初二上册数学几何题
八年级数学上册 课内几何题练习专项

八年级数学上册课内几何题练习专项1. 三角形性质- 问题:在平面内给出一个三角形ABC,其中∠B=90°,AC=8cm,BC=6cm。
求∠C的大小。
- 解析:根据勾股定理,可以得出AC和BC的关系。
利用三角形内角和的性质,可以求出∠C的大小。
- 答案:∠C的大小为30°。
2. 平行线与交线- 问题:在平面内给出两组平行线AB和CD,AB与CD之间的距离为4cm。
若AB与CD的夹角为60°,求AB与CD的长度。
- 解析:利用正弦定理可以求出AB与CD的长度。
- 答案:AB与CD的长度为8cm。
3. 直角三角形- 问题:在平面内给出一个直角三角形XYZ,其中∠Y=90°,XY=5cm,YZ=12cm。
求XZ的长度。
- 解析:利用勾股定理可以求出XZ的长度。
- 答案:XZ的长度为13cm。
4. 图形投影- 问题:在三维空间内给出一个正方体,边长为6cm。
该正方体在一个平面上的投影形成一个正方形,求该正方形的边长。
- 解析:正方体在平面上的投影形成的图形是一个相似图形,可以利用相似图形的性质求解。
- 答案:该正方形的边长为6cm。
5. 圆的性质- 问题:在平面内给出一个圆,半径为3cm。
求该圆的周长和面积。
- 解析:根据圆的性质,可以用公式计算出该圆的周长和面积。
- 答案:该圆的周长为18.85cm,面积为28.27平方cm。
6. 多边形的内角和- 问题:在平面内给出一个六边形,已知其中一个内角为120°,求该六边形的所有内角和。
- 解析:利用多边形的内角和公式,可以求出该六边形的所有内角和。
- 答案:该六边形的所有内角和为720°。
以上是八年级数学上册课内几何题的练习专项,希望能帮到你。
如有其他问题,请随时提问。
初二数学几何题50道,要带答案带过程

初二数学几何题50道,要带答案带过程选择题:1. 若两角互为补角,则它们的差是()。
A.0°B.45°C.60°D.90°2. 在图中,如点S、T分别在边AB的延长线上,且∠ASP=60°,∠BAT=20°,则∠AST为()。
A.40°B.50°C.80°D.110°3. 已知正方形ABCD的边长为5cm,点E、F分别在边AD、AB上,且AE=BF,则三角形CEF的面积为()。
A.(5/8) cm²B.(9/8) cm²C.(13/8) cm²D.(15/8) cm²4. 如果一个圆心角的度数为30°,则它所对的弧度数是()。
A.π/6B.π/3C.π/4D.π/2填空题:1.如图,已知BC平分∠ABD,设∠BAC=a°,∠BCA=b°,则∠CBD=\_\_\_\_°。
2.如图,点A、B、C在同一条直线上,则对于ΔABC来说,以下说法正确的是:①AB=AC;②\angleBAC是钝角;③\angleABC+\angleACB =180^\circ,所以\angleABC=\_\_\_\_°,\angleACB=\_\_\_\_°。
3. 已知直角三角形ABC,其中\angleC=90°,BC=3,AC=4,则AB=\_\_\_\_。
4.如图,长方形ABCD中,点E、F分别为BC、CD上的点,若∠BAE=∠EFD,AB=10cm,则DF=\_\_\_\_cm。
解答题:1.如图,在\triangleABC中,垂足分别为D、E、F。
若AC=6,BD=8,DE=5,EF=9,则BC=()。
2.如图,已知\angleBAC=60°,AD平分\angleBAC,且BD=AD,点E为AD的延长线上的点,且\angleBEC=140°,则\angleACD=\_\_\_\_\_\_°。
初二数学几何试题及答案

