在线监测系统设计方案
智慧水务在线监测系统设计设计方案

智慧水务在线监测系统设计设计方案设计方案:智慧水务在线监测系统一、方案背景随着经济的快速发展和人口的增长,水资源问题逐渐引起人们的关注。
为了合理利用和管理水资源,提高水资源利用效率和水环境保护水平,需要建立一个完善的水务在线监测系统。
该系统将通过感知技术、通信技术、云计算技术等手段,实现对水资源的实时监测、分析、评估和预警,为水务管理者提供科学决策依据,同时也能够让广大公众了解水资源的状况,提高公众的环保意识。
二、系统架构智慧水务在线监测系统由传感器网络、数据传输通道、数据处理平台和前端展示平台构成。
1. 传感器网络:通过在不同地点安装各类传感器,实时采集水资源相关的数据,包括水位、水质、水温、水压等信息。
传感器网络可以通过有线或无线方式连接到数据传输通道。
2. 数据传输通道:负责将传感器采集到的数据传输到数据处理平台。
数据传输通道可以使用有线网络、无线网络或传统通信方式,保证数据的及时性和可靠性。
3. 数据处理平台:数据处理平台是核心部分,负责对传感器采集到的数据进行处理、存储、分析和展示。
数据处理平台可以使用云计算技术,实现大规模数据的实时处理和存储。
同时,数据处理平台还可以通过数据挖掘和机器学习算法,对数据进行分析,提取出有价值的信息,为水务管理者提供决策支持。
4. 前端展示平台:通过前端展示平台,将数据处理平台提取出的信息以直观的方式展示给水务管理者和公众。
前端展示平台可以使用网页、移动应用等形式,支持实时监测、可视化显示、数据查询、预警推送等功能。
三、核心功能智慧水务在线监测系统的核心功能包括数据采集与传输、数据处理与分析、决策支持与预警、信息展示与共享。
1. 数据采集与传输:通过传感器网络,实时采集水资源相关的数据,并通过数据传输通道将数据传输到数据处理平台。
数据传输通道需要保证数据的及时性、完整性和准确性。
2. 数据处理与分析:数据处理平台需要对传感器采集到的数据进行处理、存储、分析和挖掘。
水污染源在线监测系统方案

水污染源在线监测系统方案目标与背景随着工业化的迅猛发展,水污染问题越来越严重,给我们的生态环境和健康带来了很大的隐患。
因此,建立一个水污染源在线监测系统变得相当迫切。
这个方案的目的,就是要设计一个全面、科学且容易操作的监测系统,帮助相关部门实时掌握水质状况,确保我们的水源既安全又可持续。
现状与需求分析在我们开始具体实施方案之前,了解目前的情况和需求至关重要。
很多地方的水质监测还停留在老旧的方法上,这不仅耗时费力,而且数据更新慢,根本无法满足实际需求。
更糟的是,现有的监测设备往往不够智能,无法在第一时间反馈数据,导致污染事件的发生和扩散。
调查显示,大约60%的水体监测站根本无法实时上传数据,这让追踪和治理污染源变得异常困难。
因此,建设一个高效的在线监测系统不仅能提高数据的实时性,还能为决策提供有力支持。
实施步骤与操作指南为了顺利实施水污染源在线监测系统,下面是一些具体的步骤和操作指南。
系统架构设计系统的架构设计可以分为几个层次:1. 传感器层:负责实时采集水质参数,包括温度、pH值、溶解氧、浑浊度、氨氮和重金属等。
选择敏感度高、准确性强的传感器,确保数据的可靠性。
2. 数据采集层:传感器采集的数据通过数据传输模块(比如485、Zigbee、LoRa等无线传输方式)传送到数据中心。
3. 数据处理层:数据中心利用云计算平台存储、处理和分析这些数据,及时识别异常情况。
4. 用户界面层:设计一个用户友好的界面,让用户能轻松查看实时和历史数据,并生成各类报告。
设备选择在选择设备时,需考虑以下因素:- 传感器的选择:选择知名品牌的传感器,以确保质量和耐用性。
