2019届北师大版八年级数学上册第6章《数据的分析》回顾与思考学案

合集下载

北师大版八年级上册数学第6章《数据的分析》教案

北师大版八年级上册数学第6章《数据的分析》教案

第六章数据的分析1 平均数【学习目标】1.掌握算术平均数、加权平均数的概念. 2.会求一组数据的算术平均数及加权平均数. 【学习重点】算术平均数的概念及计算. 【学习难点】加权平均数的概念及其计算.一、情景导入 生成问题在篮球比赛中,队员的身高、年龄都是影响球队实力的因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队的更高”?怎样理解“甲队队员比乙队更年轻”?中国男子篮球职业联赛2011-2012赛季冠、亚军球队队员身高、年龄如下表:北京金隅队 广东东莞银行队号码 身高/cm 年龄/岁 号码 身高/cm 年龄/岁 3 188 35 3 205 31 6 175 28 5 206 21 7 190 27 6 188 23 8 188 22 7 196 29 9 196 22 8 201 29 10 206 22 9 211 25 12 195 29 10 190 23 13 209 22 11 206 23 20 204 19 12 212 23 21 185 23 20 203 21 25 204 23 22 216 22 31 195 28 30 180 19 32 211 26 32 207 21 51 200 26 0 183 27 55 227 29上述两支篮球队中,哪支球队队员的身高更高?哪支球队的队员更为年轻?你是怎样判断的?与同伴进行交流.二、自学互研 生成能力知识模块一 算术平均数的概念及计算1.阅读教材第136页下面的内容,归纳平均数的定义.在日常生活中,我们常用平均数描述一组数据的集中趋势.一般地,对于n 个数x 1,x 2,…,x n ,我们把1n (x 1+x 2+ …+x n )叫做这n 个数的算术平均数,简称平均数,记为x -=1n(x 1+x 2+…+x n ).2.想一想:小明是这样计算北京金隅队队员的平均年龄的:年龄/岁19 22 23 26 27 28 29 35相应的队员数1 42 2 1 2 2 1平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29×2+35×1)÷(1+4+2+2+1+2+2+1)=25.4(岁).你能说说小明这样做的道理吗?【说明】 通过思考,分析小明的计算方法与以前学过的算术平均数的计算方法有何区别.通过学生的讨论、探究以及教师的引导让学生对加权平均数的计算有个初步的认识了解.知识模块二 加权平均数的概念及计算师生合作完成教材第137页例题的学习与探究.例 某广告公司欲招聘广告策划人员一名,对A 、B 、C 三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:测试项目测试成绩/分A B C 创新 72 85 67 综合知识 50 74 70 语言884567(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4∶3∶1的比例确定各人的测试成绩,此时谁将被录用?(3)(1),(2)问的结果一样吗?说明了什么?【归纳结论】 实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.例如在例题中4,3,1分别是创新,综合知识,语言三项测试成绩的权.则72×4+50×3+88×14+3+1为A 的三项测试成绩的加权平均数.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 算术平均数的概念及计算 知识模块二 加权平均数的概念及计算四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________2 中位数与众数【学习目标】1.认识中位数和众数,并会求一组数据的众数和中位数.2.了解平均数、中位数、众数在描述数据时的差异,并能灵活应用这三个数据代表解决实际问题.【学习重点】掌握中位数、众数这两种数据代表的概念.【学习难点】灵活运用平均数、中位数、众数,分析数据信息,做出决策.一、情景导入生成问题某公司员工的月工资如下:员工经理经理副职员A 职员B 职员C 职员D 职员E 职员F 杂工G月工资7000 4400 2400 2000 1900 1800 1800 1800 1200 (元)问题:这个公司员工的月平均工资是多少?这个公司员工收入到底怎样?你如何看待?【说明】为学生提供一个活生生的生活情境和值得深思的问题,激起学生认知的矛盾.因为疑问是构建数学的起点,对学生的心理智力产生刺激,让他们从问题中发现,有利于建立新的认知结构.二、自学互研生成能力知识模块一中位数与众数的概念观察:(1)这个公司员工的工资是按从高到低排列的,哪一位员工工资处在“正中间”?(2)9个员工当中,哪一种月工资出现的次数最多?【说明】这两个问题的提出让学生在心目中对于中位数和众数有了初步的认识,为下面正确理解它们的概念打下了基础.