中考数学-圆的切线证明方法
中考数学模拟试题圆的方程与切线

中考数学模拟试题圆的方程与切线中考数学模拟试题圆的方程与切线圆是几何学中最重要的图形之一,它的方程与切线是数学中常见的问题。
本文将介绍关于圆的方程以及如何求解圆的切线问题。
一、圆的方程圆是由平面上所有距离圆心相等的点组成的图形。
给定圆心坐标为$(h,k)$,半径为$r$,我们可以得到圆的方程:$$(x-h)^2+(y-k)^2=r^2$$其中,$(x,y)$为圆上任意一点的坐标。
根据圆的方程,我们可以进行一些常见的圆的问题的求解。
例1:已知圆心坐标为$(2,3)$,半径为$4$,求满足圆的方程的点的坐标。
解:根据圆的方程,代入给定的圆心坐标和半径:$$(x-2)^2+(y-3)^2=4^2$$展开得到:$$x^2-4x+4+y^2-6y+9=16$$化简得:$$x^2+y^2-4x-6y-3=0$$所以,满足圆的方程的点的坐标为$(x,y)$,其中$x^2+y^2-4x-6y-3=0$。
二、圆的切线切线是圆上一点的切线是与圆相切且在该点处与圆相交于一点。
求解圆的切线问题,我们主要关注以下两种情况:1. 切线与圆的非切点处的交点在圆上任取一点$P(x_0,y_0)$,以该点为切点作切线。
设切线方程为$y=kx+b$,且该切线与圆的交点为$Q(x_1,y_1)$。
根据切线与圆的性质,切线与圆的交点满足两个条件:首先,$Q$点位于切线上,即满足$y_1=kx_1+b$;其次,$Q$点也位于圆上,即满足圆的方程:$(x_1-h)^2+(y_1-k)^2=r^2$。
通过解这两个方程组,可以求解出切线与圆的交点坐标。
2. 切线与圆的切点处的交点在圆上任取一切点$P(x_0,y_0)$,以该点为切点作切线。
设切线方程为$y=kx+b$,且该切线与圆的切点为$Q(x_1,y_1)$。
根据切线与圆的性质,切线与圆的切点满足两个条件:首先,$Q$点位于切线上,即满足$y_1=kx_1+b$;其次,$Q$点也位于圆上,即满足圆的方程:$(x_1-h)^2+(y_1-k)^2=r^2$;此外,切线与圆在切点处的斜率相等,即满足$k=\frac{y_0-y_1}{x_0-x_1}$。
2024年中考重点之圆的切线与切圆定理

2024年中考重点之圆的切线与切圆定理圆是几何学中非常重要的基本形状之一,而关于圆的切线和切圆定理是中考数学中的重点内容之一。
本文将详细介绍圆的切线以及切圆定理的概念和应用。
一、圆的切线1. 切线的定义在平面几何中,切线是一条与圆只有一个交点的直线。
2. 切线的性质(1)切线与半径的关系:切线与半径垂直相交。
(2)切线的方向:切线与半径的夹角为90度。
(3)切线的长度:从切点到圆心的部分是切线的长度。
二、切圆定理1. 切圆定理的表述在一个圆中,如果一条直线通过圆上的两个不同的点,并且这条直线的两端分别与圆相交,那么这条直线就被称为切线,并且它与圆的切点在同一条直径上。
2. 切圆定理的应用(1)切线与半径的关系:由切圆定理可知,切线与半径在切点处构成90度的夹角,因此可以利用这一性质求解有关圆的问题。
(2)求切线长度:利用切圆定理可以通过已知的半径长度和圆心和切点的距离求解切线的长度。
(3)求切点坐标:利用切圆定理可以通过已知的圆心坐标和切线方程求解切点的坐标。
三、例题解析题目:已知一个圆的半径为r,圆心的坐标为(h, k),直线y = mx + c(m ≠ 0)经过与圆的两个交点,求切线的方程。
解析:根据题目中已知条件,直线y = mx + c与圆相交于两个不同的点。
由于直线是切线,因此切线与直径垂直相交,并且切点在同一条直径上。
设切点的坐标为(x1, y1),则根据切圆定理,切点的横坐标为h - (km + c)/(m^2 + 1),纵坐标为k + m(x1 - h)。
由于切线垂直于半径,可以得到切线的斜率为-1/m。
由切点坐标可以确定切线的方程为y - y1 = -(1/m)(x - x1)。
将切点的坐标代入切线方程,可以得到切线的具体方程为y - (k + m(x1 - h)) = -(1/m)(x - (h - (km + c)/(m^2 + 1)))。
至此,我们得到了关于切线的方程。
四、总结本文详细介绍了圆的切线和切圆定理的概念和应用。
2020年中考数学提优专题:《圆:切割线定理》(含答案)

《圆:切割线定理》知识梳理:(1)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT的平方=PA•PB(切割线定理)(2)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB(切割线定理推论)(割线定理)由上可知:PT2=PA•PB=PC•PD.一.选择题1.如图,P是⊙O的直径BC延长线上一点,PA切⊙O 于点A,若PC=2,BC=6,则切线PA的长为()A.无限长B.C.4 D.2.如图,PT是⊙O的切线,T为切点,PBA是割线,交⊙O于A、B两点,与直径CT交于点D,已知CD=2,AD=3,BD=4,那么PB等于()A.6 B.C.7 D.203.设H为锐角△ABC的三条高AD、BE、CF的交点,若BC=a,AC=b,AB=c,则AH•AD+BH•BE+CH•CF 等于()A.