1.1 集合的概念

合集下载

高中数学:1.1.1集合的概念

高中数学:1.1.1集合的概念

1.1 集合与集合的表示方法1.1.1 集合的概念1.了解集合的概念. 2.理解元素与集合的关系. 3.掌握集合中元素的特性的应用.1.集合的概念(1)集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).通常用英语大写字母A ,B ,C ,…表示.(2)元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a ,b ,c ,…表示.2.元素与集合的关系 知识点关系 概念记法 读法 元素与集合的关系属于如果a 是集合A 的元素,就说a 属于Aa ∈A“a 属于A ” 不属于 如果a 不是集合A 的元素,就说a 不属于Aa ∉A“a 不属于A ”元素 意义确定性元素与集合的关系是确定的,即给定元素a 和集合A ,a ∈A 与a ∉A 必居其一互异性 集合中的元素互不相同,即a ∈A 且b ∈A 时,必有a ≠b无序性集合中的元素可以任意排列顺序4集合⎩⎨⎧空集:不含任何元素,记作∅非空集合:按含有元素的个数分为⎩⎪⎨⎪⎧有限集:含有有限个元素无限集:含有无限个元素5.常用数集的意义及表示意义名称记法非负整数全体构成的集合自然数集N在自然数集内排除0的集合正整数集N+或N*整数全体构成的集合整数集Z有理数全体构成的集合有理数集Q实数全体构成的集合实数集R1.下列各组对象不能构成集合的是()A.著名的中国数学家B.所有的负数C.清华大学招收的2016届本科生D.满足3x-2>x+3的全体实数答案:A2.设M是所有偶数组成的集合,下列选项正确的是()A.3∈M B.1∈MC.2∈M D.2∉M答案:C3.方程x2-2x+1=0的解集中有________个元素.答案:14.指出下列集合是有限集还是无限集.(1)满足2 011≤x≤2 013的整数构成的集合;(2)平面α内所有直线构成的集合.答案:(1)有限集(2)无限集集合概念的理解判断下列各组对象能否构成一个集合:(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)直角坐标平面内第一象限的一些点.【解】(1)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(2)类似于(1),也能构成集合.(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.判断一组对象构成集合的依据判断一组对象能否构成集合的关键是看是否有明确的判断标准,给定的对象是“确定无疑”的还是“模棱两可”的,如果是“确定无疑”的,就可构成集合;如果是“模棱两可”的,就不能构成集合.下列各组对象能构成集合的有________(填序号).①中国农业银行的所有员工; ②我国的大河流; ③不大于3的所有自然数;④在平面直角坐标系中,和原点距离等于1的点; ⑤未来世界的高科技产品; ⑥所有的好心人.解析:①能,①中的对象是确定的;②不能,“大”无明确标准;③能,不大于3的所有自然数有0、1、2、3,其对象是确定的;④能,在平面直角坐标系中任给一点,可明确地判断是不是“和原点的距离等于1”,故能组成一个集合;⑤不能,“高科技”的标准不能确定;⑥不能,没有一个确定的标准来判断某个人是否是“好心人”.答案:①③④元素与集合的关系(1)下列关系中,正确的有( ) ①12∈R ;②2∉Q ;③|-3|∈N ;④|-3|∈Q . A .1个B .2个C .3个D .4个(2)满足“a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ”,有且只有2个元素的集合A 的个数是( )A .0B .1C .2D .3扫一扫 进入91导学网(www .91daoxue .com )元素与集合的关系【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)因为a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ,若a =0,则4-a =4,此时A 满足要求;若a =1,则4-a =3,此时A 满足要求;若a =2,则4-a =2,此时A 含1个元素不满足要求.故有且只有2个元素的集合A 有2个,故选C .【答案】 (1)C (2)C判断元素和集合关系的两种方法(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否给出即可. 此时应首先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,判断元素与集合的关系时,只要判断该元素是否满足集合中元素所具有的特征即可.此时应首先明确已知集合的元素具有什么属性,即该集合中元素要符合哪种表达式或满足哪些条件.已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( )A .a >-4B .a ≤-2C .-4<a <-2D .-4<a ≤-2解析:选D .因为1∉A ,2∈A ,所以⎩⎪⎨⎪⎧2×1+a ≤0,2×2+a >0即-4<a ≤-2.集合中元素的特性已知集合P 中有三个元素a -3,2a -1,a 2+4,且-3∈P ,求实数a 的值. 【解】 因为-3∈P ,a 2+4≥4, 所以a -3=-3或2a -1=-3, 解得a =0或a =-1.经检验a =0时,P 中三个元素为-3,-1,4,满足集合中元素的互异性; a =-1时,P 中三个元素为-4,-3,5,也满足集合中元素的互异性. 综上可知,a 的值为0或-1.由集合中元素的特性求解字母取值(范围)的步骤已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解:若1∈A ,则a =1或a 2=1, 即a =±1. 当a =1时,集合A 有重复元素,不符合互异性, 所以a ≠1; 当a =-1时,集合A 含有两个元素1,-1, 符合互异性. 所以a =-1.1.集合中的元素具有确定性、互异性、无序性三大特性.利用集合中元素的三个特性,一方面可以判断一些对象是否构成集合,另一方面可以解决与集合有关的问题.2.(1)符号“∈”“∉”是表示元素与集合之间的关系的,不能用来表示集合与集合之间的关系;(2)a ∈A 与a ∉A 取决于a 是不是集合A 中的元素.根据集合中元素的确定性,对任何a 与A ,在a ∈A 与a ∉A 这两种情况中必有一种且只有一种成立.初学者由于对集合中元素的特性把握不准,而容易忽视集合中元素的互异性致错.1.下列各组对象,能构成集合的是( ) A .平面直角坐标系内x 轴上方的y 轴附近的点 B .平面内两边之和小于第三边的三角形 C .新华书店中有意义的小说 D .π(π=3.141…)的近似值的全体解析:选B .