污染源在线监测系统建设方案

合集下载

水污染源在线监测系统方案

水污染源在线监测系统方案

水污染源在线监测系统方案目标与背景随着工业化的迅猛发展,水污染问题越来越严重,给我们的生态环境和健康带来了很大的隐患。

因此,建立一个水污染源在线监测系统变得相当迫切。

这个方案的目的,就是要设计一个全面、科学且容易操作的监测系统,帮助相关部门实时掌握水质状况,确保我们的水源既安全又可持续。

现状与需求分析在我们开始具体实施方案之前,了解目前的情况和需求至关重要。

很多地方的水质监测还停留在老旧的方法上,这不仅耗时费力,而且数据更新慢,根本无法满足实际需求。

更糟的是,现有的监测设备往往不够智能,无法在第一时间反馈数据,导致污染事件的发生和扩散。

调查显示,大约60%的水体监测站根本无法实时上传数据,这让追踪和治理污染源变得异常困难。

因此,建设一个高效的在线监测系统不仅能提高数据的实时性,还能为决策提供有力支持。

实施步骤与操作指南为了顺利实施水污染源在线监测系统,下面是一些具体的步骤和操作指南。

系统架构设计系统的架构设计可以分为几个层次:1. 传感器层:负责实时采集水质参数,包括温度、pH值、溶解氧、浑浊度、氨氮和重金属等。

选择敏感度高、准确性强的传感器,确保数据的可靠性。

2. 数据采集层:传感器采集的数据通过数据传输模块(比如485、Zigbee、LoRa等无线传输方式)传送到数据中心。

3. 数据处理层:数据中心利用云计算平台存储、处理和分析这些数据,及时识别异常情况。

4. 用户界面层:设计一个用户友好的界面,让用户能轻松查看实时和历史数据,并生成各类报告。

设备选择在选择设备时,需考虑以下因素:- 传感器的选择:选择知名品牌的传感器,以确保质量和耐用性。

例如,可以考虑霍尼韦尔(Honeywell)和欧姆龙(Omron)等公司的产品,它们都得到了广泛认可。

- 数据传输设备:选择稳定性高、传输距离远的无线模块,以确保数据的实时性。

- 服务器配置:根据数据处理的需求,选择合适的云服务器配置。

通常,CPU至少需要4核,内存需8GB以上,存储空间根据监测数据量合理规划。

污染源自动监控系统建设方案

污染源自动监控系统建设方案

污染源在线监测系统建设项目方案书安徽省碧水电子技术有限公司2014年5月10日技术白皮书项目名称:水质在线监测系统主题:排放口整治排放口整治流程现场勘察了解水质状况如:最高COD值、最低COD值、通常COD值;最大瞬时流量、通常瞬时流量、最大日排量、通常日排量等。

确定监测点采样点仪器选型提交方案方案确认确定仪器安装地点确定仪器采样地点确定仪器测量量程确定流量计量堰槽论证方案的可行性编制现场施工方案确认现场施工方案编制施工计划排放口整治流程施工施工图纸施工方案1.依据现场流量情况选用相关规格的堰、槽,材质选用优质不锈钢。

2.排放口的整治工作围绕堰、槽(下述说明以巴歇尔槽为例)的安装进行:a)定制堰、槽b)嵌入堰、槽c)对堰、槽外围进行浇制d)外围装饰堰、槽的进水段应保持2~5米的直流缓冲区域,在该区域内不允许有任何支流汇入,水面应平稳。

在堰、槽入口处安装超声波液位探头。

直流缓冲区域堰、槽的出水段应保持顺畅,不得有任何阻碍物,不得抬高水位形成滞流区域(允许形成落差)。

图3出水顺流区域一、巴歇尔槽流量:2200t/d以下二、巴歇尔槽流量:2200t/d以上巴歇尔槽现场图片图3巴歇尔槽设计图2200 t/d以下技术白皮书项目名称:水质在线监测系统主题:排放口整治图3巴歇尔槽设计图2200 t/d以上监测房建设流程现场勘察了解现场状况●水电接入条件●采水配水系统条件依据监测点选择建造监测房地点提交方案方案确认论证方案的可行性编制现场施工方案确认现场施工方案编制施工计划监测房建设流程施工施工图纸施工方案监测房建设说明监测房距离监测点5~20米左右。