(ab+bc+ca)B.(a2+b2+c2)C.(ab+bc+ca) D.(a2+b2+c2)4.如图,MN切⊙O于A点,AC为弦,BC为直径,那么下列命题中假命题是()A.∠MAB和∠ABC互余B.∠CAN=∠ABC C.OA=BC D.MA2=MB•BC5.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A.B.C.8 D.56.如图,AB是⊙O直径,AC是⊙O的弦,过弧BC 的中点D作AC的垂线交AC的延长于E,若DE=2,EC=1,则⊙O的直径为()A. B.C.5 D.47.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3 B.7.5 C.5 D.5.58.如图,已知⊙O的弦A B、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=cm,则PE的长为()A.4cm B.3cm C.5cm D.cm9.如图,⊙O1与⊙O2相交于A、B两点,PQ切⊙O1于点P,交⊙O2于点Q、M,交AB的延长线于点N.若MN=1,MQ=3,则NP等于()A.1 B.C.2 D.310.同心圆O中,大圆的弦EF切小圆于K,EP切小圆于P,FQ切小圆于Q,G为小圆上一点,GE、GF 分别交小圆于M、N两点,下列四个结论:①EM=MG;②FQ2=FN•NG;③EP=FQ;④FN•FG=EM•EG.正确的结论为()A.①③B.②③C.③④D.②④二.填空题11.如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若OA=a,PM=,那么△PMB 的周长是.12.已知:如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,PC=4,PB=8,则PA =,sin∠P=,CD=.13.如图,PA、PB与⊙O分别相切于点A、点B,AC 是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为.14.如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,若PA=6,PB=4,弧AB的度数为60°,则BC =,∠PCA=度,∠PAB=度.15.如图,已知ABCD是一个半径为R的圆内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于点P,且BP=8,∠APD=60°,则R=.16.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D 点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).17.由⊙O外一点F作⊙O的两条切线,切点分别为B、D,AB是⊙O的直径,连接AD、BD,线段OF交⊙O 于E,交BD于C,连接DE、BE.有下列序号为①~④的四个结论:①BE=DE;②∠EBD=∠EDB;③DE∥AB;④BD2=2AD•FC其中正确的结论有.(把你认为正确结论的序号全部填上)三.解答题18.已知:如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若AD=6,AE=6,求DE的长.19.如图,圆O是以AB为直径的△ABC的外接圆,D 是劣弧的中点,连AD并延长与过C点的切线交于点P,OD与BC相交于E;(1)求证:OE=AC;(2)求证:;(3)当AC=6,AB=10时,求切线PC的长.20.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF.参考答案一.选择题1.解:∵PC=2,BC=6,∴PB=8,∵PA2=PC•PB=16,∴PA=4.故选:C.2.解:∵TD•CD=AD•BD,CD=2,AD=3,BD=4,∴TD=6,∵PT2=PD2﹣TD2,∴PT2=PB•PA=(PD﹣BD)(PD+AD),∴PD=24,∴PB=PD﹣BD=24﹣4=20.故选:D.3.解:AH•AD=AC•AE=AC•AB•cos∠BAE=(b2+c2﹣a2),同理BH•BE=(a2+c2﹣b2),CH•CF=(a2+b2﹣c2),故AH•AD+BH•BE+CH•CF=(a2+b2+c2).故选:B.4.解:∵BC是⊙O的直径,∴∠BAC=90°,∴∠MAB+∠CA N=90°;∵MN切⊙O于A,∴MA2=MB•MC,(故D错误)∠CAN=∠CBA,(故B正确)∴∠MAB+∠CBA=90°;(故A正确)∵OA是⊙O的半径,BC是⊙O的直径,∴BC=2OA;(故C正确)故选:D.5.解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cosD=AD:BD=1:3,设A D=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选:C.6.解:连接OD,∵点D是弧BC的中点,∴OD⊥BC,∠OFC=90°,AB是直径,∴∠ACB=90°,DE⊥AE,∴∠E=90°,∴四边形CFDE是矩形,∴∠ODE=90°,∴ED是圆的切线.