选项A ,C ,D 中的对象不具有确定性,故不能构成集合;而选项B 为∅,故能构成集合.2.所给下列关系正确的个数是( ) ①-12∈R ;②2∉∅;③0∈N +;④-3∉N .A .1B .2C .3D .4解析:选C .①②④正确,③错误,故选C .3.由“book 中的字母”构成的集合中元素个数为( )A .1B .2C .3D .4解析:选C .“book 中的字母”构成的集合中有b ,o ,k 共3个元素.4.已知集合A 是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________.解析:由题意知,m =2或m 2-3m +2=2, 解得m =2或m =0或m =3,经验证, 当m =0或m =2时, 不满足集合中元素的互异性, 当m =3时, 满足题意,故m =3. 答案:3[A 基础达标]1.下列各组对象中能构成集合的是( ) A .2017年中央电视台春节联欢晚会中好看的节目 B .某学校高一年级高个子的学生 C .2的近似值D .2016年全国经济百强县解析:选D .由于集合中的元素是确定的,所以D 中对象可构成集合.2.给出下列关系:(1)13∈R ;(2)5∈Q ;(3)-3∉Z ;(4)-3∉N ,其中正确的个数为( )A .1B .2C .3D .4解析:选B .13是实数,(1)正确;5是无理数,(2)错误;-3是整数,(3)错误;-3是无理数, (4)正确.故选B .3.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A .矩形 B .平行四边形 C .菱形D .梯形解析:选D .因为a ,b ,c ,d 为集合A 中的四个元素,故a ,b ,c ,d 均不相同,故选D .4.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A解析:选C .因为-1=3×0-1∈A ,故A 错; -11=3×(-4)+1=3×(-3)-2∉A ,故B 错; -34=3×(-11)-1∈A ,故D 错; 因为k ∈Z ,所以k 2∈Z , 所以3k 2-1∈A ,故C 正确.5.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含有( ) A .2个元素 B .3个元素 C .4个元素D .5个元素解析:选A .x 2=|x |,-3x 3=-x . 当x =0时,它们均为0;当x >0时,它们分别为x ,-x ,x ,x ,-x ; 当x <0时,它们分别为x ,-x ,-x ,-x ,-x .通过以上分析,它们最多表示两个不同的数,故集合中元素最多含有2个.6.下列说法中①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________.解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 含有三个元素3,4,6,且当a ∈A ,有8-a ∈A ,那么a =________. 解析:若a =3,则8-a =5∉A ,故a ≠3; 若a =4,则8-4=4∈A ,故a =4合适; 若a =6,则8-6=2∉A ,故a ≠6. 答案:48.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值所组成的集合中元素的个数为________.解析:当a >0且b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2. 即元素的个数为3. 答案:39.由三个数a ,ba ,1组成的集合与由a 2,a +b ,0组成的集合是同一个集合,求a 2 017+b 2 017的值.解:由a ,ba ,1组成一个集合,可知a ≠0,且a ≠1.由题意可得⎩⎪⎨⎪⎧a 2=1,a =a +b ,b a =0或⎩⎪⎨⎪⎧a 2=a ,a +b =1,b a =0,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去), 所以a 2 017+b 2 017=(-1)2 017+0=-1.10.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值. 解:(1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1. 当a =a -3时, 有0=-3,不成立; 当a =2a -1时,有a =1, 此时A 中有两个元素-2,1, 符合题意.综上知a =1.[B 能力提升]11.集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ).则下列选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B解析:选C .集合A 中的元素为y ,是数集,又y =x 2+1≥1,故2∈A ,集合B 中的元素为点(x ,y ),且满足y =x 2+1,经验证,(3,10)∈B ,故选C .12.已知集合A 中的元素满足ax 2-bx +1=0,又集合A 中只有唯一的一个元素1,则实数a +b 的值为________.解析:当a ≠0时,由题意可知方程ax 2-bx +1=0有两个相等的实数根, 故⎩⎨⎧1+1=--ba,1×1=1a,解得a =1,b =2.故a +b =3.当a =0时,b =1,此时也满足条件, 所以a +b =1, 故a +b 的值为1或3. 答案:1或313.已知集合A 中含有1,0,x 这三个元素. (1)求实数x 的取值范围; (2)若x 2∈A ,求实数x 的值.解:(1)由集合中元素的互异性可知,x 的取值范围为x ≠1,x ≠0的实数.(2)若x 2=0,则x =0,此时三个元素为1,0,0,不符合集合中元素的互异性,舍去. 若x 2=1,则x =±1.当x =1时,集合中元素为1,0,1,舍去; 当x =-1时,集合中元素为1,0,-1,符合题意. 若x 2=x ,则x =0或x =1,不符合元素的互异性, 所以x =-1.14.(选做题)某研究性学习小组共有8位同学,记他们的学号分别为1,2,3,…,8.现指导老师决定派某些同学去市图书馆查询有关数据,分派的原则为:若x 号同学去,则8-x 号同学也去.请你根据老师的要求回答下列问题:(1)若只有一个名额,请问应该派谁去? (2)若有两个名额,则有多少种分派方法?解:(1)分派去图书馆查数据的所有同学构成一个集合,记作M ,则有x ∈M ,8-x ∈M . 若只有一个名额,即M 中只有一个元素,必须满足x =8-x ,故x =4,所以应该派学号为4的同学去.(2)若有两个名额,即M 中有且仅有两个不同的元素x 和8-x ,从而全部含有两个元素的集合M 应含有1,7或2,6或3,5.也就是两个名额的分派方法有3种.。