在采样管及相关电缆线在敷设时外套承压钢管然后深埋地面之下,以防止地面承压后损伤采样管路。

基本要求:按一般民用建筑的有关规定要求设计,结构材料符合监测用房的安全要求(如防火、防腐),地面采用防滑瓷砖铺设。

监测房规格:5m×6m×2.6m室内面积为28m2外墙面:0.5夹芯彩钢板,单面加筋灰白雨蓬面:海兰色夹芯板,高度300屋面:75mm厚彩钢夹心板防雷:接地和防雷模块UPS:2小时地坪:按一般民用建筑的有关规定浇注,混凝土平台为5000mm×380mm×150mm约19m2,为建造房打好基础。

智慧环保在线监测系统建设方案

智慧环保在线监测系统建设方案

通过数据挖掘和分析,智慧环 保能够为环保决策提供科学依 据,推动环保治理的精准化和 高效化。
项目目标与预期成果
构建覆盖全区域的环境监测网 络,实现环境数据的实时采集
、传输和处理。
建立智慧环保平台,整合环保 部门和企业资源,实现信息共
享和协同治理。
提高环境监测数据的准确性和 时效性,为环保决策提供有力 支撑。
风险评估、应对措施制定和监控执行
风险评估
对项目实施过程中可能出现的风险进行识别、分 析和评估,形成风险清单。
应对措施制定
针对可能出现的风险,制定相应的应对措施和预 案,降低风险对项目的影响。
监控执行
在项目实施过程中,对风险进行持续监控和跟踪 ,及时调整应对措施,确保项目顺利实施。
项目验收标准、流程和方法论述
量和型号。
硬件设备布局规划及安装要求
根据监测区域和监测项目,合理规划硬件设备的布局,确保监测数据的 全面性和代表性。
硬件设备安装应符合国家相关标准和规范,确保设备的稳定性和安全性 。
对于需要特殊安装环境的设备,应制定相应的安装方案和措施。
设备维护和保养计划
制定详细的设备维护 和保养计划,包括定 期检查、清洁、校准 等。
进行系统试运行,解决运行中出现的问题,组织项目验 收。
资源调配、团队协作和沟通机制建立
01
资源调配
根据项目需求,合理分配人力、 物力和财力资源,确保项目顺利 实施。
团队协作
02
03
沟通机制
建立高效的项目团队,明确团队 成员职责和分工,形成协同工作 的良好氛围。
建立定期的项目会议制度、工作 报告制度和信息交流渠道,确保 项目信息畅通无阻。
提供多种查询和统计功能 ,方便用户快速获取所需 信息。

重点污染源企业在线自动监控系统建设方案

重点污染源企业在线自动监控系统建设方案

重点污染源企业现
02
状分析
污染源分布情况
工业园区集中分布
重点污染源企业主要集中在工业园区内,涉及化工、印染、造纸 等多个行业。
城市周边区域分散分布
部分重点污染源企业分布在城市周边区域,对城市环境质量产生一 定影响。
农村地区零散分布
部分小型工业企业及作坊式生产企业在农村地区零散分布,对当地 环境造成一定污染。
在线自动监控系统能够实时监测企业 排污情况,提高环境监管效率,减少 环境污染。
建设目标与原则
建设目标
建立重点污染源企业在线自动监控系 统,实现对企业排污的实时监测、数 据采集、传输与分析,提高环境监管 效率。
建设原则
确保系统的稳定性、可靠性、实时性 、准确性、易用性及可扩展性,同时 遵循相关法律法规和标准规范的要求 。
在线自动监控系统
03
概述
系统构成与功能
01
数据采集
实时采集企业排污数据,包括废水 、废气等。
监控预警
实时监测企业排污状况,发现异常 及时预警。
03
02
数据处理
对采集的数据进行预处理、分析、 存储和传输。
信息管理
对企业信息、设备信息、监测点信 息等进行管理。
04
技术路线与实现方式
数据采集技术
采用传感器、流量计等设备,实时采集企业 排污数据。
数据传输
将采集的数据通过有线或无线方式传输到监控中心平台,保证数据的实时性和准确性。
监控中心平台建设
硬件设施
建立专门的监控中心,配备高性能服 务器、存储设备、网络设备等,确保 平台的稳定运行。
软件系统
开发或购买专业的在线监控软件系统 ,实现数据的接收、处理、存储和分 析等功能。