作OG⊥AC,则OG=CF=ED=2.∵DE2=EC•AE,∴AE=4,AC=3,AG=,∴AO=,∴AB=5.故选:C.7.解:∵PA=3,AB=PC=2,∴PB=5,∵PA•PB=PC•PD,∴PD=7.5,故选:B.8.解:∵PA•PB=PC•PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED•EC,∴x(x+8)=20,∴x=2或x=﹣10(负值舍去),∴PE=2+2=4.故选:A.9.解:∵PN2=NB•NA,NB•NA=NM•NQ,∴PN2=NM•NQ=4,∴PN=2.故选:C.10.解:连接OK,∵EF切小圆于K,∴OK⊥EF,根据垂径定理得EK=FK,∵EP切小圆于P,FQ切小圆于Q,∴EP=EK,FQ=FK,∴EP=FQ,故③正确;∴由切割线定理得,FK2=FN•FG,EK2=EM•EG,∴FN•FG=EM•EG,故④正确;故选:C.二.填空题(共7小题)11.解:连接OM;∵PM切⊙O于点M,∴∠OMP=90°,∵OA=OM=a,PM=,∴tan∠MOP=MP:OM=,∴∠MOP=60°,∴OP=2a,∴PB=OP﹣OB=a;∵OM=OB,∴△OMB是等边三角形,MB=OB=a,∴△PMB的周长是(+2)a.12.解:∵PC切⊙O于点C,割线PAB经过圆心O,PC=4,PB=8,∴PC2=PA•PB.∴PA==2.∴AB=6.∴圆的半径是3.连接OC.∵OC=3,OP=5,∴sin∠P=.∴CE=,∴CD=.13.解:连接AD,OB,OP;∵PA、PB与⊙O分别相切于点A、点B,∴∠OAP=∠OBP=90°,∠AOB=180°﹣∠P=120°,∴∠AOP=60°,AP=AOtan60°=,∴PC=;∵PA2=PD•PC,∴PD=,∴CD=.14.解:∵PA2=PB•PC,PA=6,PB=4;∴PC=9,∴BC=5;∵弧AB的度数为60°,∴∠PCA=30°,∴∠PAB=30°.15.解:由切割线定理得PB•PA=PC•PD,则有8×20=PC(PC+6).解得PC=10.在△PAC中,由PA=2PC,∠APC=60°,得∠PCA=90°.从而AD是圆的直径.由勾股定理,得AD2=AC2+CD2=(PA2﹣PC2)+CD2=202﹣102+62=336.∴AD==4∴R=AD=2.故答案为2.16.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.17.解:∵BF,DF是⊙O的两条切线∴OF是∠DFB的角平分线,DF=FB,FO⊥BD,CD=CB∴=∴BE=DE(①正确)∵=∴∠EBD=∠EDB(②正确)∵FB切⊙O于B∴FB⊥OB∵BC⊥OF∵BC2=OC•FC∴(BD)2=OC•CE∵OC为△ABD的中位线∴OC=AD∴(BD)2=AD•CE∴BD2=2AD•FC(④正确)故其中正确的结论有①②④.三.解答题(共3小题)18.(1)证明:连接OE;(1分)∵⊙O是△BDE的外接圆,∠DEB=90°,∴BD是⊙O的直径,(不证直径,不扣分)∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,(2分)∴∠OEB=∠CBE,∴OE∥BC,(3分)∵∠C=90°,∴∠AEO=90°,∴AC是⊙O的切线;(4分)(2)解:∵AE是⊙O的切线,AD=6,AE=6,∴AE2=AD•AB,(5分)∴AB===12,∴BD=AB﹣AD=12﹣6=6;∵∠AED=∠ABE,∠A=∠A,∴△AED∽△ABE,(6分)∴;设DE=x,BE=2x,∵DE2+BE2=BD2,(7分)∴2x2+4x2=36,解得x=±(负的舍去),∴DE=2.(8分)19.(1)证明:∵AB为直径∴∠ACB=90°∴AC⊥BC又D为中点,∴OD⊥BC,OD∥AC,又O为AB中点,∴;(4分)(2)证明:连接CD,PC为切线,由∠PCD=∠CAP,∠P为公共角,∴△PCD∽△PAC,(6分)∴,又CD=BD,∴;(8分)(3)解:∵AC=6,AB=10,∴BC=8,BE=4,OE=3,∴DE=2,∴BD2=DE2+BE2=20,(9分)∴AD2=AB2﹣BD2=80,∴AD=4,(10分)CD=BD=2,由(2),∴,(11分)∴CP2=DP•AP=45×5,∴切线PC=15.(12分)20.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,∴S△DEF=×a×a=a2.故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S△DEF=a2.。
2019中考数学热点难点突破《切线的性质和判定》(解析版)

考纲要求:1.掌握判定直线与圆相切的方法,并能运用直线与圆相切的方法进行计算与证明..2.掌握直线与圆相切的性质,并能运用直线与圆相切的性质进行计算与证明..基础知识回顾:1.切线一般地,当直线与圆有唯一公共点时,叫直线与圆相切,其中的直线叫做圆的切线,唯一的公共点叫切点.(1)切线与圆只有一个公共点.2.切线(2)切线到圆心的距离等于圆的半径.的性质(3)切线垂直于经过切点的半径.(1)与圆只有一个公共点的直线是圆的切线(定义法).3.切线(2)到圆心的距离等于半径的直线是圆的切线.的判定(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.应用举例:招数一、利用切线进行证明和计算。