【归纳结论】一般地,几个数据按大小顺序排列,处于最中间位置的一个数据(或最中间的两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.讨论:(1)在上面的问题中,你认为用平均数、中位数和众数中哪个数据描述该公司员工收入的集中趋势更合适?(2)为什么该公司员工收入的平均数比中位数高得多?【说明】在同一个问题中分别求平均数、中位数和众数,这是为了比较三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的联系与区别,体现了它们各自在日常生活中的指导意义,培养了学生的迁移能力.知识模块二平均数、中位数和众数的应用与同伴合作完成下面问题的学习.做一做:(1)2011~2012赛季北京金隅队队员身高的平均数、中位数和众数分别是多少?(2)你课前调查的20位男同学所穿运动鞋尺码的平均数、中位数和众数分别是多少?你认为学校商店应多进哪种尺码的运动鞋?【说明】通过这几个问题的设置,其目的就是让学生根据不同情况从不同的角度灵活运用这三个数据代表处理问题.(3)平均数、中位数和众数都是描述数据集中趋势的统计量,它们各自有哪些特征呢?【说明】学生讨论得出结果,进一步加深了对平均数、中位数和众数的理解,认清了它们各自存在的优劣以及如何利用这三种数据解决实际问题.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一中位数与众数的概念知识模块二平均数、中位数和众数的应用四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________3从统计图分析数据的集中趋势【学习目标】1.进一步认识平均数、众数、中位数都是数据的代表,了解它们在描述数据时的差异.2.会从扇形、折线和条形等统计图中获取信息.【学习重点】对统计图进行分析计算,应用平均数、中位数、众数解决实际问题.【学习难点】灵活运用这三个数据代表解决问题.一、情景导入生成问题教师引导学生研读教材第145页“议一议”上方的内容.【说明】在同一个问题中求出众数,从而估计平均数,这是为了体现这两个量在描述一组数据集中趋势时之间的相互联系.体现了众数在日常生活中的指导意义,培养了学生的迁移能力.二、自学互研生成能力知识模块一从条形统计图分析数据的集中趋势先阅读教材第145页“议一议”的内容,再独立完成书中设置的3个问题,然后与同伴进行交流.【说明】利用统计图让学生在同一个问题中分别求出平均数、众数和中位数,主要是为了比较这三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的区别和联系.知识模块二从扇形统计图分析数据的集中趋势先阅读教材第145页“做一做”和第146页“想一想”的内容,并独立完成书中设置的问题,然后与同伴进行交流.【说明】在扇形统计图中很容易看出众数,从统计图中获取信息求加权平均数,巩固了以前学过的知识,加深了对这个知识点的理解.教师引导学生完成教材第146页例题的学习与探究.仿例:为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题.(1)本次接受随机抽样调查的学生人数为____,图①中m 的值为____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 解:(1)40;15;(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本的众数为35;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都为36,∴中位数为36+362=36;(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 从条形统计图分析数据的集中趋势 知识模块二 从扇形统计图分析数据的集中趋势四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________4 数据的离散程度【学习目标】1.知道极差、方差、标准差的概念.2.会求一组数据的极差、方差、标准差,并会用它们表示数据的离散程度. 【学习重点】 方差的概念和计算. 【学习难点】应用方差对数据的波动情况进行比较、判断.一、情景导入 生成问题教师引导学生研读教材第149页的内容,找到极差的概念,并完成书中设置的问题.【说明】 应用实例并提问启发思考,导入极差的概念,自然而又有探索性.【归纳结论】 实际生活中,除了关心数据的集中趋势外,人们往往还关注数据的离散程度,即它们相对于集中趋势的偏离情况.一组数据中最大数据与最小数据的差(称为极差),就是刻画数据离散程度的一个统计量.二、自学互研 生成能力知识模块一 方差与标准差的概念先阅读教材第150页“做一做”的内容,并完成书中设置的前两个问题.【说明】 通过问题的分析以及阅读指导的再认识,让学生认识到方差是衡量一组数据的离散程度的常用方法.【归纳结论】 数学上,数据的离散程度还可以用方差或标准差刻画.方差(v ariance )是各个数据与平均数差的平方的平均数,即s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].