重点污染源企业在线自动监控系统建设方案

重点污染源企业在线自动监控系统建设方案

数据挖掘和可视化展示方法
数据挖掘
运用数据挖掘算法和技术,对处 理后的数据进行深度分析和挖掘 ,发现数据中的关联、规律和趋 势。
可视化展示
采用图表、报表、地图等可视化 手段,将数据以直观、易懂的方 式呈现出来,方便用户理解和分 析。
异常情况预警机制设计
预警阈值设置
根据环保法规和企业排放标准,设置各类指标的预警阈值 。
考虑设备安全防护
在布局规划中考虑设备的安全防护, 如防雷击、防盗、防水等措施,确保 设备的稳定运行和数据安全。
后期维护保养策略
1 2 3
制定维护保养计划
根据设备性能和实际使用情况,制定合理的维护 保养计划,包括定期检查、校准、清洁、紧固等 保养措施。
建立故障处理机制
建立设备故障处理机制,包括故障预警、故障诊 断、故障修复等流程,确保设备在出现故障时能 够及时得到处理。
处理。
用户界面及操作体验优化
01
02
03
04
界面设计
采用简洁、直观的用户界面设 计,方便用户快速上手操作。
操作流程优化
简化操作流程,减少用户操作 步骤和等待时间,提高操作效
率。
多终端适配
支持PC、手机、平板等多种 终端设备访问和操作,满足用 户不同场景下的使用需求。
பைடு நூலகம்帮助与反馈
提供详细的用户帮助文档和在 线反馈渠道,帮助用户解决问
可配置性
支持灵活配置系统参数和功能模块 ,满足不同企业的个性化需求。
数据采集与传输技术选型
数据采集技术
采用传感器、物联网等技术手段 ,实时采集企业污染源数据。
数据传输协议
选用标准的通信协议和数据格式 ,确保数据传输的可靠性和实时

环境在线监控系统解决方案

环境在线监控系统解决方案

环境在线监控系统解决方案随着社会的不断发展,环境污染问题越来越严重。

环境监控已成为当今世界各国的常规工作之一。

传统的环境监测手段大多依靠人工采样和人工分析,这种方法费时费力,也难以及时准确得到数据,而且对采样地点、采样方法等都存在一定的局限性,不能全面反映环境污染状况。

因此,在线监测技术的出现为环境监测提供了广阔的发展空间,环境在线监控系统成为了一种更加有效更加普遍的环境监测手段。

一、环境在线监控系统的定义环境在线监控系统(Environmental Online Monitoring System)依靠计算机技术和自动控制技术,实现污染物连续自动监测,实时反映环境污染状况,对环境污染的来源、程度、演变及可能对环境造成的影响进行预警及预测,进而为环境监测、环境评估和环境保护提供科学依据。

二、环境在线监控系统的架构环境在线监控系统是由硬件系统和软件系统两部分组成。

硬件系统主要包括:在线监测主机、传感器和监测设备等. 在线监测主机是系统的中心控制器,是整个系统的核心组件,它能够集中采集和处理环境污染物的监测数据,并通过数据处理软件实现环境污染物数据的分析和处理,同时还能将数据推送至客户端或服务器端,实现对环境的全面监控。