【例1】如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.(1)求证:EF=BF;(2)若DC=4,DE=2,求直径AB的长.【答案】(1)证明见解析;(2)10.【解析】(1)证明:,,,,,,;即直径的长是10.学科@网【例2】如图,在平面直角坐标系中,直线经过点、,⊙的半径为2(为坐标原点),点是直线上的一动点,过点作⊙的一条切线,为切点,则切线长的最小值为()A.B.C.D.【答案】D【解析】招数二、添加辅助线法:通常利用添加辅助线来辅助证明圆的切线。
【例3】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O 的半径.【答案】(1)证明见解析;(2).【解析】(1)证明:连接,,,,,在中,,,,则为圆的切线;【例4】如图,△ABC中,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC是⊙O的切线.解析:过点O作OE⊥AC于点E,连结OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BA C的平分线,∴OE=OD,即OE是⊙O的半径,∵AC经过⊙O的半径OE的外端点且垂直于OE,∴AC是⊙O的切线.招数三、切线的性质和判定的综合应用。
圆的切线的性质与证明

中考数学专题训练(附详解)圆的切线性质与证明二、方法的剖析与提炼例1.如图,ABAC分别是。
0的切线和割线,且/C=45 ,Z BDA=60 , CD= ,6,则切线AB的长是【解析】(根据切线AB和/ C=45得弦切角/ AB[=45° ,这样在AA BD中就有两个特殊角分别是45度和60度,然后过点A作AM L BD得两个特殊三角形即等腰直角三角形和含30度的直角三角形,这样特殊三角形的三边关系,在设AB=x时,其它边AD和AC就可以用x的代数式表示出来,最后带人切割线定理得到的等式AB=AD?A(就可得到方程,最后求方程解得AB的长度。
)【解答】解:过点A作AM L BD与点M••• AB为圆0的切线•••/ ABD MC=45vZ BDA=60 •••/ BAD=75,/ DAM=30,/ BAM=45设AB=,则碍在直角△ AM中, AD=牛由切割线定理得:AB=AD?AC知刊申+解得:x i=6, X2=0 (舍去)故AB=6故答案是:6【解法】过点A作AM L BD与点M,在直角△ AMD中,AD就可以利用AB表示出来,然后依据切割线定理,即可得到一个关于AB的方程, 即可求解。
【解释】在几何中求线段的长或角度的具体度数,往往会采用方程思想,体现数学中重要的数形结合思想。
故本题就采用了其中的常用方法方程思想,那么就需设未知数,抓住题意构造等式,而本题构造等式的突破口就是想到切割线定理,然后想办法利用题目中剩余的条件,把该等式中的相关量都用未知数的代数式表示好,并代入得方程就可解决本题。
例 2.(2020 贺州)如图,AB,BC,CD分别与O O 相切于E,F,G.且AB//CD.BO=6cm, CO=8cm.GD中考数学专题训练(附详解)(1)求证:B0丄CQ(2)求BE和CG的长.【解析】(1)由题目中的AB//CD得/ABC+Z BCD=180,再结合题目条件根据切线长定理得B0平分/ ABC, CO平分/ DCB然后根据角平分线的性质易得/ OBC+Z OCB=9C P,从而得到Z BOC=90,所以BOX CO.(2)根据切线长定理得BE=BF,GC=(再结合第(1)题的结论得RT A BCQ把切点和圆心O 相连,易证RT A BOF^ RT A BCO相似,根据相似三角形对应边成比例求得BF的长,即BE的长.CG的长可由BC-BF得至鷹【解答】(1)证明::AB / CD•••Z ABC+Z BCD=180o• Z BOC=90, • BO X CO.(2)解:连接OF,贝U OF X BC,oo• BF=3. 6cm, CG=CF=6 4cm.【解法】利用平行线和角平分线的性质完成第(1)题的证明,利用直角三角形的勾股定理和相似三角形对应边成比例的性质完成求解。
2022年中考数学大题圆证明切线的两种常用方法及专项练习题汇总