其中,x -是x 1,x 2,…,x n 的平均数,s 2是方差.而标准差(standard de v iation )就是方差的算术平方根. 一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定. 知识模块二 用计算器计算方差和标准差先自学自研教材第150页“做一做”和上方的例题,然后与同伴进行交流.【说明】 让学生学会用计算器求方差,加深对公式的理解,体会现实生活中常常根据方差考虑数据波动大小,从而作出正确的选择和判断.知识模块三 平均数与方差的综合运用师生合作完成教材第152页的图象问题及教材第153页的“议一议”和“做一做”的内容.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 方差与标准差的概念 知识模块二 用计算器计算方差和标准差 知识模块三 平均数与方差的综合运用四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________本章复习小结【学习目标】1.掌握数据的集中趋势和数据离散程度所表示的意义,并会利用它们解决实际问题.2.通过对本章知识的整理,回顾解决问题中所涉及的转化思想,数形结合的思想,从特殊到一般的思想,加深对知识的理解.【学习重点】掌握平均数、中位数、众数、极差、方差、标准差的概念及各自的计算公式;会利用计算器求平均数,会用极差、方差、标准差来研究数据波动的大小.【学习难点】理解数据代表的意义和方差、标准差代表的意义.一、情景导入 生成问题师生共同回顾本章知识点,构建知识结构图,让学生对本章知识有个整体把握,体会各知识之间的联系与区别,教学时要有的放矢.数据的分析⎩⎪⎪⎪⎨⎪⎪⎪⎧数据的集中趋势⎩⎪⎨⎪⎧平方数⎩⎨⎧算术平均数:x =1n(x 1+x 2+…+x n )加权平均数:x =x 1f 1+x 2f 2+…+x n fnf 1+f 2+…+fn中位数:一般地,n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)众数:一组数据中出现次数最多的那个数据数据的离散程度⎩⎪⎨⎪⎧极差:一组数据中最大数据与最小数据的差方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n-x )]标准差:方差的算术平方根从统计图中分析数据二、自学互研 生成能力知识模块一 知识清单 加深理解 1.求加权平均数求算术平均数是求加权平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权重相等时,就变成了算术平均数.2.求中位数求一组数据的中位数时,要把这些数据按从小到大(或从大到小)的顺序排列起来,然后求中位数,不可直接取中间的数为中位数.3.方差在平均数相差不多的情况下,方差是衡量一组数据波动大小的量,方差越小,数据的波动就越小,证明数据越接近平均数.知识模块二 典例引路 全面复习例1:某鞋店为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20名女生的鞋号组成的一组数据的平均数是________,中位数是________,众数是________,鞋厂最感兴趣的是________数.分析:平均数可用加权平均数公式计算:x =21.5×3+22×4+22.5×4+23×7+23.5×1+24×120=45120=22.55(cm ).中位数是第10个和第11个两个数据的平均数,而这两个数据均是22.5.众数是出现次数最多的数据,同时也证明这种号码的鞋是学生中穿得最多的,也是厂家销售得最好的,是这组数据中最重要的.解:22.5,22.5,23,众.例2:某样本x 1+1,x 2+1,…x n +1的平均数为10,方差为2,求样本x 1+2,x 2+2…,x n +2的平均数及方差.分析:由平均数及方差的性质可知,若x 1,x 2,x 3…,x n 的平均数为x ,方差为s 2,则ax 1+b ,ax 2+b ,ax 3+b ,…,ax n +b 的平均数为ax +b ,方差为a 2s 2.解:由题意可知:1n [(x 1+1)+(x 2+1)+(x 3+1)+…+(x n +1)]=10,1n [(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2,所以样本x 1+2,x 2+2,x 3+2,…,x n +2的平均数和方差分别为:x =1n [(x 1+2)+(x 2+2)+…+(x n+2)]=1n [(x 1+1)+(x 2+1)+…+(x n +1)]+n n =10+1=11.s 2=1n [(x 1+2-x)2+(x 2+2-x)2+…+(x n +2-x)2]=1n [(x 1+2-11)2+(x 2+2-11)2+…+(x n +2-11)2]=1n[(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 知识清单 加深理解 知识模块二 典例引路 全面复习四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

