不定积分概念与性质
不定积分的概念与性质

式
任 意 常 数
例1 求 3x2dx 解: ( x3 ) 3x2 3x2dx x3 C
例2 求 cos xdx
解: (sin x) cos x cos xdx sin x C
例3
求
1dx x
解:
ln x 1
x
1dx x
ln
dx sin 2
x
csc2
xdx
cot
x
C
(10) sec x tan xdx sec x C (11) csc x cot xdx csc x C (12) e xdx e x C (13) a xdx a x C
ln a
例5
求
1 x4
结论:微分运算与求不定积分的运算是互逆的。
3. 设 k1 , k2 为非零常数
k1 f1( x) k2 f2( x)dx k1 f1( x)dx k2 f2( x)dx
三、基本积分表1
(1) kdx kx C(k是常数)
(2) xdx x1 C( 1)
第四节 不定积分的概念与性质
一 不定积分的概念 二 不定积分的性质 三 基本积分表
一、不定积分的概念
定义 在区间 I 内,函数f ( x)的带有任意常
数项的原函数,称为 f ( x)在区间I 内
的不定积分,记为 f ( x)dx
f ( x)dx F( x) C
积 分 号
被积 积分 表变 达量
例9 解:
求
2x2 1 dx x2( x2 1)
x22 (xx2211)dx
不定积分的定义和性质

2 )dx 3 1 x2
1 1 x2
dx
2
1 dx
1 x2
3arctan x2arcsin x C 1 x x2
例6 求积分 x(1 x2 ) dx.
解: 1 x x2 dx x(1 x2 )
x (1 x2 )dx x(1 x2 )
F(x)dx F(x) C,
dF(x) F(x) C.
结论能:否微根分据运求算导与公求式不得定出积积分分的公运式算?是互逆的.
实例:
x 1
1
x
xdx x1 C. ( 1) 1
结论:既然积分运算和微分运算是互逆的,
不定积分的概念: f (x)dx F(x) C
基本积分表(1) 求微分与求积分的互逆关系 不定积分的性质
解:
x6 6
x5,
x5dx x6 C. 6
例2
求
1 1 x2 dx.
解:
arctan
x
1 1 x2
,
1 1 x2
dx
arctan
x
C.
二、不定积分的基本性质
由不定积分的定义,可知
d dx
f
(x)dx
f
(x),
d[ f (x)dx] f (x)dx,
简言之:连续函数一定有原函数.
问题:(1) 原函数是否唯一? (2) 若不唯一它们之间有什么联系?
例 sin x cos x sin x C cos x(C为任意常数)
不定积分的概念与性质

微积分II Calculus II§6.1 不定积分的概念和性质§6.2 积分基本公式§6.3 换元积分法第六章不定积分§6.4 分部积分法6.1 不定积分的概念和性质一原函数与不定积分原函数1)()(x f x F ='dxx f x dF )()(=设定义在区间上的函数,如果存在函数,使得对区间上的任意点都有)(x f I I )(x F 定义一I )(x f )(x F 则称函数是函数在区间上的一个原函数。
或(sin )cos ,x x '=(sin )x C '+cos ,x =C 其中为任意常数。
sin x cos x 是的一个原函数。
所以因为又因为也是sin x C +cos x 的原函数。
所以例如若函数在某区间上连续,则在该区间上必存在原函数.()f x ()f x 定理一如果函数是函数在某区间上的一个原函数,则(1)对任意常数, 也是函数的原函数.(2)的任意两个原函数之间相差一个常数.C ()F x ()f x ()f x ()F x C +()f x 定理二⎰积分号()f x 被积函数()f x dx 被积表达式x 积分变量若函数在某区间上存在原函数,则原函数的全体称为在该区间上的不定积分.()f x ()f x 不定积分的定义2⎰dx x f )(记为:()f x由不定积分的定义有:()()f x dx F x C =+⎰()()F x f x '=其中,C 为任意常数.解例求⎰dx x 2321()3x x '=因为2313x dx x C =+⎰所以求1dx x ⎰1ln ,0dx x C xx =+≠⎰因为1(ln)'=x x C 为任意常数.所以解例不定积分表示的是一族函数,从几何上看,代表一族曲线,称为积分曲线族。