2022中考数学圆综合大题证明切线的两种常用方法类型1直线与圆有交点方法归纳:直线过圆上某一点,证明直线是圆的切线时,只需“连半径,证垂直,得切线”.“证垂直”时通常利用圆中的关系得到90°的角,如直径所对的圆周角等于90°等.【例1】如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M.求证:DM与⊙O相切.1.(朝阳中考)如图,AB是⊙O的弦,OA⊥OD,AB,OD交于点C,且CD=BD.(1)判断BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.2.(德州中考)如图,已知⊙O的半径为1,DE是⊙O的直径,过D作⊙O的切线,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明,若不是,说明理由.3.(毕节中考)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型2不确定直线与圆是否有公共点方法归纳:直线与圆没有已知的公共点时,通常“作垂直,证半径,得切线”.证明垂线段的长等于半径常用的方法是利用三角形全等或者利用角平分线上的点到角的两边的距离相等.【例2】如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.4.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC 相切于点M,与AB,AD分别相交于点E,F.求证:CD与⊙O相切.5.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.参考答案【例1】 证明:法一:连接OD.∵AB =AC ,∴∠B =∠C.∵OB =OD ,∴∠BDO =∠B.∴∠BDO =∠C.∴OD ∥AC.∵DM ⊥AC ,∴DM ⊥OD.∴DM 与⊙O 相切.法二:连接OD ,AD. ∵AB 是⊙O 的直径,∴AD ⊥BC.∵AB =AC ,∴∠BAD =∠CAD.∵DM ⊥AC ,∴∠CAD +∠ADM =90°.∵OA =OD ,∴∠BAD =∠ODA.∴∠ODA +∠ADM =90°.即OD ⊥DM ,∴DM 是⊙O 的切线.1.(1)连接OB ,∵OA =OB ,∴∠OAC =∠OBC.∵OA ⊥OD ,∴∠AOC =90°.∴∠OAC +∠OCA =90°.∵DC =DB ,∴∠DCB =∠DBC.∵∠DCB =∠ACO ,∴∠ACO =∠DBC.∴∠DBC +∠OBC =90°.∴∠OBD =90°.∵点B 是半径OB 的外端,∴BD 与⊙O 相切.(2)设BD =x ,则CD =x ,OD =x +1,OB =OA =3,由勾股定理得:32+x 2=(x +1)2.解得x =4.∴BD =4.2.(1)连接BD ,则∠DBE =90°.∵四边形BCOE 是平行四边形,∴BC ∥OE ,BC =OE =1.在Rt △ABD 中,C 为AD 的中点,∴BC =12AD =1.∴AD =2.(2)BC 是⊙O 的切线,理由如下:连接OB ,由(1)得BC ∥OD ,且BC =OD.∴四边形BCDO 是平行四边形.又∵AD 是⊙O 的切线,∴OD ⊥AD.∴四边形BCDO 是矩形.∴OB ⊥BC ,∴BC 是⊙O 的切线.3.(1)连接OA ,OD ,∵D 为BE 的下半圆弧的中点,∴∠FOD=90°.∵AC=FC,∴∠CAF=∠AFC.∵∠AFC=∠OFD,∴∠CAF=∠OFD.∵OA=OD,∴∠ODF=∠OAF.∵∠FOD=90°.∴∠OFD+∠ODF=90°.∴∠OAF+∠CAF=90°,即∠OAC=90°.∴AC与⊙O相切.(2)∵半径R=5,EF=3,∴OF=OE-EF=5-3=2.在Rt△ODF中,DF=52+22=29.【例2】法一:连接DE,作DF⊥AC,垂足为F.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=90°.∵AB=AC,∴∠B=∠C.∵BD=CD,∴△BDE≌△CDF.∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线.法二:连接DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠DAB=∠DAC.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上,∴AC与⊙D相切.4.证明:连接OM,过点O作ON⊥CD,垂足为N,∵⊙O与BC相切于M,∴OM⊥BC.∵正方形ABCD中,AC平分∠BCD,又∵ON⊥CD,OM⊥BC,∴OM=ON.∴N在⊙O上.∴CD与⊙O相切.5.(1)证明:过点D作DF⊥AC于F.∵∠ABC=90°,∴AB⊥BC.∵AD平分∠BAC,DF⊥AC,∴BD=DF.∴点F在⊙D上.∴AC是⊙D的切线.(2)在Rt△BDE和Rt△FDC中,∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FDC(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.2022年中考数学复习专题---圆中阴影面积计算班级:___________姓名:___________学号:___________1.如图,直线y kx b=+经过点M(1,√3)和点N(1−,3√3),A、B是此直线与坐标轴的交点.以AB为直径作⊙C,求此圆与y轴围成的阴影部分面积.2.如图,AAAA是⊙OO的直径,CC,DD是圆上两点,且有BD�=CCDD�,连结AADD,AACC,作DDDD⊥AACC的延长线于点DD.(1)求证:DDDD是⊙OO的切线;(2)若AADD=2√3,∠AADDDD=60∘,求阴影部分的面积.