例如,可以考虑霍尼韦尔(Honeywell)和欧姆龙(Omron)等公司的产品,它们都得到了广泛认可。
- 数据传输设备:选择稳定性高、传输距离远的无线模块,以确保数据的实时性。
- 服务器配置:根据数据处理的需求,选择合适的云服务器配置。
通常,CPU至少需要4核,内存需8GB以上,存储空间根据监测数据量合理规划。
变电站温度在线监测系统的建设方案

THANKS
感谢观看
提高设备运行效率
通过对设备温度的监测,可以优化设备的运行条件,提高设备运行 效率,减少能源浪费。
增加供电可靠性
实时监测变电站设备的温度,可以及时发现并处理设备故障,减少 设备故障对供电的影响,提高供电可靠性。
社会效益
1 2 3
提高供电服务质量
通过对变电站设备温度的监测,可以及时发现并 处理设备故障,减少设备故障对用户用电的影响 ,提高供电服务质量。
数据分析与报警
数据分析
对处理后的温度数据进行统计分析,包括平均值、最大 值、最小值等指标的计算,以及趋势分析、异常检测等 方法的运用。
报警机制
根据数据分析结果,设定报警阈值,当监测温度超过预 设阈值时,系统自动触发报警,并将报警信息发送至相 关人员。
人机界面设计
用户登录与权限管理
设计用户登录界面,实现不同权限用 户的登录及系统操作功能。
系统架构与组成
01 感知层
由温度传感器、数据处理模块等组成,负责采集 和初步处理变电站温度数据。
02 网络层
通过物联网技术,将感知层数据传输至云平台。
03 应用层
展示监测数据、提供远程监控界面、实现智能报 警等功能。
系统工作原理
温度传感器采集变电站内的温度数据 ,通过无线传输技术将数据发送至数
据处理模块。
处理后的数据通过物联网技术上传至 云平台,进行存储和分析。
数据处理模块对接收到的数据进行初 步处理,如数据过滤、格式转换等。
管理人员可以通过远程监控界面随时 查看变电站的温度数据,系统也会根 据设定的规则自动报警,提醒相关人 员处理异常情况。
03
硬件设计
温度传感器选择
智慧环保在线监测系统设计方案 (2)

智慧环保在线监测系统设计方案智慧环保在线监测系统是一种基于物联网技术的环境监测系统,旨在通过实时数据采集、分析和优化,提供智能化的环境监测和管理方案,从而实现环境保护和可持续发展的目标。
以下是针对智慧环保在线监测系统的设计方案。
一、系统架构设计智慧环保在线监测系统的设计需要考虑到数据采集、数据传输、数据处理和数据展示等方面。
根据此需求,可以设计如下的系统架构:1. 数据采集层:此层负责采集环境监测数据,如空气质量、水质监测、噪音监测等。
可以通过传感器设备实时采集环境数据,并将数据发送给数据传输层。
2. 数据传输层:此层负责将采集到的环境数据传输到数据处理层。
可以采用无线传输技术,如Wi-Fi、NB-IoT 等,保证数据传输的稳定性和实时性。
3. 数据处理层:此层负责对采集到的环境数据进行处理和分析,包括数据清洗、数据存储、数据分析等。
可以使用云计算平台进行数据处理和分析,利用大数据分析算法提取环境信息,如环境污染源识别、环境质量趋势预测等。
4. 数据展示层:此层负责将处理后的数据以可视化的方式展示给用户,以帮助用户了解环境状况,并进行环境管理和决策。
可以通过网页或移动应用程序提供实时的环境监测数据和报告。
二、关键技术及功能设计在智慧环保在线监测系统的设计中,需要考虑以下关键技术和功能:1. 传感器技术:选择合适的传感器设备,如空气质量传感器、水质传感器、噪音传感器等,用于实时数据采集,确保数据的准确性和可靠性。
2. 无线传输技术:选择低功耗、长距离的无线传输技术,如Wi-Fi、NB-IoT等,用于将采集到的环境数据传输到数据处理层,保证数据的实时性和稳定性。