曲线(),(y F x C C =+为任意常数)在的切线的斜率为)(0x f '不定积分的几何意义200(,)x y 0=x x设曲线通过点(1,2),且其上任意点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.()f x ()y f x =2dyx dx =()2f x x'=即,由题意知2x C=+2xdx =⎰又曲线通过点(1,2),得1C =2()1f x x =+此曲线的方程为21y x =+设所求曲线方程为:o xy 1221y x =+[()]()f x dx f x '=⎰()()d f x dx f x dx =⎰()()F x dx F x C '=+⎰()()dF x F x C =+⎰求不定积分的运算与求导数运算是互逆的.二不定积分的性质性质一[()()]()()f x g x dx f x dx g x dx±=±⎰⎰⎰两个函数代数和的不定积分等于它们各自不定积分的代数和.()()(0)kf x dx k f x dx k =≠⎰⎰求不定积分时,被积函数中的非零常数可以提到积分号外面.三小结与思考本次课学习了原函数,不定积分的定义,不定积分的性质。
高等数学第五章 不定积分

例 6 求下列积分:
(1)
x2
1
a2
dx;(2)
3 x dx;(3) 4 x2
1 1 ex
dx;
(4) sin 2
xdx;
(5)
1
1 cos
x
dx;(6)
sin
5x
cos
3xdx.
解 本题积分前,需先用代数运算或三角变换对被
积函数做适当变形.
1
x
2
1
a
2
dx
1 2a
x
1
a
x
1
(
2
x
1)31
C.
例 4 求 cos2 x sin xdx.
解 设u cos x,得du sin xdx,
cos2 x sin xdx u2du 1 u3 C 1 cos3 x C.
3
3
方法较熟悉后,可略去中间的换元步骤,直接凑微 分成积分公式的形式.
例4
求 x
dx . 1 ln2 x
2 sin xdx 3 cos xdx
2cos x 3sin x C (C 为任意常数).
例 9 求下列不定积分:
(1)
x 1 x
1
x
dx;(2)
x2 x2
1dx 1
.
解(1)
x 1 x
1 x
dx
x
x x 1
1 x
dx
x
xdx xdx 1dx
1 dx x
2
f (u )du
回代
F (u ) C
F [ ( x )] C .
这种先“凑”微分式,再作变量置换的方法,叫 第换一元积分法,也称凑微分法.
ppt-0401--不定积分的概念与性质

2 x3dx 5 x2dx 4 xdx 3 dx
1 2
x4
5 3
x3
2
x2
3x
C.
注 逐项积分后,每个积分结果中均含有一个任意 常数.由于任意常数之和仍是任意常数,因此只 要写出一个任意常数即可
例7 求 (3x 2sin x)dx
即
f (x)dx F(x) C,
其中记号"称" 为积分号,f (x)称为被积函数,f (x)dx称为
被积表达式,x称为积分变量,C为积分常数.
例1 求 x4dx.
解
(
x5)'
5
x4,
x4dx
x5
5
C.
例2 求
1
1
x
2
d
x.
解
(arctan
x)'
1
1 x
2
(
x
),
所以在 x 上有 1
例3 设曲线通过点(2.,3),,且其上任一点的切线斜率等 于这点的横坐标,求此曲线方程 .
解 设所求的曲线方程为 y f ( x),依题意可知
y' x ,
把(2, 3)代入上述方程,得
C 1 ,
y
xdx
1 2
x2
C
因此所求曲线的方程为 x2
y 1 2
4 不定积分与微分的关系
微分运算与积分运算互为逆运算.
x2
,3x
3
是函数
x 2在
(,)上的原函
数.(sin x)' cos x,sin x是cos x在(,) 上的原函数.