八上第六章数据的分析回顾与思考改

八上第六章数据的分析回顾与思考改

课题:第六章《数据的分析》回顾与思考一.备课标:(一)内容标准:1. 经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据。

2、理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述。

3、体会刻画数据离散程度的意义,会计算简单数据的方差。

(二)核心概念:通过有关平均数、中位数、众数、方差、标准差问题的解决,发展学生的数学应用能力。

通过选择恰当的数据代表对数据作出评判,培养综合运用统计知识解决实际问题的能力,培养学生的数据分析观念,培养学生对各种图表信息的识别和评判能力,发展学生初步的统计意识和数据处理能力。

十大核心概念在本节课中突出培养的是数感、符号意识、数据分析观念、运算能力、应用意识、推理能力、模型思想。

二、备重点、难点:(一)教材分析:从《标准》看,本章属于“统计与概率”领域。

在7年级上册学习了“第六章数据的收集、整理,本章主要学习分析数据的集中趋势和离散程度的常用方法。

我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来。

为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量。

对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势,三是分析数据分布的偏态和峰度,反映数据分布的形状。

这三个方面分别反映了数据分布特征的不同侧面。

根据《标准》的要求,本章重点从前两个方面研究数据的分布特征。

(二)重点、难点分析本节课通过整理归纳本章所学的知识,形成知识网络结构,因此确定:教学重点:会用笔算或计算器准确地求出一组数据的平均数、中位数和众数。

了解平均数、中位数和众数的差别,计算简单数据的方差,能选择恰当的数据代表对数据作出评判,并解决实际问题。

《数据的分析》回顾与思考-北师大版八年级数学上册教案

《数据的分析》回顾与思考-北师大版八年级数学上册教案
数据的分析回顾与思考
引言
数据的分析是当今社会中非常重要的一项技能,它不仅可以帮助我们更好地理解世界,还可以为我们提供各种不同的工作和生活中所需要的信息。作为数学中重要的概念之一,数据的分析在北师大版八年级数学上册中得到了很好的掌握。通过本文档,我们将回顾和思考这一章节内容的关键点和知识点。
数据的收集
数据的分析
在处理数据之后,我们需要对数据进行分析。北师大版八年级数学上册中,我们主要学习了两个方面的分析方法:均值和中位数。
均值
均值是指在一组数据中,将各个值相加然后除以数据的个数得到的结果。均值可以让我们更好的知道整个数据集的数量级以及趋势。
中位数
中位数则是将数据集中的数值从大到小排序,找到中间值。中位数可以让我们知道数据的中心趋势,以及数据的数量分布情况。
文件资料
文件资料是指通过各种文献、报告和公开数据来获取数据的方法。这种方法是最直接的方法,常用于历史数据或大型调查数据的分析。
数据的处理
获得数据是一项非常关键的任务,然而获取数据之后,我们还需要对数据进行处理和分析。北师大版八年级数学上册中,我们学习了数据的整理和统计两个方面的处理方法。
数据的整理
数据的整理可以让数据更加直观地被人们理解。北师大版八年级数学上册中,我们主要学习了表格和折线图两种整理方法。
总结
数据的分析是现代社会中非常重要的一项技能,而在北师大版八年级数学上册中,我们不仅学习了如何获取数据和处理数据,而且了解了许多的数据分析方法和原理。通过本文档,我们了解了数据分析的关键点和知识点,这些知识点对于我们的学习和工作都非常有帮助。
任何一项数据的分析都需要有数据的来源,北师大版八年级数学上册中,数据的来源通常分为以下几种:
实地调查