(结果保留ππ)3.如图,AAAA是圆OO的直径,AACC⊥AAAA,DD为圆OO上的一点,AACC=DDCC,延长CCDD交AAAA的延长线于点DD.(1)求证:CCDD为圆OO的切线.(2)若OOFF⊥AADD,OOFF=1,30∠=o,求圆中阴影部分的面积.(结果保留ππ)OAF4.如图,⊙OO是等边ΔAAAACC的外接圆,连接AAOO并延长至点PP,且AAAA=AAPP.(1)求证:PPAA是⊙OO的切线;(2)若AAAA=2√3,求图中阴影部分的面积.(结果保留ππ和根号)5.如图,OO为等边△AAAACC的外接圆,DD为直径CCDD延长线上的一点,连接AADD,AADD=AACC.(1)求证:AADD是⊙O的切线;(2)若CCDD=6,求阴影部分的面积.6.如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC= 4√3,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.7.已知AB是⊙O的直径,点C是圆O上一点,点P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:P A为⊙O的切线;(2)如果OP=AB=6,求图中阴影部分面积.8.如图,AAAA为⊙OO的直径,弦CCDD⊥AAAA,垂足为DD,CCDD=4√5,连接OOCC,OODD=2DDAA,FF为圆上一点,过点FF作圆的切线交AAAA的延长线于点GG,连接AAFF,AAFF=AAGG.(1)求⊙OO的半径;(2)求证:AAFF=FFGG;(3)求阴影部分的面积.9.如图,△ABC中,∠C=90º,∠ABC=2∠A,点O在AC上,OA=OB,以O为圆心,OC为半径作圆.(1)求证:AB是⊙O的切线;(2)若BC=3,求图中阴影部分的面积.10.如图,在△ABC中,∠CC=60∘,⊙OO是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙OO的切线;(2)若AB=2√3,求图中阴影部分的面积.(结果保留ππ和根号)11.如图,AB为圆O的直径,射线AD交圆O于点F,点C为劣弧BF的中点,过点C作CE⊥AD,垂足为E,连接AC(1)求证:CE是圆O的切线(2)若∠BAC=30°,AB=4,求阴影部分的面积12.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD于G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15º,将弧CE沿弦CE翻折,交CD于点F,求图中阴影部分的面积.13.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=4,点D是AB的中点,连接DO并延长交⊙O于点P.(1)求劣弧PC的长(结果保留π);(2)过点P作PF⊥AC于点F,求阴影部分的面积(结果保留π).14.如图,四边形ABCD内接于圆O,对角线AC是圆O的直径,DB平分∠ADC,AC长10cm.(1)求点O到AB的距离;(2)求阴影部分的面积.15.如图,在矩形ABCD中,AB=8cm,BC=4cm,以点A为圆心,AD为半径作圆与BA 的延长线交于点E,连接CE,求阴影部分的面积.16.如图,∠APB的平分线过点O,以O点为圆心的圆与PA相切于点C,DE为⊙O的直径.(1)求证:PB是⊙O的切线;(2)若∠CPO=50°,∠E=25°,求∠POD;(3)若⊙O的半径为2,CE=2√3,求阴影部分的面积.17.如图,点P在圆O外,PA与圆O相切于A点,OP与圆周相交于C点,点B与点A 关于直线PO对称,已知OA=4,∠POA=60°求:(1)弦AB的长;(2)阴影部分的面积(结果保留π).18.如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.(1)求证:EF是⊙O的切线;(2)若AD=1,求BC的长;(3)在(2)的条件下,求图中阴影部分的面积.。
初中数学切线的性质和判定

图29-3
线的性质和判定
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角 定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得 PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.
┃ 切线的性质和判定
切线的性质和判定
中考预测
如图 29-6,△ABC 内接于⊙O,∠B=60°,
CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,
且 AP=AC.
(1)求证:PA 是⊙O 的切线;
(2)若 PD= 3,求⊙O 的直径.
图29-6
切线的性质和判定
解
(1)证明:连接 OA, ∵∠B=60°,
∴∠AOC=2∠B=120°.
切线的性质和判定
[方法点析] 解三角形内切圆问题,主要是切线长定理的运 用.解决此类问题,常转化到直角三角形中,利用勾股定理或 直角三角形的性质及三角函数等解决.