传感器主要用于监测环境中的气体、水质、土壤等数据,它是环境在线监控系统的基础,直接影响到环境数据的精准度和准确性。

软件系统主要包括:数据处理软件和远程监控软件等。

数据处理软件对监测数据进行处理分析,以便环境管理部门及时了解环境污染的状况,对环境进行及时监测和预警。

远程监控软件是指将在线监测系统的数据、监控视频等信息通过网络传输,实现远程实时监控和数据共享。

三、环境在线监控系统的优势1、实时性高。

环境在线监控系统通过传感器等物联网技术,监测环境污染的数据,实时数据可以迅速反应环境的变化,保证了数据的准确性。

2、准确度高。

环境在线监控系统通过传感器采集环境污染物的信息,并对数据进行分析处理,相比传统监控手段更准确可靠。

环保行业污染源监控系统建设方案

环保行业污染源监控系统建设方案

环保行业污染源监控系统建设方案第一章综述 (2)1.1 项目背景 (2)1.2 项目目标 (3)1.3 项目意义 (3)第二章污染源监控对象与范围 (3)2.1 监控对象分类 (3)2.1.1 工业污染源 (3)2.1.2 生活污染源 (4)2.1.3 农业污染源 (4)2.1.4 交通污染源 (4)2.2 监控范围确定 (4)2.2.1 地域范围 (4)2.2.2 时间范围 (4)2.3 监控指标体系 (4)2.3.1 污染物排放指标 (4)2.3.2 污染物浓度指标 (4)2.3.3 环境质量指标 (5)2.3.4 治理设施运行指标 (5)2.3.5 管理与监管指标 (5)第三章污染源监控技术路线 (5)3.1 监控技术选择 (5)3.2 监控系统架构 (5)3.3 数据传输与存储 (6)第四章硬件设施建设 (6)4.1 监测设备选型 (6)4.2 设备安装与调试 (7)4.3 设备维护与管理 (7)第五章软件系统开发 (7)5.1 系统需求分析 (7)5.2 系统设计 (8)5.3 系统开发与实施 (8)第六章数据处理与分析 (9)6.1 数据清洗与预处理 (9)6.1.1 数据完整性检查 (9)6.1.2 数据一致性检查 (9)6.1.3 数据有效性检查 (9)6.1.4 数据标准化处理 (9)6.2 数据挖掘与分析 (9)6.2.1 关联规则挖掘 (9)6.2.2 聚类分析 (9)6.2.3 时序分析 (10)6.3 数据可视化与展示 (10)6.3.1 柱状图与折线图 (10)6.3.2 地图展示 (10)6.3.3 饼图与雷达图 (10)6.3.4 交互式可视化 (10)第七章系统集成与测试 (10)7.1 系统集成 (10)7.1.1 集成目标 (10)7.1.2 集成内容 (10)7.1.3 集成方法 (11)7.2 功能测试 (11)7.2.1 测试目的 (11)7.2.2 测试内容 (11)7.2.3 测试方法 (11)7.3 功能测试 (12)7.3.1 测试目的 (12)7.3.2 测试内容 (12)7.3.3 测试方法 (12)第八章运营管理与维护 (12)8.1 运营管理制度 (12)8.1.1 系统运行管理 (13)8.1.2 数据管理 (13)8.1.3 安全管理 (13)8.2 人员培训与考核 (13)8.2.1 人员培训 (13)8.2.2 人员考核 (13)8.3 系统维护与升级 (13)8.3.1 系统维护 (13)8.3.2 系统升级 (13)第九章法律法规与标准 (14)9.1 法律法规梳理 (14)9.2 标准制定与实施 (14)9.3 监管与执法 (14)第十章项目效益评估 (15)10.1 经济效益评估 (15)10.2 社会效益评估 (15)10.3 环境效益评估 (15)第一章综述1.1 项目背景我国经济的快速发展,环境污染问题日益严重,各类污染源排放的污染物对生态环境和人类健康造成了严重影响。

污染源自动监控系统建设方案

污染源自动监控系统建设方案

顺平县清源污水处理有限公司污染源自动监控系统建设方案一、企业基本情况顺平县清源污水处理有限公司(以下简称:污水处理厂二期)位于顺平县城东南部王家关村东,占地约40亩,污水处理厂二期工程是一座日处理污水3万吨,设计进水水质为:COD 480mg/L;设计出水水质标准为《城镇污水处理厂污染物排放标准》(GB18918—2002)一级A标准,COD 50mg/L,工艺由北方工程设计研究院设计,总投资5513万元.二、项目内容COD、NH3-N在线检测仪能全面、及时、准确核定废水中COD/NH3—N的排放量。

本单位污水排放口在线监控系统安装的监测仪器为:化学需氧量分析仪COD、NH3-N自动在线监测仪。

三、设计方案3。

1设计基本原则本着实用、稳定、可靠、易于掌握、操作、管理、维护的原则,配备符合国家标准和国家环保行业标准的仪器仪表,并留有充分的可扩展空间,以满足环保形势发展的要求。