又如d(sec x)=sec x tan xdx,所以sec x是sec x tan x
不定积分的概念与性质及基本积分公式

不定积分的概念与性质及基本积分公式不定积分是微积分中的重要概念,它是定积分的逆运算。
不定积分表示函数的原函数,也就是通过积分求导得到原函数。
在具体计算不定积分时,需要使用一些基本积分公式和性质。
一、不定积分的概念:不定积分是解决反向运动问题的方法,也就是求导的逆运算。
给定一个函数f(x),它的不定积分表示为∫f(x)dx,其中f(x)称为被积函数,x为积分变量,∫表示不定积分。
二、不定积分的性质:1. 常数性质:∫kdx = kx + C,其中k为常数,C为任意常数。
2. 线性性质:∫(u+v)dx = ∫udx + ∫vdx,其中u、v为可导函数。
3. 反向性质:如果F(x)是f(x)的一个原函数,则有∫f(x)dx = F(x) + C,其中C为任意常数。
三、基本积分公式:1.幂函数积分公式:a. ∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1b. ∫1/x dx = ln,x, + C。
c. ∫(1+x^2) dx = x + (1/3)x^3 + C。
d. ∫(1-x^2) dx = x - (1/3)x^3 + C。
e. ∫(1+x^2)^(-1/2) dx = arcsin(x) + C。
2.指数函数与对数函数积分公式:a. ∫e^x dx = e^x + C。
b. ∫a^x dx = (a^x)/(lna) + C,其中a>0且a≠1c. ∫(1+x)^n dx = (1/(n+1))*(1+x)^(n+1) + C,其中n≠-1d. ∫(lnx) dx = xlnx - x + C。
3.三角函数积分公式:a. ∫sin(x) dx = -cos(x) + C。
b. ∫cos(x) dx = sin(x) + C。
c. ∫tan(x) dx = -ln,cos(x), + C。
d. ∫cot(x) dx = ln,sin(x), + C。
e. ∫sec(x) dx = ln,sec(x) + tan(x), + C。
不定积分的概念及性质

2 1
x
(2)
x
xdx
3
x 2 dx
2
5
x2
C
.
5
(3)
dx 2gx
1 2g
dx x
例5
1
1
1 1
x 2 C
2g 1 1
2
求下列不定积分:
2gx C . g
(1)
x 1 x
1
x
dx;(2)
x x
2 2
1 1
dx
则称F(x)为 f (x)的一个原函数.
例 因为(ln x) 1 ,故ln x 是 1 的一个原函数;
x
x
因为(x2) 2x,所以 x2 是2x 的一个原函数,但
(x2 1) (x2 2) (x2 3) 2x ,所以 2x 的原函 数不是惟一的.
原函数说明: 第一,原函数的存在问题:如果 f (x)在某区间连续, 那么它的原函数一定存在(将在下章加以说明).
.
解(1)
x 1 x
1 x
dx Nhomakorabeax
x x 1
1 x
dx
x
xdx xdx 1dx
1 dx x
2
5
x2
1
x2
x
1
2x2
C.
52
(2)
x2 x2
1dx 1
x
2 x2
1 1
2
dx
1
做被积表达式,C 叫做积分常数,“ ”叫做积分号.
不定积分的概念与性质

y=x3+1.
三、不定积分的几何意义
【例4】
一物体作直线运动,速度为v(t) 2t 2 1m / s,当t 1s时,物体所经过的 路程为 3m,求物体的运动方程。
解:设物体的运动方程为 s s(t).依题意有 s(t) v(t) 2t 2 1, 所以
7 sinx dx = cosx C ;
8 sec2x dx tanx C ;
9 csc2x dx cotx C ;
10
dx arcsinx C ; 1 x2
11
dx arctanx C ;
1 x2
例2:求下列函数的不定积分
01
1 dx x3
解:
1 dx x3
x 3dx
一、原函数与不定积分
一、原函数与不定积分
定义1
设f(x)是定义在区间I上的函数,若存在函数F(x),使得对 任意x∈I均有
F′(x)=f(x)或dFx=fxdx, 则称函数Fx为fx在区间I上的一个原函数.