2019版八年级数学上册 第六章 数据的分析 6.3 从统计图分析数据的集中趋势学案北师大版

2019版八年级数学上册 第六章 数据的分析 6.3 从统计图分析数据的集中趋势学案北师大版

2019版八年级数学上册第六章数据的分析 6.3 从统计图分析数据的集中趋势学案北师大版四、课堂探究——质疑解疑、合作探究探究点1:结合折线统计图进行数据分析⑵估计这10个面包的平均质量,再具体算一算,看看你的估计水平如何.2019版八年级数学上册第六章数据的分析6.3 从统计图分析数据的集中趋势学案北师大版课题§6.3 从统计图分析数据的集中趋势主备审阅八年级数学组时间课型新授授课教师四、课堂探究——质疑解疑、合作探究探究点1:结合折线统计图进行数据分析为了检查面包的质量是否达标,随机抽取了同种规格的面包10个,这10个面包的质量如图所示.⑴这10个面包质量的众数是多少?⑵估计这10个面包的平均质量,再具体算一算,看看你的估计水平如何.例题:在“大家跳起来”的学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A.众数是90 B.中位数是90 C.平均数是90 D.极差是15练习:1. 如图1,地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是吨.2. 如图2,是沈阳市某6天内的最高气温折线统计图,则最高气温的众数是℃.探究点2:结合条形统计图进行数据分析甲、乙、丙三支青年排球队各有12名队员,三队队员的年龄情况如图.⑴观察三幅图,你能从图中分别看出三支球队队员年龄的众数吗?中位数呢?⑵根据图表,你能大致估计出三支球队队员的平均年龄哪个大、哪个小吗?你是怎么估计的?⑶计算出三支球队队员的平均年龄,看看你上面的估计是否准确?例题:如图3,今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某10 80 85 90 9525分数人数图1 图2班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是______元.练习:1. 如图4,某校九年级420名学生参加植树活动,随机调查了50名学生植树的数量,并根据数据绘制了如下条形统计图,该校九年级学生此次植树活动约植树棵.2. 如图5,为做好“四帮四促”工作,沈阳某局机关积极倡导“挂帮一日捐”活动。

新北师大版八年级数学上册《六章 数据的分析 回顾与思考》公开课教案_0

新北师大版八年级数学上册《六章 数据的分析  回顾与思考》公开课教案_0

第六章数据的分析回顾与思考【学习目标】1.能说出并掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。

2.能说出中位数、众数的定义,会求一组数据的中位数、众数;体会平均数、中位数、众数三者的差别;3.了解刻画数据离散程度的三个量度——极差、方差、标准差;能求出相应的数值,并在具体问题情境中加以应用。

