证明圆的切线的两种常用方法教案
圆的切线判定和性质(教案)

圆的切线判定和性质(教案)第一章:圆的切线判定1.1 引入:通过实际问题引入圆的切线判定定理。
1.2 讲解:讲解圆的切线判定定理,即圆外一点与圆只有一个交点的直线是圆的切线。
1.3 例题:讲解几个典型的圆的切线判定例题,让学生理解并掌握切线判定定理。
1.4 练习:给出一些练习题,让学生运用切线判定定理进行解答。
第二章:圆的切线性质2.1 引入:通过实际问题引入圆的切线性质。
2.2 讲解:讲解圆的切线性质,即切线与半径垂直,切线长度等于半径长度。
2.3 例题:讲解几个典型的圆的切线性质例题,让学生理解并掌握切线性质。
2.4 练习:给出一些练习题,让学生运用切线性质进行解答。
第三章:圆的切线方程3.1 引入:通过实际问题引入圆的切线方程。
3.2 讲解:讲解圆的切线方程的求法,即利用切点坐标和半径长度求解切线方程。
3.3 例题:讲解几个典型的圆的切线方程例题,让学生理解并掌握切线方程的求法。
3.4 练习:给出一些练习题,让学生运用切线方程进行解答。
第四章:圆的切线与圆的位置关系4.1 引入:通过实际问题引入圆的切线与圆的位置关系。
4.2 讲解:讲解圆的切线与圆的位置关系的判定方法,即切线与圆相切、相离、相交的判定。
4.3 例题:讲解几个典型的圆的切线与圆的位置关系例题,让学生理解并掌握切线与圆的位置关系的判定。
4.4 练习:给出一些练习题,让学生运用切线与圆的位置关系的判定进行解答。
第五章:圆的切线综合应用5.1 引入:通过实际问题引入圆的切线综合应用。
5.2 讲解:讲解圆的切线在实际问题中的应用,如求解几何问题、设计图案等。
5.3 例题:讲解几个典型的圆的切线综合应用例题,让学生理解并掌握切线在实际问题中的应用。
5.4 练习:给出一些练习题,让学生运用切线综合应用进行解答。
第六章:圆的切线与圆的切点6.1 引入:通过实际问题引入圆的切线与圆的切点。
6.2 讲解:讲解圆的切线与圆的切点的关系,即切线与圆的切点是切线与圆的唯一交点。
圆的切线判定和性质(教案)

圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引入圆的切线概念,讲解切线的定义和特点展示圆的切线示意图,让学生理解切线与圆的关系1.2 圆的切线判定条件讲解圆的切线的判定条件通过示例和练习,让学生掌握如何判断一条直线是否为圆的切线第二章:圆的切线性质2.1 圆的切线性质介绍圆的切线的性质,如切线与半径垂直、切线与圆心连线垂直等展示切线性质的示意图,让学生理解并记忆这些性质2.2 圆的切线定理讲解圆的切线定理,如切线定理、切线长定理等通过示例和练习,让学生掌握切线定理的应用和证明方法第三章:圆的切线方程3.1 圆的切线方程的定义和特点讲解圆的切线方程的定义和特点展示切线方程的示意图,让学生理解切线方程的形式和含义3.2 圆的切线方程的求法讲解如何求解圆的切线方程通过示例和练习,让学生掌握求解切线方程的方法和技巧第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切讲解圆的切线与圆相切的情况和特点展示切线与圆相切的示意图,让学生理解切线与圆的切点、切线与半径的关系4.2 圆的切线与圆相离讲解圆的切线与圆相离的情况和特点通过示例和练习,让学生掌握如何判断切线与圆的位置关系第五章:圆的切线应用5.1 圆的切线与圆的切点应用讲解如何利用切点性质解决问题,如求解切线长度、切线与半径的关系等通过示例和练习,让学生掌握切点性质的应用方法5.2 圆的切线与圆的方程应用讲解如何利用切线方程解决问题,如求解切线方程、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线方程的应用方法第六章:圆的切线与圆的交点应用6.1 圆的切线与圆的交点性质讲解圆的切线与圆的交点的性质,如切线与圆的交点与圆心连线垂直、交点到圆心的距离等于半径等展示切线与圆的交点性质的示意图,让学生理解并记忆这些性质6.2 圆的切线与圆的交点应用讲解如何利用切线与圆的交点解决问题,如求解交点坐标、判断交点与圆的关系等通过示例和练习,让学生掌握切线与圆的交点的应用方法第七章:圆的切线与圆的切线应用7.1 圆的切线与圆的切线相交讲解圆的切线与圆的切线相交的情况和特点展示切线与切线相交的示意图,让学生理解切线与切线的交点、切线与半径的关系7.2 圆的切线与圆的切线平行讲解圆的切线与圆的切线平行的情况和特点通过示例和练习,让学生掌握如何判断切线与切线的位置关系第八章:圆的切线与圆的切线综合应用8.1 圆的切线与圆的切线相切讲解圆的切线与圆的切线相切的情况和特点展示切线与切线相切的示意图,让学生理解切线与切线的切点、切线与半径的关系8.2 圆的切线与圆的切线综合应用讲解如何利用切线与切线综合解决问题,如求解切线与切线的交点、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线与切线综合的应用方法第九章:圆的切线与圆的应用实例9.1 圆的切线与圆的切割应用实例讲解圆的切线与圆的切割应用实例,如切割线段、切割角度等展示切割应用实例的示意图,让学生理解切割原理和应用9.2 圆的切线与圆的轨迹应用实例讲解圆的切线与圆的轨迹应用实例,如轨迹方程、轨迹图形等通过示例和练习,让学生掌握切线与圆的轨迹的应用方法第十章:圆的切线综合练习10.1 圆的切线综合练习题提供一系列圆的切线综合练习题,让学生巩固所学知识通过解答练习题,让学生提高解题能力和综合运用能力10.2 圆的切线综合练习解答提供练习题的解答和解析,帮助学生理解和掌握解题方法通过练习解答,让学生巩固知识,提高学习效果重点和难点解析一、圆的切线定义和判定(第一章)重点关注内容:圆的切线的定义和特点,以及如何判断一条直线是否为圆的切线。
初中数学初三数学下册《圆的切线》教案、教学设计

-结合课堂所学,运用切线知识解决问题。
2.设计一道综合性的应用题,要求学生运用圆的切线知识解决实际问题。例如:
-在一个圆形花坛的边缘,有一条小路。现要修建一条从花坛边缘到花坛中心亭子的最短路径,求这条路径的方程。
-学生需要分析问题,确定所求的路径即为圆的切线,然后运用所学知识求解切线方程。
-关注学生在课堂上的表现,如提问、讨论等,及时给予反馈和鼓励。
-定期进行测试,了解学生对圆的切线知识的掌握情况,并对学生的学习成果进行评价。
四、教学内容与过程
(一)导入新课
1.教师通过展示生活中含有圆的物体的图片,如车轮、硬币等,引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。
2.提问:“圆的性质我们已经学习了不少,那么大家思考一下,圆与其他图形之间可能会有哪些特殊的关系呢?”引发学生思考。
初中数学初三数学下册《圆的切线》教案、教学设计
一、教学目标
(一)知识与技能
1.理解圆的切线的定义,掌握圆的切线的基本性质,能够识别并证明圆的切线。
2.学会运用圆的切线解决实际问题,如求圆的切线长度、切线与半径的夹角等。
3.能够运用圆的切线性质推导出相关定理,如切线垂直于过切点的半径、切线与圆的交点为切点等。
三、教学重难点和教学设想
(一)教学重点
1.圆的切线的定义及性质的理解和掌握。
2.圆的切线方程的求解方法和应用。
3.培养学生运用圆的切线知识解决实际问题的能力。
(二)教学难点
1.圆的切线性质的推导和应用,尤其是切线与半径的垂直关系。
2.圆的切线方程的求解过程中,涉及到的代数运算和逻辑推理。
3.学生在解决实际问题时,对圆的切线知识的综合运用。
证明圆的切线的两种方法