确保技术先进、运行稳定可靠、经济实用,以较高的性能价格比构建环境监测系统,使资金的产出投入比达到最大值。

能以较低的成本、较少的人员投入来维持系统运转,提供高效能与高效益。

3.2污水排放口建设污水排放口要遵循便于采集样品、便于检测计量、便于日常监督管理的原则,根据出水排放口具体情况进行规范化设计建设并建立统一标识牌。

排放口尽量与监测房靠近,如果排放口距离站房较远(超过15米),建议加装采样桶和水泵。

为了方便仪器维护及安全保障,排口应加装安全阶梯及护栏,设置警示牌。

3。

3在线监测房建设监测房建在总排口附近。

面积约(9㎡)左右,材料为砖混建筑,室内安装COD、流量计、数据采集仪等在线监测仪器.3.4室内要求室内环境满足仪器仪表环境要求,配备照明、供暖、空调、等辅助设备,站房远离强电磁干扰、避开强震动和高湿场所等.要求防雷击,温、湿度适宜,便于仪表的正常运行及维护,为满足仪器对工作环境的要求,需对房间进行了装修并添加一些设备.3。

5具体内容1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水污染源在线监测系统工程建设方案贰零壹陆年肆月目录一.系统概述1.1 项目概述1.2 系统建设要求1.3 系统构成1.4 在线监测因子种类1.5 仪器选型1.6仪器简介1.6.1 COD在线分析仪技术参数1.6.2 氨氮在线分析仪技术参数1.6.3 总磷在线分析仪技术参数1.6.4 工业PH计技术参数1.6.5 明渠流量计技术参数1.6.6 数据采集仪技术参数二.系统建设2.1 系统建设时间表2.2 站房建设方案2.3 超声波明渠流量计堰槽建设2.4采样系统建设方案2.5数据采集传输系统建设方案2.5.1数据采集仪2.5.2数据传输2.6 在线分析仪安装方案2.6.1 操作员基本要求2.6.2 现场机箱安装2.6.3 现场管路材料及工具的配备三.质量及服务承诺3.1质量保证3.2 售后服务四.资金预算编制说明依照国家有关标准和关于水质在线自动监测系统建设的相关要求,在指定排水口安装水质在线监测仪器,对相关水质参数(化学需氧量、氨氮、总磷、重金属等)进行监测,以达到相关管理及监管部门对现场处理水质的实时监控和管理。

本方案将分析仪测量系统、采样系统以及数据传输系统进行集成,作为一体化水质在线自动监测系统进行详细的方案设计。

一、系统概述1.1 项目概述根据环保局对废水污染物排放进行总量控制、安装在线监测系统的要求,拟在的总排口安装污染源自动监控系统。

本项目建设拟选用提供的COD、氨氮、总磷在线分析仪,PH,超声波明渠流量计,并负责安装、调试、运行、保修、快速反应服务及协助项目验收、技术支持、用户培训。

1.2 系统建设要求该系统应达到以下要求:①系统具有实用性、先进性、专业性、开放性、安全性、集成性和经济性。

②总体结构的先进性、合理性、兼容性和可扩展性。

③监测参数分析方法符合国家、行业有关技术标准和规范。

④监测数据准确、可靠。

⑤取样方式经济、合理,便于维护。

⑥具有良好的开放性、扩展性,便于维护及升级,为企业将来实现远程查看仪器数据预留接口。

⑦现场监测站房布局合理,安全防盗。

1.3 系统构成在线监测系统由采样系统、测量系统、数据采集传输系统三部分组成。

采样系统由泵、采样管路、专用采样器、控制单元等构成。

测量系统由测量仪器及控制单元构成。

数据采集传输系统由数据采集传输仪构成。

1.4 在线监测因子种类根据环保部门和企业要求,监测因子为 COD、氨氮、总磷、PH、流量。

1.5 仪器选型为了确保测量数据的准确性、在线监测系统的长期稳定性、可靠性及低成本运行,并结合企业实际情况,本案计划选用的COD、氨氮、总磷、PH、流量计。

1.6 仪器简介1.6.1 COD在线分析仪技术参数仪器名称: COD在线分析仪应用范围:应用于废水处理,纯净水,锅炉水等以及电子,电镀,印染,化学,食品制药等领域测量原理:重铬酸钾比色法性能特点:◆光电非接触式计量,计量精度高、运行可靠性高◆单次做样液体总量<9ml,费用约为0.5元人民币/次,运维成本低技术指标:◆方法依据:国家标准GB11914-89《水质-化学耗氧量测定-重铬酸钾》。