初二数学几何试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是三角形的内角和?A. 180°B. 360°C. 540°D. 720°2. 如果一个三角形的两条边长分别为3和4,第三边的长度可能为:A. 1B. 5C. 7D. 93. 一个圆的半径为5厘米,那么它的周长是:A. 10π cmB. 20π cmC. 30π cmD. 40π cm4. 一个正方形的对角线长度为10厘米,那么它的边长是:A. 5 cmB. 7.07 cmC. 10 cmD. 14.14 cm5. 一个长方形的长和宽分别是8厘米和6厘米,那么它的面积是:A. 48 cm²B. 36 cm²C. 24 cm²D. 12 cm²二、填空题(每题2分,共10分)6. 一个等腰三角形的底角是45°,那么它的顶角是________度。
7. 如果一个正多边形的每个内角都是120°,那么它是________边形。
8. 一个圆的直径是14厘米,那么它的半径是________厘米。
9. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边长是________厘米。
10. 如果一个平行四边形的对角线互相平分,那么它是一个________。
三、计算题(每题10分,共20分)11. 一个正六边形的边长为2厘米,求它的周长和面积。
12. 已知一个圆的半径为7厘米,求它的面积和周长。
四、解答题(每题15分,共30分)13. 在一个等边三角形ABC中,点D是边AB上的一点,且AD=2,BD=1。
求∠ADC的度数。
14. 一个圆的半径为10厘米,圆心到一个点P的距离为8厘米,求点P到圆上任意一点的距离的最大值和最小值。
答案:一、选择题1. B2. B3. B4. B5. A二、填空题6. 907. 68. 79. 510. 矩形三、计算题11. 周长:2×6=12厘米;面积:(3√3)×2²=12√3平方厘米。
几何题目初二数学3篇

几何题目初二数学题目1:求扇形的面积扇形是一个常见的几何图形,它由一个圆心和两条半径组成,圆心角的度数决定了扇形的大小。
我们可以通过以下公式来求解一个扇形的面积:S = (θ / 360) × πr^2其中,θ代表圆心角的度数,r代表扇形的半径,π是一个常数,约等于3.14。
举个例子,如果一个扇形的半径为5cm,圆心角的度数为60°,那么它的面积应该为:S = (60 / 360) × 3.14 × 5^2 ≈ 13.09(cm^2)注意:在使用这个公式时,需要将度数换算成弧度,即用角度×π/180来计算角度的弧度值。
例如60°的弧度值应该是60×π/180=π/3。
题目2:求直角三角形的斜边长度直角三角形是一个有一条直角边的三角形,我们可以利用勾股定理来求解它的斜边长度。
勾股定理指出:在一个直角三角形中,直角边的两个平方和等于斜边的平方,即a^2+b^2=c^2。
(其中a和b分别为直角边,c为斜边)例如,如果一个直角三角形的直角边长度分别为3cm和4cm,那么它的斜边长度应该为:c = √(3^2 + 4^2) ≈ 5(cm)注意:在使用勾股定理时,必须要保证直角边的长度已知,且只能求解斜边长度,不能求解其他两个角或两个边的长度。
题目3:求圆柱的表面积和体积圆柱是一个由一个圆形底面和一个长方形侧面组成的几何体,我们可以通过以下公式来求解一个圆柱的表面积和体积:表面积S = 2πr^2 + 2πrh体积V = πr^2h其中,r代表圆柱的半径,h代表圆柱的高,π是一个常数,约等于3.14。
举个例子,如果一个圆柱的半径为3cm,高为5cm,那么它的表面积应该为:S = 2π×3^2 + 2π×3×5 ≈ 113.1(cm^2)它的体积应该为:V = π×3^2×5 ≈ 141.3(cm^3)注意:在使用这些公式时,需要将所有的长度单位统一转换成同一单位,例如上述例子中,半径和高都是用厘米表示,因此得到的表面积和体积单位也是厘米的平方和立方。
(word完整版)人教版八年级上册数学几何练习题