┃ 切线的性质和判定
回归教材
切线问题中必需的半径
教材母题
如图 29-5,设 AB 是⊙O 的直径,如 果圆上点 D 恰使∠ADC=∠B,那么直线 CD 与⊙O 相切吗?若相切,请给出证明.
∴S△AOB=12×AB×OD=12×10 3×5=25 3(cm2).
切线的性质和判定
[方法点析] (1)利用过圆外一点作圆的两条切线,这两条切 线的长相等,是解题的基本方法.(2)利用方程思想求切线长常 与勾股定理,切线长定理,圆的半径相等紧密相连.
切线的性质和判定
探究四 三角形的内切圆
命题角度: 1. 三角形的内切圆的定义; 2. 求三角形的内切圆的半径.
初中数学中考专题复习之圆专题01切线长定理

专题01切线长定理切线长定理(Theorem of length of tangent),是初等平面几何的一个定理。
它指出,从圆外一点引圆的两条切线,它们的切线长相等。
即如图,AB、AC切圆O于B、C,切线长AB=AC。
1.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为1,△PCD的周长等于2,则线段AB的长是()A.B.3 C.2D.3解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB,∵△PCD的周长等于2,∴PA+PB=2,∴PA=PB=,连接PA和AO,∵⊙O的半径为1,∴tan∠APO===,∴∠APO=30°,∴∠APB=60°,∴△APB是等边三角形,∴AB=PA=PB=.选A.2.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5 B.7 C.8 D.10解析:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,选C.3.如图,PA、PB、CD与⊙O相切于点为A、B、E,若PA=7,则△PCD的周长为()A.7 B.14 C.10.5 D.10解析:∵PA、PB、CD与⊙O相切于点为A、B、E,∴PB=PA=7,CA=CE,DE=DB,∴△PCD的周长=PC+CD+PB=PC+CE+DE+PD=PC+CA+DB+PD=PA+PB=14,选B.4.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O 的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.解析:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.选D.5.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D 两点,则△PCD的周长是()A.8 B.18 C.16 D.14解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,∴PB=PA=8,CA=CE,DB=DE,∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=16.选C.6.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,(90°+∠P)B.7,90°+C.10,90°﹣∠P D.10,90°+∠P解析:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∴∠AOB=180°﹣∠P,∴∠COD=90°﹣∠P.选C.7.P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是()A.4 B.8 C.12 D.不能确定解析:根据题意画出图形,如图所示,由直线DA和直线DC为圆O的切线,得到AD=DC,同理,由直线EC和直线EB为圆O的切线,得到EC=EB,又直线PA和直线PB为圆O的切线,所以PA=PB=4,则△PDE的周长C=PD+DE+PE=PD+DC+EC+PE=PD+DA+EB+PE=PA+PB=4+4=8.选B.8.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20 B.30 C.40 D.50解析:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.选C.9.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC =35°,∠P的度数为()A.35°B.45°C.60°D.70°解析:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.选D.10.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.解析:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.11.如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB•DC.其中正确的是()A.①②③④B.只有①②C.只有①②④D.只有③④解析:∵BA,BE是圆的切线.∴AB=BE,BO是△ABE顶角的平分线.∴OB⊥AE∵AD是圆的直径,∴DE⊥AE,∴DE∥OF,故①正确;∵CD=CE,AB=BE,∴AB+CD=BC,故②正确;∵OD=OF,∴∠ODF=∠OFD=∠BFP若PB=PF,则有∠PBF=∠BFP=∠ODF而△ADP与△ABO不一定相似,故PB=PF不一定成了,故③不正确;连接OC.可以证明△OAB∽△CDO∴,即:OA•OD=AB•CD∴AD2=4AB•DC,故④正确.故正确的是:①②④.选C.12.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.解析:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.13.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD 的周长为.解析:∵四边形ABCD是⊙O的外切四边形,∴AD+BC=AB+CD=22,∴四边形ABCD的周长=AD+BC+AB+CD=44,故答案为:44.14.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA=cm.解析:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.15.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC 以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.解析:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.16.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC 分别相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.解析:连接OE、OF,设AD=x,由切线长定理得AF=x,∵⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,∴OE⊥BC,OF⊥AC,∴四边形OECF为正方形,∵r=2,BC=5,∴CE=CF=2,BD=BE=3,∴由勾股定理得,(x+2)2+52=(x+3)2,解得,x=10,∴△ABC的周长为12+5+13=30,故答案为30.17.