1.1 集合的概念(教师版)

1.1 集合的概念(教师版)

§1.1集合的概念第1课时集合的概念知识点一元素与集合的概念1.元素:一般地,把研究对象统称为元素(element),常用小写拉丁字母a,b,c,…表示.2.集合:把一些元素组成的总体叫做集合(set)(简称为集),常用大写拉丁字母A,B,C,…表示.3.集合相等:指构成两个集合的元素是一样的.4.集合中元素的特性:给定的集合,它的元素必须是确定的、互不相同的.知识点二元素与集合的关系知识点三常用数集及表示符号第2课时集合的表示知识点一列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.知识点二描述法一般地,设A是一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.第1课时 集合的概念1.有下列各组对象:∈接近于0的数的全体; ∈比较小的正整数的全体;∈平面上到点O 的距离等于1的点的全体; ∈直角三角形的全体. 其中能构成集合的个数是 ( )A .2B .3C .4D .52.已知集合A 由x <1的数构成,则有( )A .3∈AB .1∈AC .0∈AD .-1∈A3.集合A 中只含有元素a ,则下列各式一定正确的是( )A .0∈AB .a ∈AC .a ∈AD .a =A4.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( )A .矩形B .平行四边形C .菱形D .梯形5.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .06.若x ∈N ,则满足2x -5<0的元素组成的集合中所有元素之和为________. 7.已知∈5∈R ;∈13∈Q ;∈0∈N ;∈π∈Q ;∈-3∈Z .正确的个数为________.8.已知x ,y 都是非零实数,z =x |x |+y |y |+xy|xy |可能的取值组成集合A ,则( )A .2∈AB .3∈AC .-1∈AD .1∈A9.已知集合A 中含有三个元素1,a ,a -1,若-2∈A ,则实数a 的值为( )A .-2B .-1C .-1或-2D .-2或-310.集合A 中含有三个元素2,4,6,若a ∈A ,且6-a ∈A ,那么a =________. 11.由实数x ,-x ,|x |,x 2及-3x 3所组成的集合,最多含有________个元素.12.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2,且M =N .求a ,b 的值.13.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集.14.已知方程ax 2-3x -4=0的解组成的集合为A .(1)若A 中有两个元素,求实数a 的取值范围; (2)若A 中至多有一个元素,求实数a 的取值范围.第2课时 集合的表示1.集合A ={x ∈Z |-2<x <3}的元素个数为( ) A .1 B .2 C .3 D .42.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( )A.⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x +y =3,x -y =-1 B.⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x =1,y =2 C .{1,2} D .{(1,2)} 3.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合4.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( ) A.{}x |x 是小于18的正奇数 B.{}x |x =4k +1,k ∈Z ,且k <5 C.{}x |x =4t -3,t ∈N ,且t ≤5 D.{}x |x =4s -3,s ∈N *,且s ≤55.集合M ={(x ,y )|xy <0,x ∈R ,y ∈R }是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集6.集合{x ∈N |x 2+x -2=0}用列举法可表示为________.7.将集合{(x ,y )|2x +3y =16,x ,y ∈N }用列举法表示为________. 8.有下面四个结论:∈0与{0}表示同一个集合;∈集合M ={3,4}与N ={(3,4)}表示同一个集合;∈方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ∈集合{x |4<x <5}不能用列举法表示. 其中正确的结论是________(填写序号).9.已知x ,y 为非零实数,则集合M =⎩⎨⎧⎭⎬⎫m ⎪⎪m =x |x |+y |y |+xy |xy |为( ) A .{0,3} B .{1,3} C .{-1,3}D .{1,-3}10.已知集合A ={}x |x =2m -1,m ∈Z ,B ={}x |x =2n ,n ∈Z ,且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( ) A .x 1·x 2∈A B .x 2·x 3∈B C .x 1+x 2∈BD .x 1+x 2+x 3∈A11.已知集合A ={x |x =3m ,m ∈N *},B ={x |x =3m -1,m ∈N *},C ={x |x =3m -2,m ∈N *},若a ∈A ,b ∈B , c ∈C ,则下列结论中可能成立的是( ) A .2 006=a +b +c B .2 006=abc C .2 006=a +bcD .2 006=a (b +c )12.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________. 13.定义集合A -B ={x |x ∈A ,且x ∈B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -23<0,则集合A -B =________.14.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .15.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2014+b 2014.16.若P ={0,2,5},Q ={1,2,6},定义集合P +Q ={a +b |a ∈P ,b ∈Q },用列举法表示集合P +Q .【参考答案】1.A 解析 ∈不能构成集合,“接近”的概念模糊,无明确标准.∈不能构成集合,“比较小”也是不明确的,多小算小没明确标准.∈∈均可构成集合,因为任取一个元素是否是此集合的元素有明确的标准可依.2.C 解析 很明显3,1不满足不等式,而0,-1满足不等式.3.C 解析 由题意知A 中只有一个元素a ,∈a ∈A ,元素a 与集合A 的关系不能用“=”,a 是否等于0不确定,因此0是否属于A 不确定,故选C .4.D 解析 由集合中的元素具有互异性可知a ,b ,c ,d 互不相等,而梯形的四条边可以互不相等.5.B 解析 若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∈A .6.3 解析 由2x -5<0,得x <52,又x ∈N ,∈x =0,1,2,故所有元素之和为3.7.3 解析 ∈∈∈是正确的;∈∈是错误的. 8.C 解析 ∈当x >0,y >0时,z =1+1+1=3;∈当x >0,y <0时,z =1-1-1=-1; ∈当x <0,y >0时,z =-1+1-1=-1; ∈当x <0,y <0时,z =-1-1+1=-1, ∈集合A ={-1,3}. ∈-1∈A .9.C 解析 由题意可知a =-2或a -1=-2,即a =-2或a =-1,故选C .10.2或4 解析若a =2,则6-2=4∈A ;若a =4,则6-4=2∈A ;若a =6,则6-6=0∈A .故a =2或4.11.2 解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x ,-x ,故合中最多含有2个元素. 12.解 法一 根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧ a =b 2b =2a ,解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.法二 ∈两个集合相同,则其中的对应元素相同.∈⎩⎪⎨⎪⎧ a +b =2a +b 2a ·b =2a ·b 2,即⎩⎪⎨⎪⎧a +b b -1=0 ∈ab ·2b -1=0 ∈∈集合中的元素互异,∈a ,b 不能同时为零.当b ≠0时,由∈得a =0,或b =12.当a =0时,由∈得b =1,或b =0(舍去). 当b =12时,由∈得a =14.当b =0时,a =0(舍去).∈⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.13.证明 (1)若a ∈A ,则11-a∈A .又∈2∈A ,∈11-2=-1∈A .∈-1∈A ,∈11--1=12∈A .∈12∈A ,∈11-12=2∈A . ∈A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解. ∈a ≠11-a,∈集合A 不可能是单元素集.14.解 (1)因为A 中有两个元素,所以方程ax 2-3x -4=0有两个不等的实数根,所以⎩⎪⎨⎪⎧a ≠0,Δ=9+16a >0, 即a >-916且a ≠0.所以实数a 的取值范围为a >-916,且a ≠0.(2)当a =0时,由-3x -4=0得x =-43;当a ≠0时,若关于x 的方程ax 2-3x -4=0有两个相等的实数根,则Δ=9+16a =0,即a =-916;若关于x 的方程无实数根,则Δ=9+16a <0,即a <-916, 故所求的a 的取值范围是a ≤-916或a =0.1. D 解析 因为A ={x ∈Z |-2<x <3},所以x 的取值为-1,0,1,2,共4个.2. C 解析 C 选项表示两个数.3. D 解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.4. D 解析 对于x =4s -3,当s 依次取1,2,3,4,5时,恰好对应的x 的值为1,5,9,13,17.5. D 解析因xy <0,所以有x >0,y <0;或者x <0,y >0.因此集合M 表示的点集在第四象限和第二象限.6. {1} 解析 由x 2+x -2=0,得x =-2或x =1. 又x ∈N ,∈x =1.7. {(2,4),(5,2),(8,0)} 解析 ∈3y =16-2x =2(8-x ),且x ∈N ,y ∈N ,∈y 为偶数且y ≤5,∈当x =2时,y =4,当x =5时y =2,当x =8时,y =0.8. ∈ 解析 {0}表示元素为0的集合,而0只表示一个元素,故∈错误;∈集合M 是实数3,4的集合,而集合N 是实数对(3,4)的集合,不正确;∈不符合集合中元素的互异性,错误;∈中元素有无穷多个,不能一一列举,故不能用列举法表示.9. C 解析 当x >0,y >0时,m =3,当x <0,y <0时,m =-1-1+1=-1.当x ,y 异号,不妨设x >0,y <0时,m =1+(-1)+(-1)=-1.因此m =3或m =-1,则M ={-1,3}.10. D ∈集合A 表示奇数集,集合B 表示偶数集,∈x 1,x 2是奇数,x 3是偶数,∈x 1+x 2+x 3为偶数.11. C 解析 由于2 006=3×669-1,不能被3整除,而a +b +c =3m 1+3m 2-1+3m 3-2=3(m 1+m 2+m 3-1)不满足;abc =3m 1(3m 2-1)(3m 3-2)不满足;a +bc =3m 1+(3m 2-1)(3m 3-2)=3m -1适合; a (b +c )=3m 1(3m 2-1+3m 3-2)不满足.12. 3 解析 根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.13. {x |x ≥2} 解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x >-12,B ={x |x <2}, A -B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12且x ≥2={x |x ≥2}. 14. 解 ∈1是集合A 中的一个元素,∈1是关于x 的方程ax 2+2x +1=0的一个根,∈a ·12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∈集合A={-13,1}.15.解 ∈A =B ,∈⎩⎪⎨⎪⎧ a 2=1,ab =b 或⎩⎪⎨⎪⎧ a 2=b ,ab =1.解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数.由集合元素的互异性得a ≠1,∈a =-1,b =0,故a 2014+b 2014=1.16. 解 ∈当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的 值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11. ∈P +Q ={1,2,3,4,6,7,8,11}.。