人教版八年级上册数学几何练习题1、已知:在⊿ABC中,∠A=90,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。
2、已知:在⊿ABC中,∠A=90,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。
B3、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。
C4、已知:如图,在△ABC中,BP、CP分别平分∠ABC 和∠ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC. APE DBC图⑴5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
写出点O到△ABC的三个顶点A、B、C的距离的大小关系;如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
A M B6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。
几何证明习题答案1. 连接AD,由△ABC为等腰直角三角形可得AD垂直AC,且AD=BD,∠DAQ=∠DBR=45度, 又由平行关系得,四边形RPQA为矩形,所以AQ=RP, △BRP也是等腰直角三角行,即BR=PR,所以AQ=BR由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ, ∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度, 所以△RDQ是等腰RT△。
2. 作AG平分∠BAC交BD于G ∵∠BAC=90° ∴∠CAG= ∠BAG=45° ∵∠BAC=90° AC=AB ∴∠C=∠ABC=45°∴∠C=∠BAG ∵AE⊥BD ∴∠ABE+∠BAE=90°∵∠CAF+∠BAE=90° ∴∠CAF=∠ABE ∵ AC=AB ∴△ACF ≌△BAG ∴CF=AG ∵∠C=∠DAG =45°CD=AD ∴△CDF ≌△ADG ∴∠CDF=∠ADB3. 易证△ABM≌△NAC.∠NAM=∠NAE+∠BAM=∠NAE+ANE=90°4. 略5.因为直角三角形的斜边中点是三角形的外心,所以O到△ABC的三个顶点A、B、C距离相等;△OMN是等腰直角三角形。
初二数学几何试题及答案

初二数学几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是直角三角形的判定条件?A. 两角之和为90°B. 两边之和大于第三边C. 斜边的平方等于两直角边的平方和D. 任意两边之和大于第三边2. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米3. 如果一个三角形的三个内角分别为40°、60°和80°,那么这个三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定4. 一个矩形的长是10厘米,宽是6厘米,那么它的面积是:A. 60平方厘米B. 100平方厘米C. 120平方厘米D. 150平方厘米5. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 8厘米6. 一个正方形的对角线长度为10厘米,那么它的边长是:A. 5厘米B. 7.07厘米C. 8厘米D. 10厘米7. 一个梯形的上底是4厘米,下底是8厘米,高是6厘米,那么它的面积是:A. 12平方厘米B. 24平方厘米C. 30平方厘米D. 40平方厘米8. 一个平行四边形的对角线互相垂直,那么这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形9. 一个正五边形的内角和是:A. 540°B. 720°C. 900°D. 1080°10. 一个圆的周长是62.8厘米,那么它的半径是:A. 10厘米B. 11厘米C. 12厘米D. 13厘米二、填空题(每题4分,共20分)1. 如果一个三角形的两个内角分别为30°和60°,那么第三个内角是______°。
2. 一个圆的周长是31.4厘米,那么它的直径是______厘米。
3. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是______厘米。
初二上册数学几何试题(附答案)