例如,因为(sin x)′=cos x,故sin x是cos x的一个原函数.又 如,当x>0时,(ln x)′=1/x,所以ln x是1/x在区间0,+∞上的 一个原函数. 注意:如果函数f(x)有原函数,那么原函数有无数个。
(2)
sin 2
1 x cos2
dx x
解: sin2
1 x cos2
dx x
1 cos2
dx x
1 sin 2
x
dx
sin2 x cos2 x
sin2 x cos2 x
dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:(1) 原函数是否唯一? (2) 若不唯一它们之间有什么联系?
例 sin x cos x sin x C cos x
( C为任意常数)
关于原函数的说明:
(1)若 F ( x) f ( x) ,则对于任意常数 C ,
F( x) C 都是 f ( x)的原函数.
(13)
a xdx
ax C; ln a
基本积分表
• ∫0dx=c • ∫xndx = xn+1 /(n+1)+c • ∫1/xdx= ln|x|+ c • ∫axdx= ax/lna + c • ∫exdx= ex + c • ∫cosxdx=sinx + c • ∫sinxdx=-cosx + c
例 sin x cos x sin x是cos x的原函数. ln x 1 ( x 0)
x ln x是1 在区间(0,)内的原函数.
x
定理 原函数存在定理:
如果函数 f ( x) 在区间I 内连续, 那么在区间I 内存在可导函数F ( x) , 使x I ,都有F ( x) f ( x).
1 x2
3arctan x 2arcsin x C
求不定积分的方法
(1) 直接积分法 (2) 第一类换元法 (3) 第二类换元法 (4) 分部积分法
直接积分法
根据不定积分的性质和基本积分公式, 对于一些比较简单的函数的不定积分可以直 接求出结果,或者只需经过简单的恒等变换, 再辅以积分的法则,就可按基本公式求出结 果,这样的积分方法,叫做直接积分法。
y F(x) C ;
4、由F ' ( x) f ( x) 可知,在积分曲线族 y F ( x) C ( C是任意常数 ) 上横坐标相同的点处作切线,这
些切线彼此是______的; 5、若 f ( x) 在某区间上______,则在该区间上f ( x) 的
原函数一定存在;
6、 x xdx ______________________;
1
1
x2
dx.
解:
arctan
x
1
1 x2
,
1
1 x
2
dx
arctan
x
C
.
例3 某商品的边际成本为 100 2x , 求
总成 本函数 C(x).
解: C(x) (100 2x)dx
100x x2 c
c 其中 为任意常数
二、不定积分的几何意义
函数 f ( x)的原函数的图形称为 f ( x)的积分曲线.
• 该方法主要把被积函数变换成基本积分公式 中的被积函数的形式。
例6
求积分
1 x x x(1 x2
2
)
dx.
解:
1 x x2 x(1 x2 )
dx
x (1 x2 x(1 x2 )
)dx
1
1 x
2
1 x
dx
1
1 x
2
dx
1dx x
arctanx ln x C.
例7
求积分
1 x 2 (1
本 积 分 表
(2) xdx x1 C ( 1); 1
x(3)说0明,[:ldnxxx(xln)0],x C1;dxx(xln)
xC
1,
,
x
x
dx x
ln(
x)
C
,
dx x
ln
|
x
|
C,
(4)
1
1 x2dx
arctan
x
C;
(5)
1
1
x2
dx
arcsin
x
C;
(6) cos xdx sin x C;
7、
dx x2 x
_______________________;
8、 ( x 2 3x 2)dx _________________;
9、 ( x 1)( x 3 1)dx _____________;
10、
(1
x)2 x
dx
=____________________
.