1.1-集合的基本概念(离散数学)

1.1-集合的基本概念(离散数学)

幂集的性质
1.
为有穷集, 若A为有穷集,|A|=n,则 为有穷集 , |2A | = Cn0 + Cn1 + … + Cnn =2n 。 x∈ρ 当且仅当 A。 ∈ρ(A)当且仅当 ∈ρ 当且仅当x 。 是两个集合, 当且仅当 设 A、 B是两个集合 , AB当且仅当 、 是两个集合 ρ(B); ρ(A)ρ ; ρ
多样性
集合中的元素可以是任意的对象, 集合中的元素可以是任意的对象,相 互独立, 互独立,不要求一定要具备明显的共 同特征。 同特征。 例如: 例如: A={a,{a},{{a},b},{{a}}, 1} A={1,a,*,-3,{a,b},{x|x是汽车 地球 是汽车},地球 是汽车 地球}
罗素悖论(Russell’ paradox) 罗素悖论(Russell’s paradox)
集合的表示法
列举法;将集合中的元素一一列举, 列举法;将集合中的元素一一列举, 或列出足够多的元素以反映集合中元 素的特征,例如: 素的特征,例如:V={a,e,i,o,u} 或 B={1,4,9,16,25,36……}。 。 描述法 ;通过描述集合中元素的共同 特征来表示集合,例如: 特征来表示集合,例如: V= {x|x是元 是元 音字母} 是自然数} 音字母 ,B= {x|x=a2 , a是自然数 是自然数
空集、 空集、全集
约定,存在一个没有任何元素的集合, 约定,存在一个没有任何元素的集合, 称为空集(empty set) ,记为φ,有时也用{} ) 记为φ 有时也用{} 来表示。 来表示。 约定, 约定,所讨论的对象的全体称为全集 (universal set),记作 或U,我们所讨论 ,记作E或 , 的集合都是全集的子集 全集是相对的。 的集合都是全集的子集 。全集是相对的。 全集