4. 能从各类统计图中获取数据,初步选取恰当的数据代表作为自己的判断,通过实例体会用样本估计总体的思想。

【学习过程】活动1:知识梳理小组交流,回顾重点并在课堂上展示。

活动2:基本练习:1. 某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是( )A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.42. 某校在开展“爱心捐助”的活动中,九年级一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是( )A. 10B. 9C. 8D. 43. 在2016年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A. 18,18,1B. 18,17.5,3C. 18,18,3D. 18,17.5,14. 一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )A. 3.5,3B. 3,4C. 3,3.5D. 4,35. 丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据不发生变化的是( )A. 平均数B. 众数C. 方差D. 中位数6. 有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位的同学进入决赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学分数的( )A. 平均数B. 中位数C. 众数D. 方差7. 为了解某公司员工的年工资情况,小王随机调查了10位员工,某年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资水平的是( )A. 方差B. 众数C. 中位数D. 平均数8. 某大学生招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,已知小明数学得分为95分,物理得分为90分,那么小明的综合得分是____分.9. 苹果园有果树200棵,从中随机抽出5棵,每棵果树的产量(单位:千克)如下:98,102,97,103,105,则这5棵树的平均产量为____千克,估计200棵树的总产量为____千克10. 某射击小组有20人,教练根据他们某次射击的数据绘制了如图所示的统计图,则这组数据的众数和中位数分别是()A. 7环,7环B. 8环,7.5环C. 7环,7.5环D. 8环,6环11. 甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:平均数(cm)561根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A. 甲B. 乙C. 丙D. 丁12. 在射击比赛中,某运动员的6次射击成绩(单位:环)为7,8,10,8,9,6,这组数据的方差为__.11.一次体检中,某班学生视力检查的结果如图所示,从图中看出全班视力数据的众数是( )(A )55% (B )24% (C )1.0 (D )1.0以上 13.甲、乙、丙三名射击手的20次测试的平均成绩都是8环,方差分别是220.4()s =甲环,)(环乙222.3=s ,221.6()s =丙环则成绩最稳定的是 . 活动3:拔高练习:1. 若1,2,3,x 的平均数是6.且1,2,3,x ,y 的平均数是7,则y 的值为( )A. 7B. 9C. 11D. 132. 自然数4,5,5,x ,y 从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x ,y 中,x +y 的最大值是( )A. 3B. 4C. 5D. 63.已知一个样本1,3,2,2,a,b,c的众数为3,平均数为2,则该样本的方差为___.4.已知一组数据x1,x2,x3的平均数和方差分别为6和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.6和 2 B.6和 3 C.7和 2 D.7和3.5. 下表是某校九年级(1)班20名学生某次数学测验的成绩统计表:(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.6. 在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.7.【2015·贵港】某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表(1)在图①中,“80分”所在扇形的圆心角度数为________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.8.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为________ ,图①中m的值是________;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【课堂小结】这节课你有什么收获?小组交流谈谈你的收获,并展示。

北师大版八年级数学上册第6章 数据的分析小结与复习

北师大版八年级数学上册第6章 数据的分析小结与复习
第六章 数据的分析
小结与复习
平均数、加
数据的一般
权平均数
水平或集中 趋势
中位数 众数
计 算
数据的分析
公 式
数据的离散 程度或波动
大小
方差
数据的代表
定义
一组数据的平均值称为这组数据的平均数

算术 平 均数
一般地,如果有 n 个数x1,x2,…,xn,那么
x
1 n
( x1
x2
xn
)
叫做这
n
个数的平均数
均 数
加权 平 均数
一般地,如果在 n 个数 x1,x2,…,xn 中,x1 出现 f+…1 次f,k=,xknx这)2,出k那现个么数f2x次的,加1n …(权x1,平f1 x均kx出2数f2现, 其fk 次中x(kf其1f,k )中叫f2,f做1+…xf,21+,fk…x叫2,
做 x1,x2,…,xk 的权,f1+f2+…+fk=n
解析:(3 + 4 + 3.5 + 3 + 4.5 + 6)÷6 = 24÷6 = 4 (吨).
2. 某班体育委员统计了全班 45 名同学一周的体育锻炼 时间,并绘制了如图所示的折线统计图,则在体育锻 炼时间这组数据中,众数和中位数分别是( B ) A.18,18 B.9,9 C.9,10 D.18,9
解:①八年级队平均分高于七年级队;②八年级队 的成绩比七年级队稳定;③八年级队的成绩集中在 中上游,所以支持八年级队成绩好.(注:任说两条 即可)
6. 为了从甲、乙两名选手中选拔一个参加射击比赛, 现对他们进行一次测验,两个人在相同条件下各射靶 10 次,为了比较两人的成绩,制作了如下统计图表:
甲、乙射击成绩统计表