3. 云计算技术:借助云计算平台进行数据存储、处理和分析,提取环境信息,如环境污染源识别、环境质量趋势预测等。
4. 数据可视化技术:通过网页或移动应用程序将处理后的数据以可视化的方式展示给用户,以便用户对环境信息进行了解和决策。
5. 报警技术:设定一套智能的报警系统,当环境异常超过一定阈值时,可以通过短信、邮件等方式及时通知相关人员,采取相应的措施。
能耗在线监测系统方案

1. 引言能耗在线监测系统是一种用于实时监测和管理能源消耗的系统。
它可以帮助企业和组织有效地控制能源的使用,降低能源消耗,减少能源浪费,实现可持续发展目标。
本文将介绍一个能耗在线监测系统的方案,包括系统架构、功能模块和实施步骤。
2. 系统架构能耗在线监测系统主要包括以下几个关键组成部分:2.1 传感器网络传感器网络是能耗在线监测系统的基础。
通过在关键设备和场所安装传感器,可以实时监测能源消耗情况。
传感器可以测量电力、水、气等各种能源的消耗量,并将数据传输到系统服务器。
2.2 数据存储和处理系统服务器负责接收传感器发送的数据,并进行存储和处理。
数据存储可以选择使用关系型数据库或者时序数据库,以便高效地存储和查询大量的数据。
数据处理模块可以对数据进行实时分析和计算,生成各种能源消耗指标和报表。
2.3 用户接口能耗在线监测系统需要提供友好的用户接口,使用户可以方便地查看能源消耗情况和管理能源使用。
用户接口可以包括Web界面、移动App等多种形式。
用户可以通过用户接口查看实时数据、历史数据和报表,并进行能源消耗的分析和管理。
2.4 报警和通知能耗在线监测系统可以设置各种报警规则,当能源消耗异常或达到预定阈值时,系统将发送报警通知给相关人员。
报警通知可以通过短信、邮件等多种方式发送,以便及时采取措施。
3. 功能模块能耗在线监测系统包括以下几个核心功能模块:3.1 实时监测系统可以实时监测关键设备和场所的能源消耗情况。
用户可以通过用户接口查看实时数据,如电力消耗量、水消耗量等,以便及时了解能源消耗情况。
3.2 历史数据查询系统可以存储大量的历史数据,并提供灵活的查询功能。
用户可以通过用户接口选择特定的时间段和设备来查询历史数据,以便进行数据分析和对比。
3.3 能源报表系统可以根据用户需求生成各种能源消耗的报表。
报表可以包括日报、月报、年报等不同时间粒度的报表,并提供图表和统计数据,以便用户进行能源消耗的评估和分析。
滑坡在线安全监测系统方案

滑坡在线安全监测系统方案一、系统概述滑坡在线安全监测系统,旨在通过高科技手段,对滑坡体进行实时监测,及时掌握滑坡体的变化情况,为政府部门和救援机构提供决策依据。
系统主要包括数据采集、传输、处理、预警和发布五个环节。
二、数据采集1.感应器部署:在滑坡体表面和内部,布置各类感应器,如位移感应器、倾角仪、土壤水分仪等,实时采集滑坡体的各项数据。
2.视频监控:在关键部位安装高清摄像头,对滑坡体表面进行实时监控,捕捉异常变化。
3.数据采集器:将感应器和摄像头的数据,通过数据采集器汇总,再传输至数据处理中心。
三、数据传输1.有线传输:利用光纤、网线等,将有线设备连接至数据处理中心。
2.无线传输:对于无法布线的区域,采用无线传输技术,如4G、5G、LoRa等,将数据实时传输至数据处理中心。
四、数据处理1.数据清洗:对采集到的原始数据进行清洗,剔除异常值,保证数据的准确性。
2.数据分析:运用大数据分析和技术,对数据进行实时分析,判断滑坡体的稳定性和发展趋势。
3.预警模型:结合历史数据、地形地貌、气象等因素,建立预警模型,为滑坡预警提供科学依据。
五、预警与发布1.预警等级:根据预警模型分析结果,设定预警等级,如蓝色、黄色、橙色、红色等。
2.预警发布:通过手机短信、、微博等渠道,将预警信息实时发布给政府部门、救援机构及附近居民。