高中数学必修一(人教版)《1.1 集合的概念》课件

高中数学必修一(人教版)《1.1 集合的概念》课件

【对点练清】
1.集合 M 是由大于-2 且小于 1 的所有实数构成的,则下列关系式正确的是
A. 5∈M
B.0∉M
()
C.1∈M
D.-π2∈M
解析: 5>1,故 5∉M;-2<0<1,故 0∈M;1 不小于 1,故 1∉M;-
2<-π2<1,故-π2∈M.故选 D.
答案:D
2.设集合D是由满足y=x2的所有有序实数对(x,y)组成的,则-1________D, (-1,1)________D.(用符号“∉”或“∈”填空) 解析:-1不是有序实数对,∴-1∉D.(-1,1)满足y=x2,∴(-1,1)∈D. 答案:∉ ∈
题型一 集合的概念及特征 准确认识集合的含义
【学透用活】
“集合”是一个原始的不加定义的概念,它同平面几何中的“ 描述性
点”“线”“面”等概念一样都只是描述性的说明 集合是一个整体,暗含“所有”“全部”“全体”的含义,因 整体性 此一些对象一旦组成了集合,这个集合就是这些对象的总体 现实生活中我们看到的、听到的、闻到的、触摸到的、想到的 广泛性 各种各样的事物或一些抽象的符号等,都可以看作“对象”, 即集合中的元素
素的个数为
()
A.1
B.2
C.3
D.4
解析: 方程x2 - 3x +2=0的解为1,2,方程x2 -5x+6=0的解为2,3由于两方程 有相同的解2,在集合中作为1个元素,故A中有3个元素,故选C .
答案:C
பைடு நூலகம்
知识点二 元素与集合的关系及常用数集 (一)教材梳理填空 1.元素与集合的关系:
关系
概念
a属于集 如果a是集合A的元素,就说a 合A _属__于__集合A

1.1集合的概念及表示

1.1集合的概念及表示

1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。

1.1集合

1.1集合

1.1 集合的概念【知识必备】一、集合的概念1. 对象:我们把各种各样的事物或一些抽象的符号都可以看作对象.2. 集合:一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).3. 元素:构成集合的每个对象叫做这个集合的元素.一般地,研究对象统称为元素(element ),一些元素组成的总体叫集合(set ),也简称集.二、元素与集合的关系1. 元素与集合的关系:集合通常用英语大写字母A ,B , C 来表示,它们的元素通常用英语小写字母a ,b , c 来表示.如果a 是集合A 的元素,就说a 属于A ,记作:A a ∈读作“a 属于A ”.如果a 不是集合A 的元素,就说a 不属于A ,记作:A a ∉读作“a 不属于A ”.2. 空集:我们考虑方程21+=+x x 的解的全体构成的集合,显然这个集合不含有任何元素. 一般的,我们把不含任何元素的集合叫做空集,记作φ.三、集合的性质1. 集合元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则x 或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写.2. 常用数集及其记法非负整数全体构成的集合,叫做自然数集,记作N ;在自然数集内排除0的集合叫做正整数集,记作N *或N +;整数全体构成的集合,叫做整数集,记作Z ;有理数全体构成的集合,叫做有理数集,记作Q ;实数全体构成的集合,叫做实数集,记作R.另外,集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集.【题型分析】题型一:判断能否确定集合1. 下列语句是否能确定一个集合(1)你所在的班级中,体重超过75kg 的学生的全体;(2)大于五的自然数的全体;(3)某校高一(1)班性格开朗的女生全体;(4)质数的全体;(5)平方后值等于-1的实数的全体;(6)与1接近的实数的全体;(7)英语字母的全体;(8)小于99,且个位与十位上的数字之和是9的所有自然数;(9)平面直角坐标系内以原点为圆心,以1为半径的圆内所有的点(不包括圆上的点);(10)一元二次方程0432=-+x x 的根;(11)2,1,222++x x x ; (12)书店中有意思的小说的全体.2. 下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体. 其中能构成集合的组数是( )A. 2B. 3C. 4D. 5 题型二:确定集合的元素指出下列集合中的元素是什么?1. 方程12=x 的解的全体构成一个集合;2. 平行四边形的全体构成一个集合;3. 平面上与一个定点O 的距离等于定长r 的点的全体构成一个集合.题型三:判断元素与集合之间的关系用符号∈或∉填空:1. 设集合A 是正整数的集合,则0________A ,2________A ,()01- _______A ; 2. 设集合B 是小于11的所有实数的集合,则 23______B ,1+2______B ;-3_______N ; 3.14_______Q ;31_______Z ; 0_______φ; 3_______Q ; 21-_______R ; 1_______+N ; π_______R ; 题型四:判断有限集和无限集1. 判断下列语句是否正确:(1)1995年末世界上的人构成一个无限集;(2)某一时刻,地球的所有卫星构成的集合是无限集;(3)所有三角形构成的集合是无限集;(4)周长为20cm 的三角形构成的集合是有限集.2. 下列集合中,哪些是非空的有限集?哪些是无限集?哪些是空集?(1)小于10000的质数全体构成的集合;(2)⊙O 内点的全体构成的集合;(3)线段AB 内包含AB 中点M 的所有线段构成的集合;(4)大于0,并且小于1的自然数全体构成的集合;(5)中国古代四大发明的集合;(6)坐标平面上第二象限的点的集合.1.2 集合的表示方法【知识必备】集合的表示方法1. 列举法: .如:{1,2,3,4,5},2222{,32,5,}x x y x x y +-+,…;列举法使用条件:集合中元素个数是__________________.练习:由方程012=-x 的所有解组成的集合,可以表示为 .2. 特征性质描述法: . 如:{}{}22,,10,x R x n n N x R x ∈=∈∈-= 格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合.注:(1)不等式23>-x 的解集可以表示为:}23{>-∈x R x 或}23{>-x x .(2)在不混淆,不引起误解情况下,集合的代表元素也可省略.① 所有直角三角形的集合可以表示为:{x x 是直角三角形}⇒{直角三角形}. ② 所有整数的集合可以表示成:{}{}x R x ∈⇒是整数整数.③ 这里的{ }已包含“所有”的意思,所以不必写{全体整数}.实数集表示成R ,不可以表示成 {}{}R ,实数集。