如图,AB、BC、CD分别与⊙O相切于点E、F、G,若∠BOC=90°,(1)求证:AB∥CD;(2)若OB=3,OC=4,求由BE、BC、CG、及弧EFG围成图形的面积(即图中阴影部分).解析:(1)∵∠BOC=90°,∴∠OBC+∠OCB=90°,又BE与BF为圆O的切线,∴BO为∠EBF的平分线,∴∠OBC=∠OBF,同理可得∠OCB=∠OCG,∴∠OBF+∠OCG=90°,∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°,∴AB∥CD;(2)连接OE,OF,OG,如图所示:由BE和BF为圆的切线,可得OE⊥AB,OF⊥BC,即∠OEB=∠OFB=90°,∴BE=BF,又OB=OB,∴Rt△OEB≌Rt△OFB(HL),∴∠BOE=∠BOF,S△OEB=S△OFB,∴S扇形OEM=S扇形OFM,∴S△OEB﹣S扇形OEM=S△OFB﹣S扇形OFM,即S阴影BEM=S阴影BFM,同理S阴影NFC=S阴影NCG,由∠BOC=90°,OB=3,OC=4,根据勾股定理得:BC=5,∵BC为圆的切线,∴OF⊥BC,∴OB•OC=BC•OF,即OF=,∴S△BOC=OB•OC=6,S扇形OMN==,则阴影部分面积S=2(S阴影BFM+S阴影NFC)=2(S△BOC﹣S扇形OMN)=12﹣18.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.解析:(1)∵PA,PB是⊙O的切线,∴AP=BP,∵∠P=60°,∴∠PAB=60°,∵AC是⊙O的直径,∴∠PAC=90°,∴∠BAC=90°﹣60°=30°.(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,∴OP=4,由勾股定理得:,∵AP=BP,∠APB=60°,∴△APB是等边三角形,∴.19.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).解析:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°﹣∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵c o s∠BAC=,∴AC=AB•c o s∠BAC=2c o s30°=.∵△PAC为等边三角形,∴PA=AC,∴PA=.20.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.解析:(1)方法1:过D作DF⊥BC于F在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6∴DC2=62+82=100,即DC=10设AD=x,则DE=AD=x,EC=BC=x+6∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC,即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8(2)存在符合条件的P点设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况①△ADP∽△BCP时,∴y=②△ADP∽△BPC时,∴y=4故存在符合条件的点P,此时AP=或4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题-------圆的切线证明
我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有:
一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.
例1 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M,求证:DM与⊙O相切.
证明一:连结OD.
∵AB=AC,
∴∠B=∠C.
∵OB=OD,
∴∠1=∠B.
∴∠1=∠C.
D
∴OD∥AC.
∵DM⊥AC,
∴DM⊥OD.
∴DM与⊙O相切
证明二:连结OD,AD.
∵AB是⊙O的直径,
∴AD⊥BC.
又∵AB=AC,
∴∠1=∠2. ∵DM ⊥AC , ∴∠2+∠4=900 ∵OA=OD , ∴∠1=∠3. ∴∠3+∠4=900.
即OD ⊥DM. ∴DM 是⊙O 的切线
例2 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.
求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300. ∴∠BOC=∠A+∠1=600. 又∵OC=OB , ∴△OBC 是等边三角形. ∴OB=BC. ∵OB=BD , ∴OB=BC=BD. ∴OC ⊥CD.
∴DC 是⊙O 的切线.
例3 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP .
求证:PC 是⊙O 的切线.
C
D
证明:连结OC
∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP ,
OC
OP
OD OC
. 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线.
二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径”
例4 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切.
证明一:连结DE ,作DF ⊥AC ,F 是垂足.
∵AB是⊙D的切线,
∴DE⊥AB.
∵D F⊥AC,
∴∠DEB=∠DFC=900.
∵AB=AC,
∴∠B=∠C.
又∵BD=CD,
∴△BDE≌△CDF(AAS)
∴DF=DE.
∴F在⊙D上.
∴AC是⊙D的切线
证明二:连结DE,AD,作DF⊥AC,F是垂足.
∵AB与⊙D相切,
∴DE⊥AB.
∵AB=AC,BD=CD,
∴∠1=∠2.
∵DE⊥AB,DF⊥AC,
∴DE=DF.
∴F在⊙D上.
∴AC与⊙D相切.
练习:(公共点明确,连半径,证垂直;公共点不明,做垂直,证半径)
1.(本题8分)如图,等腰三角形ABC 中,AC =BC =10,AB =12。
以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥AC ,垂足为F ,交CB 的延长线于点E 。
(1)求证:直线EF 是⊙O 的切线; (2)求CF:CE 的值。
2.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .⑴求证:DE 是⊙O 的切线;⑵若35AC AB ,求
AF
DF
的值。
(第1题图) B
3.如图,Rt ABC
△中,90
ABC
∠=°,以AB为直径作O
⊙交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是O
⊙的切线;
(2)连接OC交DE于点F,若OF CF
=,求tan ACO
∠的值.
4.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.
(1) 求证:直线PB与⊙O相切;
(2) PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.
C E B
A
O F
D
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。