3.应急响应:根据预警等级,启动应急预案,组织人员疏散、物资调度等应急措施。
六、系统优势1.实时监测:通过感应器和摄像头,实时掌握滑坡体的变化情况。
2.高精度预警:运用大数据分析和技术,提高预警准确性。
3.快速响应:预警信息实时发布,为政府部门和救援机构提供决策依据。
4.安全可靠:系统采用成熟的技术,确保稳定运行,为用户提供可靠的监测数据。
七、实施步骤1.调查研究:对滑坡体进行详细调查,了解地形地貌、地质构造、气象等因素。
2.设计方案:根据调查结果,制定滑坡在线安全监测系统方案。
3.设备采购:选购性能稳定、质量可靠的监测设备。
水质在线监测系统设计方案

水质在线监测系统设计方案一、引言水质是指水中溶解物、悬浮物、微生物和有机物等的数量和质量的综合反映。
水质的好坏直接关系到人们的生活环境和健康。
传统的水质监测方法需要人工采样、实验室分析,耗时费力,且无法及时监测到水质变化,因此迫切需要一种水质在线监测系统来实时监测水质状况。
二、系统构成1.传感器:用于检测水质参数的传感器,如pH值、溶解氧、浊度、温度等。
传感器应具有高精度、高灵敏度和抗干扰能力,能够实时监测水质指标,并将数据传输给监测系统。
2.数据采集与传输模块:负责采集传感器获取的数据,并通过无线通信方式将数据传输给监测系统。
数据采集与传输模块应具有高稳定性和可靠性,能够确保数据传输的准确性和实时性。
3.监测系统:接收并处理传感器采集的数据,并对水质指标进行实时分析和评估。
监测系统应具有数据处理和存储功能,能够生成水质监测报告,并提供数据可视化界面以便于用户查看。
4.报警系统:监测系统通过与报警系统的连接,能够在水质数据异常时发出报警信号,通知相关人员进行处理。
三、系统特点与优势1.实时性:水质在线监测系统能够实时监测水质指标,及时发现异常情况,确保水质安全。
2.准确性:传感器具有高精度和高灵敏度,能够精确测量水质指标,提高监测数据的准确性。
3.自动化:水质在线监测系统能够实现自动采集、传输和处理数据,减轻人工工作量,提高工作效率。
4.可视化:监测系统提供数据可视化界面,用户可以直观地查看水质变化趋势和监测数据,方便实时监控和分析。
5.报警功能:监测系统与报警系统连接,可以及时发出报警信号,确保异常情况能够及时得到处理,防止事故发生。
四、系统实施步骤1.传感器选择:根据监测需要选择适合的传感器,满足监测参数和精度要求。
2.网络建设:搭建监测系统所需的网络环境,包括传感器与数据采集传输模块之间的通信网络,以及监测系统与用户终端之间的通信网络。
3.数据采集与传输模块:设计并制造数据采集与传输模块,保证数据采集的准确性和实时性。
智慧环保在线监测系统建设方案

通过数据挖掘和分析,智慧环 保能够为环保决策提供科学依 据,推动环保治理的精准化和 高效化。
项目目标与预期成果
构建覆盖全区域的环境监测网 络,实现环境数据的实时采集
、传输和处理。
建立智慧环保平台,整合环保 部门和企业资源,实现信息共
享和协同治理。
提高环境监测数据的准确性和 时效性,为环保决策提供有力 支撑。
风险评估、应对措施制定和监控执行
风险评估
对项目实施过程中可能出现的风险进行识别、分 析和评估,形成风险清单。
应对措施制定
针对可能出现的风险,制定相应的应对措施和预 案,降低风险对项目的影响。
监控执行
在项目实施过程中,对风险进行持续监控和跟踪 ,及时调整应对措施,确保项目顺利实施。
项目验收标准、流程和方法论述
量和型号。
硬件设备布局规划及安装要求
根据监测区域和监测项目,合理规划硬件设备的布局,确保监测数据的 全面性和代表性。
硬件设备安装应符合国家相关标准和规范,确保设备的稳定性和安全性 。