1.1 集合的概念(答案版)

1.1 集合的概念(答案版)

1.集合与元素 一般地,把研究对象称为元素,通常用小写拉丁字母a,b,c,...表示;把一些元素组成的总体叫做集合,简称集,通常用大写拉丁字母A,B,C,...表示。

2.集合的特征(1)集合元素的特征:确定性、互异性、无序性.(2)元素与集合的关系:属于(∈),a∈A ;不属于(),a∈A .(3)自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R.(4)集合的表示方法:自然语言表示法、字母表示法、列举法、描述法、Venn 图图示法.3.集合的基本关系集合与集合:包含关系(子集),或B A ⊆(A 包含于A B ⊇B ,B 含于A ,A>B )(2)子集个数结论:∈含有n 个元素的集合有2n 个子集;∈含有n 个元素的集合有2n -1个真子集;∈含有n 个元素的集合有2n -2个非空真子集.例1:用适当的方法表示下列集合.(1)“BRICS”中所有字母组成的集合;(2)绝对值等于6的数组成的集合;(3)所有三角形组成的集合;(4)直线y =x 上去掉原点的点组成的集合;(5)大于2且小于5的有理数组成的集合;(6)24的所有正因数组成的集合;1.1集合的概念知识讲解典型例题(7)平面直角坐标系内与坐标轴距离相等的点的集合.解:(1)用列举法表示为{B ,R ,I ,C ,S}.(2)因为绝对值等于6的数是±6,所以用列举法表示为{-6,6}.(3)用描述法表示为{x |x 是三角形}或{三角形}.(4)用描述法表示为{(x ,y )|y =x ,x ≠0}.(5)用描述法表示为{x |2<x <5,且x ∈Q }.(6)用列举法表示为{1,2,3,4,6,8,12,24}.(7)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |到y 轴的距离为|x |所以该集合用描述法表示为{(x ,y )||y |=|x |}.例2:下列各组集合中表示同一集合的是( )A .,B .,C .,D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合;对于B ,,,根据集合的无序性,集合表示同一集合;对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,,集合的元素是点,集合不表示同一集合.一、选择题1.下列各组对象中能构成集合的是( C )AB .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品2. 下列命题中正确的是( C ){(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 同步练习∈0与{0}表示同一个集合;∈由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};∈方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};∈集合{x |4<x <5}可以用列举法表示.A .∈和∈B .∈和∈C .∈D .∈和∈解析:选C ∈中的0不是集合,故∈错;由集合中元素的无序性知∈正确;由集合中元素的互异性知∈错;因为集合{x |4<x <5}表示无限集,它不可以用列举法表示,故∈错.3.下列各组中的M 、P 表示同一集合的是( C )∈M ={3,-1},P ={(3,-1)} ∈M ={(3,1)},P ={(1,3)} ∈M ={y |y =x 2-1},P ={t |t =x 2-1}∈M ={y |y =x 2-1},P ={(x ,y )|y =x 2-1}A .∈B .∈C .∈D .∈解析:选C 在∈中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故∈错误;在∈中,M ={(3,1)},P ={(1,3)}表示的不是同一个点,故∈错误;在∈中,M ={y |y =x 2-1}=[-1,+∞),P ={t |t =x 2-1}=[-1,+∞),二者表示同一集合,故∈正确;在∈中,M ={y |y =x 2-1}表示数集,P ={(x ,y )|y =x 2-1}表示一条抛物线上的点的集合,故∈错误,故选C.4.集合⎩⎨⎧⎭⎬⎫3,52,73,94,…用描述法可表示为( ) A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +12n ,n ∈N * B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +3n ,n ∈N *C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n -1n ,n ∈N *D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N * 解析:选D 由3,52,73,94,即31,52,73,94,从中发现规律,x =2n +1n ,n ∈N *,故可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N *. 5.集合{x |x 2-6x +9=0}中的所有元素之和为( )A .0B .3C .6D .9解析:选B ∈{x |x 2-6x +9=0}={3},故元素之和为3.6.已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为( B )A .1或-1B .1或3C .-1或3D .1,-1或37.已知M ={(x ,y )|2x +3y =10,x ,y ∈N },N ={(x ,y )|4x -3y =1,x ,y ∈R },则( B )A .M 是有限集,N 是有限集B .M 是有限集,N 是无限集C .M 是无限集,N 是无限集D .M 是无限集,N 是有限集解析:选B 因为M ={(x ,y )|2x +3y =10,x ,y ∈N }={(2,2),(5,0)},所以M 为有限集.N ={(x ,y )|4x -3y =1,x ,y ∈R }中有无限多个点满足4x -3y =1,故N 为无限集.8.下列集合中,是空集的是( B )A .B .C .D . {}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y y x x y =-∈R【答案】B 【解析】对于A 选项,,不是空集,对于B 选项,没有实数根,故为空集,对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集.9.集合中的不能取的值的个数是( )A .B .C .D . 【答案】B 【解析】由题意可知,且且,故集合中的不能取的值的个数是个.二、填空题1.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________.【答案】{4,9,16} [由A ={-2,2,3,4},B ={x |x =t 2,t ∈A },得B ={4,9,16}.]2. 以下五个写法中:∈{0}∈{0,1,2};∈∈∈{1,2};∈{0,1,2}={2,0,1};∈0∈∈;∈A∩∈=A ,正确的个数有 2 个。