新北师大版八年级数学上册《六章 数据的分析 回顾与思考》公开课教案_3

新北师大版八年级数学上册《六章 数据的分析  回顾与思考》公开课教案_3

课题:《数据的分析》章末“回顾与思考”——教学设计一、教材分析1、教材的地位和作用:本节内容是北师大版教材数学八年级上册第六章《数据的分析》最后一个课时,与学生生活密切相关,能直接指导学生的生活实践。

本节课是学生在学习了数据的收集与整理基础上,对数据处理的进一步深入和拓展,为以后学习概率的相关知识奠定理论基础,在教材中有着承上启下的作用。

2、教学目标:(1)通过整理归纳本章所学知识,形成知识框架结构;(2)会准确地求出一组数据的平均数、中位数、众数、极差、方差和标准差,能选择恰当的数据代表对数据作出评判;(3)培养综合运用统计知识解决实际问题的能力,达成有关的情感态度目标。

3教学重点:平均数、众数、中位数、极差、方差和标准差及其应用。

教学难点:应用所学知识解决实际问题。

二、学情分析:八年级学生具有初步的观察、分析、概括能力,有着一定的学习经验及活动经验,形成了较好的参与意识和合作意识。

并能在教师引导下进行合作探究。

我班学生基础知识较扎实、思维较活跃,但运用数学知识解决实际问题的能力还有待进一步提高。

三、教法和学法:教法:问题驱动式学法:自主探究——合作交流四、教学程序:教学环节教学程序教师活动学生活动设计意图创设情境提炼要点提问:中韩两国跑男将进行终极PK,请同学们结合比赛规则,思考我们应该从哪些方面进行选择才能使中国跑男获得最终的胜利。

首先,中国跑男的两支队伍“大叔队”和“美男队”将通过三项比赛决出最终同韩国跑男PK的资格。

比赛一:跳绳。

“大叔队”6人参加,“美男队”5人参加,应如何判定胜负?比赛二:跳高。

两个队队内7个人先PK,选出4人去参赛,王祖蓝想知道自己是否有参赛的资格,他应看哪一项数据?比赛三:射击。

两队各7名选手轮流射击,以出现次数最多的那个成绩作为最终成绩,应如何判定?终极PK项目:比赛四:射箭。

中韩两队各派出一名成绩较好且状态稳定的选手参赛,应如何选择?厂商之争:为了撕名牌更有战斗力,现有两个厂商为跑男赞助鸡腿,如果只考虑鸡腿的规格,跑男如何选择接受哪家的鸡腿?提出问题,板书课题,引导学生完成学案思考并回答问题,完成学案。

新版北师大数学八年级上册第六章《数据的分析》复习学案[2页]

新版北师大数学八年级上册第六章《数据的分析》复习学案[2页]

第六章 数据的分析导学案一、学习目标会用平均数、中位数、众数、方差进行数据处理。

二、学习重难点重点:应用样本数据特征估计总体的相应特征。

难点:方差概念的理解和应用。

三、学习过程(一)自主复习、查漏补缺 1、若n 个数n x x x ,, , ⋯21的权分别是12k f f f ⋯ , ,,,则: 叫做这n 个数的加权平均数。

2、在求n 个数的算术平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+ f 2+…+ f k =n ),那么这n 个数的算术平均数 ____ 。

3、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的 。

如果数据的个数是偶数,则 就是这组数据的中位数。

如果已知一组数据的中位数,那么可以知道,小于等于或大于等于这个中位数的数据各占一半。

4、一组数据中出现次数__________的数据就是这组数据的众数。

5、各数据与平均数的差的平方的平均数叫做这批数据的方差。

公式为:s 2= 。

方差 ,波动越小;方差 ,波动越大。

(二)合作交流、展示点评1、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。

已知小明的作业90分,课堂参与85分,期考80分,则他的总评成绩为________。

2、一组数据5,-2,3,x ,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是 。

3、某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了这25人某月的销售量如下表:每人销售量(单位:件) 600 500 400 350 300 200人数(单位:人)1 4 4 6 7 3 公司营销人员该月销售量的中位数是( )。