对于需要特殊安装环境的设备,应制定相应的安装方案和措施。
设备维护和保养计划
制定详细的设备维护 和保养计划,包括定 期检查、清洁、校准 等。
进行系统试运行,解决运行中出现的问题,组织项目验 收。
资源调配、团队协作和沟通机制建立
01
资源调配
根据项目需求,合理分配人力、 物力和财力资源,确保项目顺利 实施。
团队协作
02
03
沟通机制
建立高效的项目团队,明确团队 成员职责和分工,形成协同工作 的良好氛围。
建立定期的项目会议制度、工作 报告制度和信息交流渠道,确保 项目信息畅通无阻。
提供多种查询和统计功能 ,方便用户快速获取所需 信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在线监测系统设计方案水质在线监测系统设计方案***********有限公司******环保设备有限公司二零******年**月目录1、企业简介 (4)2、设计依据 (4)2.1设计依据的主要相关规范及标准 (4)2.2设计原则 (6)2.3系统设计 (6)3、技术部分 (7)3.1监测因子 (7)3.2监测点位 (7)3.3监测站房 (7)3.4其他建设要求 (9)3.5企业监控中心 (16)3.6监测设备性能及组成部分 (16)3.7项目实施方案 (22)4、售后服务 (24)4.1升级服务 (24)4.2联系方式和技术服务 (25)4.3技术信息 (25)4.4保修 (25)5、资质文件 (27)5.1企业法人营业执照复印件 (27)5.2税务登记证复印件 (27)5.3组织机构代码证复印件 (27)5.4环境污染治理设施运营资质证书 (28)5.5 ISO9001认证 (28)5.6计量器具生许可证书 (28)5.7中国环境保护产品认证证书 (30)5.8国家环保部出具的检测报告 (30)5.9纳税凭证 (33)5.10产品认定证书 (33)5.11近年来业绩和用户证明 (35)5.12其他证明文件 (40)5.13专利情况专利证书统计 (44)1、企业简介**********有限公司位于经济技术开发区*****工业园区,是一家*******************。
本公司主要污染物排放总量在**市环保局总量控制指标内核定:化学需氧量******吨/年,氨氮******吨/年,总磷*******吨/年。
按照国家有关规定设置规范的污染物排放口,预安装废水排放自动在线监测装置并与环保部门联网。
2、设计依据2.1设计依据的主要相关规范及标准1)《环境污染源自动监控信息传输、交换技术规范》(试行)(HJ/T 352-2007)2)《水污染源在线监测系统安装技术规范》(试行)(HJ/T353-2007)3)《水污染源在线监测系统验收技术规范》(试行)(HJ/T354-2007)4)《水污染源在线监测系统运行与考核技术规范》(试行)(HJ/T 355-2007)5)《水污染源在线监测系统数据有效性判别技术规范》(试行)(HJ/T 356-2007)6)《环境保护产品技术要求-化学需氧量CODcr水质在线监测仪》(HJ/T 377-2007)7)《氨氮水质自动分析仪技术要求》(HJ/T 101-2003)8)《环境保护产品技术要求-超声波明渠流量计》(HJ/T 15-2007)9)《水质采样技术指导》(HJ494-2009)10)《水质自动采样器技术要求及检测方法》(HJ/T 323-2007)11)《污染源在线自动监控(监测)数据采集传输仪技术要求》(HJ 477-2009)12)《污染源在线自动监控(监测)系统数据传输标准》(HJ/T 212-2005)13)《关于开展排放口规范化整治工作的通知》(2006年修正版)14)《再生有色金属工业污染物排放标准—铝》(征求意见稿)15)《污染源自动监控管理办法》16)《巴歇尔槽测流规范》(SL 