第一章 集合1.1.1集合的概念

第一章    集合1.1.1集合的概念

• 用一条封闭的曲线的内部来表示一个集合 的办法,叫文氏图。
多用于解题些指定的对象集在一起就形成一个集合。 • 集合的表示以及元素与集合间关系表示方 法。 • 集合表示方法: 列举法、描述法、文氏图法。 D:\高一PPT\集合的表示方法.doc D:\高一PPT\集合概念与表示方法练习题.doc
如何表示一个集合呢?
1.1.2集合的表示方法
1.1.2 集合的表示方法
• 列举法 如果一个集合是有限集,元素又不太多,常 常把集合的所有元素都列举出来,写在话 括号“{ }”内表示这个集合。例如,由两 个元素0,1构成的集合可表示为 {0,1}. 又如,24的所有正因数1,2,3,4,6,8,12,24构成 的集合可以表示为 {1,2,3,4,6,8,12,24}.
• 大括号内竖线左边的x表示这个集合的任意 一个元素,元素x从实数集合中取值,在竖 线集合右边写出只有集合内的元素x才具有 的性质
• 一般地,如果在集合I中,属于集合A的任意一 个元素x都具有性质p(x),而不属于集合A的 元素都不具有性质p(x),则性质p(x)叫做集合A的 一个特征性质。于是,集合A可以用它的特征性 质p(x)描述为
例题:
• 下列各组对象能确定一个集合吗? (1)所以很大的实数; (2)市四中高一(二)班的高个子同学; (3)1,1,2,3,4,5.
上面我们用自然的语言来描述集合的几个例 子,下面我们来看下集合的表示方法。
• 集合通常用英语大写字母A,B,C,...来表示,它们的元 素通常用英语小写字母a,b,c,...来表示。 • 如果a是集合A的元素,就说a属于A,记作 读作“a属于A”. 如果a不是集合A的元素,就说a不属于A,记作
例题:
• 由方程 x 2 − 1 = 0 的所有解组成的集合,可 以表示为{-1,1}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把集合的所有元素_一__一__列__举__出来,并用花括号“{}”括起来表示集合 的方法叫做_列__举__法__. 2.描述法 一般地,设 A 是一个集合,我们把集合 A 中所有具有_共__同__特__征__P(x) 的元素 x 所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为 描__述__法 __.
()
(3)单词“Good”的构成字母组成的集合中有 4 个元素.
()
答案:(1)× (2)√ (3)×
2.下列能构成集合的是
()
A.中央电视台著名节目主持人
B.我市跑得快的汽车
C.上海市所有的中学生
D.香港的高楼
解析:A、B、D 中研究的对象不确定,因此不能构成集合. 答案:C
3.若以方程 x2-3x+2=0 和 x2-5x+6=0 的解为元素组成集合 A,则
素至多只有一个,求 m 的取值范围. [解] ①当 m=0 时,原方程为-2x+3=0,x=32,符合题意. ②当 m≠0 时,方程 mx2-2x+3=0 为一元二次方程,
由 Δ=4-12m≤0,得 m≥13,
有理数集 _Q__
实数集 R__
[微思考] N 与 N *有何区别? 提示:N *是所有正整数组成的集合,而 N 是由 0 和所有的正整数组 成的集合,所以 N 比 N *多一个元素 0.
(二)基本知能小试
1.给出下列关系:①13∈R ;② 5∈Q ;③-3∉Z ;④- 3∉N ,其中正确
的个数为
(二)基本知能小试 1.判断正误
(1)一个集合可以表示为{a,b,a,c}. (2)集合{-3,1}与集合{(-3,1)}表示同一个集合.
() ()
(3){x∈R |x>1}={y∈R |y>1}. 答案:(1)× (2)× (3)√ 2.方程 x2-1=0 的解集用列举法表示为( )
()
A.{x2-1=0}
可用列举法表示为{3,5,7,11}. (4)函数 y=-x+2 图象上的点可以用坐标(x,y)表示.故可用描述法
表示{(x,y)|y=-x+2}.
[方法技巧] 选用列举法或描述法的原则
要根据集合元素所具有的属性选择适当的表示方法.列举法的特点 是能清楚地展现集合的元素,通常用于表示元素个数较少的集合,当集 合中元素较多或无限时,就不宜采用列举法;描述法的特点是形式简单、 应用方便,通常用于表示元素具有明显共同特征的集合,当元素共同特 征不易寻找或元素的限制条件较多时,就不宜采用描述法.
[对点练清]
1.(多选)下列对象能构成集合的是
()
A.某市拥有小轿车的家庭
B.2020 年高考数学试卷中的难题
C.所有的有理数
D.绝对值大于 5 的实数 解析:根据集合的概念,B 选项中的“难题”标准不明确,不满足集
合中元素的确定性,显然 A、C、D 选项中都能构成集合,故选 A、
C、D. 答案:ACD
1.元素与集合的含义
定义
表示
元 一般地,把_研__究__对__象_统称为 通常用小写拉丁字母 a,b,c,…
素 元素
表示
集 把一些元素组成的_总__体_叫做 通常用大写拉丁字母 A,B,
合 集合,简称为集___
C,…表示
2.集合中元素的特性:_确__定__性__、互异性和无序性. 3.集合相等:只要构成两个集合的元素是_一__样_的,我们就称这两个集合
关系
概念
如果 a 是集合 A 的元素,就说 a 属于集合 A a_属__于__集合 A
如果 a 不是集合 A 中的元素, a 不属于集合 A
就说 a_不__属__于_集合 A
记法 a_∈__A_ _a_∉_A_
2.常用数集及符号表示
名称 自然数集 正整数集 整数集
记法
_N__ _N__*或___N_+__ _Z_