二、求下列不定积分:
第五章 不定积分
本章的教学基本要求是:
1、理解原函数和不定积分的定义,掌握 原函数和不定积分的性质;
2、熟练掌握不定积分的基本公式及凑微 分法;
3、熟练掌握不定积分的换元积分法和分 部积分法。
第一节 不定积分的概念与性质
一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结
x C.
说明:以上几例中的被积函数都需要进行恒 等变形,才能使用基本积分表.
化积分为代数和的积分
例 9 已知一曲线 y f ( x) 在点( x, f ( x)) 处的
切线斜率为sec2 x sin x ,且此曲线与y 轴的交
点为(0,5) ,求此曲线的方程.
解: dy sec2 x sin x,
(2)若F ( x) 和 G( x) 都是 f ( x) 的原函数, 则 F( x) G( x) C ( C为任意常数)
证 F ( x) G( x) F( x) G( x)
f (x) f (x) 0 F ( x) G( x) C (C为任意常数)
说明F x c是f x的全部原函数.
∫secx. tanxdx= secx+c ( secx ) ’=secx. tanx
∫cscx. cotxdx= -cscx+c (cscx) ’=- cscx. cotx
∫1/(1-x2)1/2dx= arcsinx+c (arcsinx) ’=1/(1-x2)1/2
∫1/(1+x2) dx= arctanx+c ( arctanx) ’=1/(1+x2)
练习题答案
一、1、无穷多,常数; 2、全体原函数;
3、积分曲线,积分曲线族; 4、平行; 5、连续;
6、 2
5
x2
C;
7、
2
3
x2
C;
5
3
8、 x 3 3 x 2 2 x C ; 32
9、 x 3
2
5
x2
2
3
x2
x
C;
35 3
10、 2
x
4
3
x2
2
5
x2
C.
35
二、1、 x arctax C;
(8)
dx cos2
x
sec2
xdx
tan
x
C;
(9)
dx sin 2
x
csc2
xdx
cot
x
C;
(10) sec x tan xdx sec x C;
(11) csc x cot xdx csc x C;
(12) e xdx e x C;
定义 不定积分(indefinite integral)的定义:
在区间I 内,函数 f ( x)的带有任意
常数项的原函数 称为 f ( x)在区间I 内的
不定积分,记为 f ( x)dx .
f ( x)dx F( x) C
积 分 号
被 积 函 数
被 积 表 达
积 分 变
原 函 数
式量
任 意 常 数
3、 x sin x C ; 2
5、4( x 2 7) C ; 74 x
5(2) x 2、2x 3 C ;
ln 2 ln 3 4. (cot x tan x) C ;
6、tan x arc cot x C .
三、 y ln x C .
知识回顾 Knowledge Review
(11) csc x cot xdx csc x C;
(12) e xdx e x C;
(13)
a xdx
ax C; ln a
• 作业题: P183-184 1.(6) (15) (20) 2.
• 思考题: P183-184 1.(4) (13) (22) (29)
一、 填空题:
x
C;
(4)
1
1 x2dx
arctan
x
C;
(5)
1
1
x2
dx
arcsin
x
C;
(6) cos xdx sin x C;
(7) sin xdx cos x C;
(8)
dx cos2
x
sec2
xdx
tan
x
C;
(9)
dx sin 2
x
csc2
xdx
cot
x
C;
(10) sec x tan xdx sec x C;
祝您成功!
例4 求积分 x2 xdx.
5
解: x2 xdx x 2dx
51
x2 C 51
2
x
7 2
7
C.
2
根据积分公式(2) xdx x1 C
1
四、 不定积分的性质
(1) [ f ( x) g( x)]dx f ( x)dx g( x)dx;
证:
f
( x)dx
g( x)dx
导数基本公式
C ’=0 (C为常数) (xn)’= n xn-1 (lnx) ’=1/x (ax)’= axlna (ex) ’= ex (sinx) ’=cosx (cosx) ’=-sinx
∫sec2xdx= tanx+c
(tanx) ’=sec2x
∫csc2xdx= -cotx+c
(cotx) ’=-csc2x