24-91)17)《污水综合排放标准》GB8978-199618)《室外排水设计规范》GBJ14-87(1997年版)19)《工业与民用电力装置的接地设计规范》GBJ65-8320)《混凝土结构设计规范》GB50010-200221)《电缆线路施工及验收规范》GB50168-9222)《堰槽测流规范》SL 24-9123)《施工现场端建设规范》2.2设计原则(1)实用性和统一性原则。
在系统建设中首先要考虑的是实用性和易于操作性,易于管理和维护,易于用户掌握和学习使用。
采用技术成熟的数据采集技术和通信技术。
在分析仪器设备的选型上,为污水处理厂提供同一厂家设备,以保证整个系统的兼容性和统一性,且更便于工作人员操作及系统维护。
也使售后服务具有专一性,责任性增强,提高工作效率。
(2)开放性和标准化原则。
在总体设计中,采用开放式的系统结构,使系统网络易于扩充,并为以后的发展预留可扩充接口。
同时系统网络选用的通信协议和设备接口标准符合国际标准和国家环保信息网络系统新认可的数据传输标准,达到对污染实施在线监控的目的。
(3)可靠性和安全性原则。
系统的安全可靠是整个系统建设的基础。
鉴于环保信息的重要性,要求系统有较高的可靠性,系统建设应具有网络监督和管理能力。
要确保系统数据传输的正确性,防止异常情况的发生,拒绝未经授权的访问。
2.3系统设计该系统是由系统软件、COD、NH3-N、总磷、SS、PH计、流量计的水质在线分析仪和智能环保监控仪组成,系统软件安装在环保局信息中心监控室和污水厂监控室,可实时、定时对处理后污水的水质情况进行监测监控,并通过智能环保监控仪对数据进行整理、存储、上传,同时将数据传送到环保局监控中心和污水厂监控中心。
3、技术部分3.1监测因子根据《再生有色金属工业污染物排放标准—铝》(征求意见稿),确定***********有限公司总排水口的主要监测因子为:pH、悬浮物、COD、氨氮、总磷、流量、石油类。
本公司现提供监测COD、pH和流量的水质在线自动监测设备。
3.2监测点位根据《水污染源在线监测系统安装技术规范》(试行)(HJ/T 353-2007),监测点位应位于************有限公司总排水口巴歇尔槽的引流段,其采集的水样具有代表性。
水样将无变质地输送至监测站房供水质自动分析仪取样分析或采样器采样保存。
流量计探头安装于巴歇尔槽上。
3.3监测站房(1)位置:监测站房应建在监测点位附近,距离不大于50米,最好在10米以内,并且站房区域没有振动、噪声、强磁场、通讯盲区,对仪器的测量及数采仪的数据传输无影响。
(2)尺寸:6m×4.4m×2.8m,建筑面积26.4m2;室内净高2.6m。
(3)构筑材料:砖混结构3x7墙。
(4)保温材质:外墙面保温层。
(5)门窗材质:窗户选择铝塑钢和手关窗扇,门为品牌防盗门。
(6)屋内环境:室内设空调,保持室温约10-35℃、相对湿度75%以下、通风良好、无强震动和磁场干扰。
(7)给排水:清洁水从污水处理厂自来水管道接入,室内安装盥洗池,地漏。
(8)防雷:设接地线路,接地电阻<4Ω。
(9)防水:屋面坡度设定为1:20;采用咬合式波浪板型;防水材料选用适合于金属板屋面的具有较高的粘结强度、好的追随性、以及耐候性丁基橡胶防水密封粘接带。
(10)供电:接入380V/220V、频率50 Hz交流电,总功率为10kw。
五芯橡套电缆(6mm2)经地下埋镀锌管引入屋内,配备一台380V/220V、10路输出,总功率10kw的供电箱,供电能力为10kw。
室内安装UPS备用电源,功率为2000W, 在断电时数据采集传输仪可继续工作6h以上,已满足站房断电后仪器的正常运行及数据的及时保存。