[对点练清] 用适当的方法表示下列集合: (1)方程 x2-2x+1=0 的实数根组成的集合; (2)二次函数 y=x2+2x-10 的图象上所有的点组成的集合. 解:(1)方程 x2-2x+1=0 的实数根为 1,因此可用列举法表示为{1},
也可用描述法表示为{x∈R |x2-2x+1=0}.
(2)二次函数 y=x2+2x-10 的图象上所有的点组成的集合中,代表元 素为有序实数对(x,y),其中 x,y 满足 y=x2+2x-10,由于点有无 数个,故可用描述法表示为{(x,y)|y=x2+2x-10}.
题型四 集合与方程的综合问题 [探究发现] 怎样判断方程 ax2+bx+c=0 的解的个数? 提示:当 a=0,b≠0 时,方程有一个解. 当 a≠0 时,若 Δ=0,则方程有两个相等的实数根; 若 Δ<0,则方程无解; 若 Δ>0,则方程有两个不相等的实数根.
[学透用活]
[典例 4] 已知集合 A={x∈R |mx2-2x+3=0,m∈R },若 A 中元
()
A.1
B.2
C.3
D.4
解析: 13是实数,①正确; 5是无理数,②错误;-3 是整数,③错
误;- 3是无理数,④正确.故选 B. 答案:B 2.已知集合 M 有两个元素 3 和 a+1,且 4∈M,则实数 a=________.
解析:由题意可知 a+1=4,即 a=3.
答案:3
知识点三 集合的表示方法 (一)教材梳理填空 1.列举法
A 中元素的个数为
()
A.1
B.2
C.3
D.4
解析:方程 x2-3x+2=0 的解为 1,2,方程 x2-5x+6=0 的解为 2,3
由于两方程有相同的解 2,在集合中作为 1 个元素,故 A 中有 3 个元
素,故选 C. 答案:C
知识点二 元素与集合的关系及常用数集 (一)教材梳理填空 1.元素与集合的关系
C.全体很大的自然数
D.平面内到△ABC 三个顶点距离相等的所有点
[解析] 由于帅与很大没有一个确定的标准,因此 A、C 不能构成集
合;B 中由于 sin 30°=cos 60°不满足互异性;D 满足集合的三要素,因
此选 D.
[答案] D
[方法技巧] 判断元素能否构成集合,关键在于是否有一个明确的客观标准来衡 量这些对象,即看这些元素是否具有确定性,如果条件满足就可以断定 这些元素可以组成集合,否则就不能构成集合. [提醒] 注意集合元素的互异性,相同的元素在集合中只能出现一次.
是相等的. 4.集合的分类:根据集合中元素的个数可以将集合分为有限集和无限集.
当集合中元素的个数有限时,称之为有限集; 当集合中元素的个数无限时,称之为无限集.
(二)基本知能小试
1.判断正误
(1)立德中学今年入学的爱好数学的学生可以组成一个集合. ( )
(2)元素 1,2,3 和元素 3,2,1 组成的集合是相等的.
题型二 元素与集合的关系 元素与集合的关系解读
[学透用活]
唯一性
a∈A 与 a∉A 取决于 a 是不是集合 A 中的元素, 只有属于和不属于两种关系
方向性
符号“∈”“∉”具有方向性,左边是元素,右 边是集合
[典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N ”,有且只
有 2 个元素的集合 A 的个数是
A.0
B.1
C.2
D.3
(2)用符号∈与∉填空.
①(-1)0______N *; 3+2______Q ;43______Q .
()
②若 a2=3,则 a______R ,若 a2=-1,则 a______R .
[解析] (1)∵a∈A 且 4-a∈A,a∈N 且 4-a∈N , 若 a=0,则 4-a=4,此时 A={0,4}满足要求; 若 a=1,则 4-a=3,此时 A={1,3}满足要求; 若 a=2,则 4-a=2,此时 A 中只有一个元素 2,不满足要求. 故有且只有 2 个元素的集合 A 有 2 个,故选 C. (2)①(-1)0=1∈N *, 3+2 是无理数,故 3+2∉Q ,43是无限循环小 数,是有理数,故43∈Q . ②平方等于 3 的数是± 3,是实数,平方等于-1 的实数不存在,所 以 a2=3 时,a∈R ,a2=-1 时,a∉R . [答案] (1)C (2)①∈ ∉ ∈ ②∈ ∉
[解] (1)因为 3x+2>2x+1,所以 x>-1.故可用描述法表示为{x|x
>-1}.
(2)解方程组23xx- +32yy= =18,4, 得xy==-4,2. 故解集可用描述法表示为x,yyx==-4,2
,也可用列举法表示为{(4,-2)}.
(3)小于 13 的既是奇数又是素数的自然数有 4 个,分别为 3,5,7,11.故
第一章 集合与常用逻辑用语
1.1 集合的概念
1.通过实例,了解集合的含义,理解元素与集合的属于关系. 2.掌握常用的数集及其记法,掌握集合的两种表示方法. 3.通过本节内容的学习,学生能选择不同的语言来描述不同,
的具体问题,培养学生数学抽象和逻辑推理的核心素养.
知识点一 元素与集合
(一)教材梳理填空
性 一些对象一旦组成了集合,这个集合就是这些对象的总体
集合含义中的“元素”所指的范围非常广泛,现实生活中我们看 广泛
到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一 性
些抽象的符号等,都可以看作“对象”,即集合中的元素
[典例 1] 下列对象能构成集合的是
()
A.高一年级长得帅的学生
B.sin 30°,sin 45°,cos 60°,1
2.由实数 x,-x|x|, x2,( x2)2,- x3组成的集合中最多含有________ 个元素. 解析:由题可知 x≥0,所以 x,-x|x|, x2,( x2)2,- x3可分别化 为 x,-x2,x,x2,-x x,故由实数 x,-x|x|, x2,( x2)2,- x3 组成的集合中最多含有 4 个元素. 答案:4
相关文档
最新文档