◆测量范围:10-5000 mg/L COD。

◆准确度:≥100mg/L时,不超过±10%;<100mg/L时,不超过±6mg/L。

◆重复性:≥100mg/L时,不超过±10%;<100mg/L时,不超过±5mg/L。

◆测量周期:最小测量周期为20分钟,据实际水样,可在5~120min任意修改消解时间。

◆采样周期:时间间隔(20~9999min任意可调)和整点测量模式。

◆校准周期:1~99天任意间隔任意时刻可调。

◆维护周期:一般每月一次,每次约1小时。

◆试剂消耗:小于0.5元/样品。

◆输出:RS-232,4-20mA。

◆环境要求:温度可调的室内,建议温度+5~28℃;湿度≤90%(不结露)。

◆电源:AC230±10%V,50±10%Hz,5A。

1.6.2 氨氮在线分析仪技术参数仪器名称:氨氮在线分析仪应用范围:应用于废水处理,纯净水,锅炉水等以及电子,电镀,印染,化学,食品制药等领域测量原理:水杨酸分光光路法系统描述:独特的设计,使本产品较之同类产品具有更低故障率、更低维护量、更低的试剂消耗量以及更高的性价比。

1—选择阀组件:选择试剂采样时序,通道灵活多样,功能万变,具有最小死体积,易维护高寿命等优点。

2—微小计量组件:通过可视光电系统实现试剂精确计量,克服了蠕动泵泵管由于磨损引起的定量误差;同时实现了微量试剂的精确定量,每剂量仅为1毫升,大大减少了试剂使用量。

3—进样组件:蠕动泵负压吸入,在试剂与泵管之间总是存在一个空气缓冲区,避免了泵管的腐蚀;同时使得试剂混合更为简洁灵活。

4—微量大配比计量组件:在保证微小计量试剂的同时,实现了不同试剂间大配比的准确计量难题,大大提高了分析设备的准确度。

5—试剂管:采用进口改型聚四氟乙烯透明软管,管径大于1.5mm,减少了水样颗粒堵塞几率。

电气器件:采用进口PLC等控制元器件,减少了环境干扰和设备故障。

基本原理:水样和掩蔽剂混合后,以游离态的氨或铵离子等形式存在的氨氮在碱性环境和增敏剂存在的情况下,与水杨酸及次氯酸盐反应生成一种带色络合物,分析仪检测此颜色的变化,并把这种变化换算成氨氮值输出来。

生成的带色络合物量相当于氨氮量。

检测步骤:1. 用新的水样冲洗测量水样、试剂体积的容器和消解试管。

开启蠕动泵进样。

水样并不直接与蠕动泵管接触,在泵管和水样间有一个空气缓冲区。

进样的体积由一可视测量系统控制。

❖技术规格◆方法依据:水杨酸分光光度检测。

◆测量范围:0-300 mg/L 氨氮(分档0-8mg/L;0.1-30mg/L;5-300mg/L)量程可定制◆准确度:不超过±10%或不超过±0.2mg/L。

◆重复性:不超过±5%或不超过±0.2mg/L。

◆测量周期:最小测量周期为20分钟,据现场环境,可在5~120min任意修改显色时间。

◆采样周期:时间间隔(10~9999min任意可调)和整点测量模式。

◆校准周期:1~99天任意间隔任意时刻可调。

◆维护周期:一般每月一次,每次约30 min。

◆试剂消耗:小于0.50元/样品。

◆输出:2路RS-232;1路4~20mA。

◆环境要求:温度可调的室内,建议温度+5~28℃;湿度≤90%(不结露)。

◆电源:AC230±10%V,50±10%Hz,5A。

◆其他:异常报警和断电不会丢失数据;◆触摸屏显示及指令输入;◆异常复位和断电后来电,仪器自动排出仪器内残留反应物,自动恢复工作状态。

1.6.3总磷在线分析仪技术参数仪器名称:总磷在线分析仪应用范围:应用于废水处理,纯净水,锅炉水等以及电子,电镀,印染,化学,食品制药等领域测量原理:水样、催化剂溶液和强烈氧化剂消解溶液的混合液加热到120℃,水样中聚磷酸盐和其他含磷化合物,在高温高压的酸性条件下被强烈氧化剂消解氧化生成磷酸根,在催化剂存在下,磷酸根离子在含钼酸盐的强酸溶液中,生成一种带色络合物,分析仪检测此颜色的变化,并把这种变化换算成总磷值输出来。