电源引入线使用照明电源,电源设明显标志,防止工作人员意外断电;接地线设明显标志。
站房电源设置系统总开关,每台仪器均设独立控制开关。
所有电线加硬质保护管套进墙入地铺设。
室内顶部安装40w白炽灯,满足照明要求。
(11)防火:监测室内设干粉灭火器一只放于进门处的明显位置。
(12)辅助设施:工作台、电脑桌、椅等。
3.4其他建设要求3.4.1站房内布置情况1、监测站房内安装(建议)立体示意图2、仪表间内布置规范1)室内按照一般实验室规范标准装修;2)室内安装空调保证环境温度:10—35℃,空调功率为:1000W;3)地面应用瓷砖铺砌,设踢脚线;4)接电要求:电源电压:220V±15%AC ,5A,电源频率:50Hz±5%,电源功率:>5000w,良好接地:4欧的专用接地线。
至少配有7只三眼插座和4只二眼插座,固定在1.2米高处,或配有二只多功能电源插板,可以扩接水泵、电脑等用电设备。
对于电压不稳定和经常断电的地区,建议使用功率匹配的交流电源稳压器,以保护仪器,有接地线,有总的配电盘,漏电开关三排;使用功率匹配的交流电源稳压器,以保护仪器;5)总进电源线为4平方毫米以上铜芯线,室内可为2平方毫米软线;开关、插座等线路管线均为暗线;6)仪器房的避雷和电线系统与附近厂区取得平衡(有避雷针的大地桩,接地电阻必须小于4欧);7)室外安装采样进水φ25PPR管,采样预留孔高度可与现场实际情况而定;8)室内环境要求:室内照明应能照射到仪器正面(40W日光灯);干燥、通风且满足设备运行环境温度(应装有空调,使之保持恒温在5-30℃),避免阳光直射;避免强电磁场干扰;避免强腐蚀性气体。
备有洗手池,以便维护时洗手用9)仪器的放置:仪器的尺寸为宽×高×深=450×1500×300(mm), 要求仪器的左右保持≥600mm的空间, 前面保持≥1000mm的空间。
3.4.2标准巴歇尔槽技术要求巴歇尔槽的喉道断面为矩形。
进口收缩段(L1)要求底面严格水平,两侧边墙与底面垂直且与轴线成1∶5的比值收缩。
喉道段(L)的两侧边墙互相平行,底坡向下游倾斜,坡度为3∶8。
出口扩散段(L2)的两侧翼墙与底面垂直,且与槽轴线对称,扩散比为1∶6。
出口段底面向上游倾斜呈1∶6的逆坡。
进口收缩段与行近河槽及出口扩散段与下游河槽相连接处,均应建垂直翼墙(L3和L4),其夹角可做成45°,也可做成半径为2hmax的圆弧形。
对喉道宽小于0.5m的测流槽,其翼墙也可与槽轴线成直角布置。
进口收缩段上游应有长度不小于5倍河宽的行近河槽,水流的弗汝德数(Fr)一般不应超过0.5。
对测流精度要求不高的情况,也不应超过0.7。
在有充分水头可以利用,能保证自由出流的情况下,可从堰顶处截短,不建喉道和出口扩散段,但在进口的下游应有不小于0.2m的跌水,且应建消能装置。
巴歇尔槽各部位尺寸安装的允许偏差还应符合下列要求:1)喉道底面纵横向平均坡度的允许偏差为±0.1%;2)上游进口渐变段长度的偏差为喉道长度(L)的±0.1%;3)下游出口渐变段长度的偏差为喉道长度(L)的±0.3%;4)其它垂直和倾斜面上的平面或曲线偏差为±1%。
设计的喉道宽(b)一般宜为行近河槽宽的1/2~1/3。
在有泥沙输移的情况下,槽底宜与进口收缩段齐平。
如只允许在自由流状态下运行,可以适当增高进口段的底部高程。
在设计安装时,不能随意改变巴歇尔槽给定的标准尺寸,也不能舍零取整。
根据《关于开展排放口规范化整治工作的通知》(2006年修正版)的要求在排放口建设巴歇尔计量槽,其按照《巴歇尔槽测流规范》(SL24-91)要求进行建设安装,巴歇尔槽建成后在堰槽周围采用不锈钢围栏作为安全防护,周围及底部铺设防滑瓷砖。