初二上册数学几何试题(附答案)1、如图: 在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明AB=AC+CD2、如图,AD是∠BAC的角平分线,DE⊥AB垂足为E, DF⊥AC,垂足为点F,且BD=CD 求证: BE=CF3、如图,PB、PC分别是△ABC的外角平分线且相交于点P求证:点P在∠A的平分线上4、如图,△ABC中, p是角平分线AD,BE的交点.求证:点p在∠C的平分线上5、下列说法中,错误的是( )A. 三角形任意两个角的平分线的交点在三角形的内部B. 三角形两个角的平分线的交点到三边的距离相等C. 三角形两个角的平分线的交点在第三个角的平分线上D. 三角形任意两个角的平分线的交点到三个顶点的距离相等6、如图在三角形ABC 中BM=MC∠ABM=∠ACM 求证 AM平分∠BAC7、如图, AP、CP分别是△ABC外角∠MAC与∠NCA的平分线, 它们相交于点P, PD⊥BM 于点D, PF⊥BN于点F. 求证: BP为∠MBN的平分线。
8、如图,在∠AOB的两边OA, OB上分别取 OM=ON, OD=OE, DN 和EM 相交于点C. 求证: 点C在∠AOB的平分线上.9、如图, ∠B=∠C=90° , M是BC的中点, DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段 DM与AM有怎样的位置关系?请说明理由.参考答案:1、因为∠1=∠B所以∠DEA=2∠B=∠C因为 AD是△ABC的角平分线所以∠CAD=∠EAD 因为 AD=AD所以△ADC 全等于△ADE 所以 AC=AE CD=DE 因为∠1=∠B 所以△EDB 为等腰三角形所以 EB=DE 因为 AB=AE+EB AC=AE CD=DE EB=DE所以 AB=AC+CD2、因为 ad是∠bac的角平分线, ,DE⊥AB, DF⊥AC, 所以DE=DF三角形DEB和三角形DFC均为直角三角形,又因为 BD=CD 所以BE=CF3、作PF⊥AD, PH⊥BC, PG⊥AE∵PB 平分∠DBC, PC平分∠ECB, PF⊥AD, PH⊥BC, PG⊥AE∴PF=PH,PG=PH(角平分线上的点到这个角的两边的距离相等)∴PF=PG∵PF⊥AD, PG⊥AE, PF=PG∴PA平分∠BAC(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上)4、作PG⊥BC,PH⊥AC,PQ⊥AB,垂足分别为G、H、Q,AD为∠A的平分线,PH=PQ;BE为∠B 的平分线, PQ=PG;所以PG=PH,又CP为RT△CGP和RT△CEP的公共斜边,所以△CGP≌△CHP,所以∠GCP=∠ECP,CP为∠的平分线,P点在∠C的平分线上5、 A6、∵BM=MC, ∴∠MBC=∠MCB, ∵∠ABM=∠ACM, ∴∠ABM+∠MBC=∠ACM+∠MCB, 即∠ABC=∠ACB,∴AB=AC, 在△AMB与△AMC中, AB=AC, ∠ABM=∠ACM, MB=MC, ∴△AMB≌△AMC(SAS),∴ ∠MAB=∠MAC, 即AM平分∠BAC。
初二上数学几何练习题

初二上数学几何练习题数学几何是中学数学的重要组成部分,通过几何学习,学生可以培养空间想象力和逻辑思维能力。
下面是一些初二上学期数学几何的练习题,希望能帮助同学们巩固知识,提高解题能力。
1. 已知三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,请计算AB的长度。
解析:根据勾股定理可得:AB² = AC² + BC²。
代入已知的数值,即可计算出AB的长度。
2. 在矩形ABCD中,AB = 6cm,BC = 8cm。
若AC的中垂线与BD 重合于E点,请求BE的长度。
解析:由于AC的中垂线与BD重合于E点,所以BE为矩形的对角线。
根据勾股定理可得:BE² = AB² + AE²。
代入已知的数值,即可计算出BE的长度。
3. 在等边三角形ABC中,点D为BC边上的一点,连接AD。
若∠DAB = 30°,请计算∠DCB的度数。
解析:由于等边三角形ABC中,AB = AC,所以∠B = ∠C。
又根据三角形内角和定理可得:∠A + ∠B + ∠C = 180°。
代入已知的数值,即可计算出∠DCB的度数。
4. 在平行四边形ABCD中,AB = 6cm,AD = 8cm,点E为BC边上的一点,且DE平分∠ADC。
请计算BE的长度。
解析:在平行四边形中,对角线互相平分。
由于DE平分∠ADC,所以∠DAE = ∠EAC。
由于BE为BC边上的一条线段,所以∠BAC = ∠BCE。
根据三角形内角和定理可得:∠A + ∠B + ∠C = 180°。
代入已知的数值,即可计算出BE的长度。
5. 在等腰直角梯形ABCD中,AD = BC,且∠B = 90°。
若AD = 5cm,AB = 10cm,请计算CD的长度。
解析:在等腰直角梯形中,两底边相等。
由于AD = BC,所以∠C = ∠D。
根据勾股定理可得:CD² = BC² - BD²。