生成的带色络合物量相当于总磷量。

系统描述:独特的设计,使本产品较之同类产品具有更低故障率、更低维护量、更低的试剂消耗量以及更高的性价比。

1—选择阀组件:选择试剂采样时序,通道灵活多样,功能万变,具有最小死体积,易维护高寿命等优点。

2—微小计量组件:通过可视光电系统实现试剂精确计量,克服了蠕动泵泵管由于磨损引起的定量误差;同时实现了微量试剂的精确定量,每剂量仅为1毫升,大大减少了试剂使用量。

3—进样组件:蠕动泵负压吸入,在试剂与泵管之间总是存在一个空气缓冲区,避免了泵管的腐蚀;同时使得试剂混合更为简洁灵活。

4—密封消解组件:高温高压消解体系,加快反应进程,克服了敞口系统腐蚀性气体挥发对设备的腐蚀。

5—微量大配比计量组件:在保证微小计量试剂的同时,实现了不同试剂间大配比的准确计量难题,大大提高了分析设备的准确度。

6—试剂管:采用进口改型聚四氟乙烯透明软管,管径大于1.5mm,减少了水样颗粒堵塞几率。

技术规格:方法依据:磷钼蓝法分光光度检测。

测量范围:0-500 mg/L 总磷(分档0-6mg/L;0-30mg/L;2-500mg/L)。

准确度:不超过±10%或不超过±0.2mg/L。

重复性:不超过±5%或不超过±0.2mg/L。

测量周期:最小测量周期为30分钟,据实际水样,可在5~120min任意修改消解时间。

采样周期:时间间隔(10~9999min任意可调)和整点测量模式。

校准周期:1~99天任意间隔任意时刻可调。

维护周期:一般每月一次,每次约30 min。

试剂消耗:小于0.50元/样品。

输出:2路RS-232;1路4~20mA。

环境要求:温度可调的室内,建议温度+5~28℃;湿度≤90%(不结露)。

电源:AC230±10%V,50±10%Hz,5A。

尺寸:高1400×宽510×深422(mm)。

其他:异常报警和断电不会丢失数据;触摸屏显示及指令输入;异常复位和断电后来电,仪器自动排出仪器内残留反应物,自动恢复工作状态。

1.6.4 流量计主要技术指标及技术参数1. 流量范围:10L/s~10m3/s (由配用的量水堰槽的种类、规格确定)2. 累计流量:8位十进制数,累满8位后自动回零,重计3. 流量准确度:±5%(1%~3%配用量水堰槽的不确定,再附加上1%~2%的仪表测量误差)4. 测距范围:0.4~2m(从探头底部起0.4m内是盲区,0.4m~2m内为测距范围)5. 测距准确度:±3mm (在1m量程内标定的结果)6. 液位分辩:1mm7. 工作环境温度:-20℃~55℃(交流供电,且仪表内有附加自伴热时可以:-35℃~55℃,附加自伴热要在订货时声明)8. 仪表防护等级:仪表显示部分:IP66(仪表下部的过线孔要堵死);探头部分:IP689. 供电电源:交流供电:(220V±22V) 6W (使用仪表自伴热时为26W)直流供电:12V±2V 120mA [直流供电时,仪表没有(4~20)mA输出和继电器动作] 交流、直流供电同时存在时,仪表使用交流供电;交流掉电,自动接通直流。

11. 仪表日历钟计时误差: < 5分钟/每月12. 仪表数据存储量:每月、每天、每小时的记录:仅记录流量>2年,附加其它仪表4路>4个月。

每分钟的记录:仅记录流量>8小时,附加其它仪表4路>4小时14. 接入其它仪表的(4~20)mA电流:仪表内部采样电阻: 200Ω;负端与仪表地端共接可以接入的数量:I1、I2、I3、I4共4路13. 可以配接的打印机:接口插座, DB25插孔设定为“打印记录”时:EPSON兼容(建议配用TP-μp40T)设定为“定时打印”时:仅TP-μp40T (需用该打印机内的汉字库)14. (4~20)mA电流输出:外部负载电阻:(0~500)Ω误差: 0.5% (相对仪表示值)负端与仪表地端共接 (根据应用要求可改成悬浮地输出)输出内容:流量、液位可选15. RS-232:接口插座,DB9插针编码方式: 1起始位,8数据位,1停止位,有奇偶校验位或无校验位波特率:300,600,1200,2400,4800,9600,14400,19200,28800,43200,57600可选。

相关文档
最新文档