontsize',12, ...'position',[200,400,50,20], ...'callback','freeze=1;');%define the Quit buttonquitbutton=uicontrol('style','pushbutton',...'string','Quit', ...'fontsize',12, ...'position',[300,400,50,20], ...'callback','stop=1;close;');number = uicontrol('style','text', ...'string','1', ...'fontsize',12, ...'position',[20,400,50,20]);经过对控件(和CA)初始化,程序进入一个循环,该循环测试由回调函数的每个按钮控制的变量。
刚开始运行时,只在嵌套的while循环和if语句中运行。
直到退出按钮按下时,循环停止。
另外两个按钮按下时执行相应的if语句。
stop= 0; %wait for a quit button pushrun = 0; %wait for a drawfreeze = 0; %wait for a freezewhile (stop==0)if (run==1)%nearest neighbor sumsum(x,y) = cells(x,y-1) + cells(x,y+1) + ...cells(x-1, y) + cells(x+1,y) + ...cells(x-1,y-1) + cells(x-1,y+1) + ...cells(3:n,y-1) + cells(x+1,y+1);% The CA rulecells = (sum==3) | (sum==2 & cells);%draw the new imageset(imh, 'cdata', cat(3,cells,z,z) )%update the step number diaplaystepnumber = 1 + str2num(get(number,'string'));set(number,'string',num2str(stepnumber))endif (freeze==1)run = 0;freeze = 0;enddrawnow %need this in the loop for controls to workend例子1 .Conway的生命游戏机。
规则是:➢对周围的8个近邻的元胞状态求和➢如果总和为2的话,则下一时刻的状态不改变➢如果总和为3 ,则下一时刻的状态为1➢否则状态= 0核心代码:x = 2:n-1;y = 2:n-1;%nearest neighbor sumsum(x,y) = cells(x,y-1) + cells(x,y+1) + ...cells(x-1, y) + cells(x+1,y) + ...cells(x-1,y-1) + cells(x-1,y+1) + ...cells(3:n,y-1) + cells(x+1,y+1);% The CA rulecells = (sum==3) | (sum==2 & cells);2 .表面张力规则是:➢对周围的8近邻的元胞以及自身的状态求和➢如果总和< 4或= 5 ,下一时刻的状态= 0➢否则状态= 1核心代码:x = 2:n-1;y = 2:n-1;%nearest neighbor sumsum(x,y) = cells(x,y-1) + cells(x,y+1) + ...cells(x-1, y) + cells(x+1,y) + ...cells(x-1,y-1) + cells(x-1,y+1) + ...cells(3:n,y-1) + cells(x+1,y+1)+...cells(x,y);% The CA rulecells = ~((sum< 4) | (sum==5));3 .渗流集群规则:➢对周围相邻的8邻居求和(元胞只有两种状态,0或1 )。
元胞也有一个单独的状态参量(所谓'记录' )记录它们之前是否有非零状态的邻居。
➢在0与1之间产生一个随机数r 。
➢如果总和> 0 (至少一个邻居)并且r >阈值,或者元胞从未有过一个邻居,则元胞= 1 。
➢如果总和> 0则设置"记录"的标志,记录这些元胞有一个非零的邻居。
核心代码:sum(2:a-1,2:b-1) = cells(2:a-1,1:b-2) + cells(2:a-1,3:b) + ...cells(1:a-2, 2:b-1) + cells(3:a,2:b-1) + ...cells(1:a-2,1:b-2) + cells(1:a-2,3:b) + ...cells(3:a,1:b-2) + cells(3:a,3:b);pick = rand(a,b);cells = cells | ((sum>=1) & (pick>=threshold) & (visit==0)) ; visit = (sum>=1) ;变量a 和b 是图像的尺寸。
最初的图形是由图形操作决定的。
以下程序设定坐标系为一个固定的尺寸,在坐标系里写入文本,然后获得并返回坐标内的内容,并用getframe 函数把它们写入一个矩阵ax = axes('units','pixels','position',[1 1 500 400],'color','k'); text('units', 'pixels', 'position', [130,255,0],...'string','MCM','color','w','fontname','helvetica','fontsize',100) text('units', 'pixels', 'position', [10,120,0],...'string','Cellular Automata','color','w','fontname','helvetica','fontsize',50) initial = getframe(gca);[a,b,c]=size(initial.cdata); z=zeros(a,b);cells = double(initial.cdata(:,:,1)==255); visit = z ; sum = z;经过几十个时间间隔(从MCM Cellular Automata 这个图像开始) ,我们可以得到以下的图像。