A .400件B .350件C .300件D .360件4、已知一个样本:1,3,5,x ,2,它的平均数为3,则这个样本的方差是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届北师大版数学精品资料
第六章数据的分析
回顾与思考
【学习目标】
1.能说出并掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。

2.能说出中位数、众数的定义,会求一组数据的中位数、众数;体会平均数、中位数、众数三者的差别;
3.了解刻画数据离散程度的三个量度——极差、方差、标准差;能借助计算器求出相应的数值,并在具体问题情境中加以应用。

4. 能从各类统计图中获取数据,初步选取恰当的数据代表作为自己的判断,通过实例体会用样本估计总体的思想。

【学习过程】
活动1:知识梳理
1.刻画数据“平均水平”的统计量有哪些?
2.平均数、中位数和众数各有什么特点?举出生活中与平均数、中位数、众数有关的几个例子。

3.举出生活中与加权平均数有关的几个例子,并说明算术平均数和加权平均数的区别和联系。

4.刻画数据波动的统计量有哪些?举例说明。

6.如何从统计图上直观地估计出相应的统计量,举例说明。

7.用适当的方式整理并呈现本章有关知识,并进行班级交流。

学习链接活动2:典型例析
1.某校八年级(6)班分甲、乙两组各10名学生进行数学抢答,共有10道选择题,答对8道题(包含8道题)以上为优秀,各组选手答对题数统计如下表:
(1)补全上表;
(2)根据所学的统计知识,评价甲、乙两组选手的成绩.
2.(1)三个小组,每组有20人,关于一道满分为4分的题目,三个小组的得分情况如下表。

通过估计,比较三个小组得分的平均数和方差的大小。

(2)具体算一算,看看自己的估计结果是否正确。

(3)小明发现,这三个图中“柱子的高度”总是1、2、3、6、8,只是排列的顺序不同,导致了平均数和方差发生了变化。

请你尝试将这些“柱子”重新排列,通过不断尝试,你觉得“柱子”怎样排列,可以使平均数最大?怎样排列,可以使方差最小?
3.(1)计算下面数据的平均数和方差:5,4,4,3,
4.
(2)若将上述数据均加上2,得到一组新的数据:7,6,6,5,6,求这组新数据的平均数和方差。

(3)若将原数据均减去3,得到一组新的数据:2,1,1,0,1,求这组新数据的平均数和方差。

(4)比较上述各组数据的变化和对应的平均数、方差,你得出什么结论?
反思。

交流
4.在学习中,运用过这样的结论解决过什么问题吗?举例说明,并与同伴交流。

活动3:自主反馈
1.甲、乙两位同学本学年每个单元的测验成绩如下(单位:分):
甲:98,100,100,90,96,91,89,99,100,100,93
乙:98,99,96,94,95,92,92,98,96,99,97
(1)他们的平均成绩分别是多少?
(2)甲、乙的11次单元测验成绩的标准差分别是多少?
(3)这两位同学的成绩各有什么特点?
(4)现要从中选出一人参加“希望杯”竞赛,历届比赛成绩表明,平时成绩达到98分以上才可能进入决赛,你认为应选谁参加这项竞赛,为什么?
【学习链接】
自主反馈参考答案
解:(1)x 甲=111
×(98+100+100+90+96+91+89+99+100+100+93)=96
x 乙=111
×(98+99+96+94+95+92+92+98+96+99+97)=96
(2)s 2甲=111×[(98-96)2+(100-96)2+…+(93-96)2
]=17.82
∴s 甲=4.221
s 2乙=111
×[(98-96)2+(99-96)2+…+(97-96)2]=5.817 ∴s 乙=2.412
(3)乙较甲稳定,甲虽然状态不稳定,但发挥好时成绩比乙优秀. (4)选甲去,甲比乙更有可能达到98分.。

相关文档
最新文档