证明圆的切线的两种方法一、通过圆的性质证明圆的切线圆的切线是与圆相切且只与圆相交于切点的直线。
我们可以通过圆的性质来证明圆的切线。
1. 方法一:利用圆的切线垂直于半径的性质证明对于任意一点P在圆上,连接圆心O与点P,并延长线段OP。
根据圆的性质可知,线段OP是圆的半径。
假设有一条直线l与圆相交于点A,且线段OA是圆的半径。
我们要证明直线l是圆的切线。
我们可以得到三角形OAP。
根据直角三角形的性质可知,线段OP与线段AP垂直。
因此,直线l与线段OA垂直。
我们要证明直线l只与圆相交于点A。
假设直线l与圆相交于另一点B,连接线段OB。
根据圆的性质可知,线段OB是圆的半径。
由于线段OA与线段OB都是圆的半径,所以线段OA等于线段OB。
然而,根据直线的性质可知,直线l是直线OB的切线。
因此,线段OA与线段OB的长度相等,与直线l只与圆相交于点A的性质相矛盾。
所以,直线l只与圆相交于点A,即直线l是圆的切线。
因此,我们通过圆的切线垂直于半径的性质证明了直线l是圆的切线。
2. 方法二:利用圆的切线与半径的斜率关系证明对于任意一点P在圆上,连接圆心O与点P,并延长线段OP。
根据圆的性质可知,线段OP是圆的半径。
假设有一条直线l与圆相交于点A,且线段OA是圆的半径。
我们要证明直线l是圆的切线。
我们可以得到直线l的方程。
设直线l的斜率为k,直线l的方程为y = kx + b。
我们要证明直线l的斜率与线段OA的斜率相等。
由于线段OA是圆的半径,所以线段OA的斜率等于0。
根据直线的性质可知,直线l 与线段OA垂直,即直线l的斜率与线段OA的斜率的乘积为-1。
因此,直线l的斜率等于0的倒数,即k = 0。
因此,直线l的方程为y = b。
接下来,我们要证明直线l只与圆相交于点A。
假设直线l与圆相交于另一点B,连接线段OB。
根据圆的性质可知,线段OB是圆的半径。
由于线段OA与线段OB都是圆的半径,所以线段OA等于线段OB。
然而,根据直线的性质可知,直线l与线段OB平行,即线段OA与线段OB的长度相等。
证明圆的切线的两种常用方法教案

证明圆的切线的两种常用方法一、教学目的要求:1.知识目的:(1)掌握切线的判定定理.(2)应用切线的判定定理证明直线是圆的切线,掌握圆的切线证明问题中辅助线的添加方法.2.能力目的:(1)培养学生动手操作能力.(2)培养学生观察、探索、分析、总结、推理论证等能力.3.情感目的:通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性。
二、教学重点、难点1.重点:切线的判定定理.2.难点:圆的切线证明问题中,辅助线的添加方法.三、教学过程:(一)复习引入回答下列问题:(口述)1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的?2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直线是不是一个圆的切线?①与圆有唯一公共点的直线是圆的切线.②与圆心的距离等于半径的直线是圆的切线.③经过半径外端并且垂直于这条半径的直线是圆的切线.(要求学生举手回答,教师用教具演示)(二)新课讲解证明直线与圆相切是一类常见题目,解决这类问题常用的方法有两种。
方法一、连接半径,证明垂直若图形中已给出直线与圆的公共点,但未给出过点的半径,则可先连结过此点的半径,再证其与直线垂直。
例1 如图(1)所示,在△ABC中,AB=AC,以AB为直径作圆交于BC于D,作DE⊥AC于E。
求证:DE为⊙O的切线。
证明:连结OD∵OB=OD∴∠B=∠ODB∵AB=AC∴∠B=∠C∴∠ODB=∠C∵DE⊥AC∴∠C+∠CDE=90°∴∠ODB+∠CDE=90°∴∠ODE=90°,即DE⊥OD∴DE是⊙O的切线。
例2 如图(2)所示,AB是⊙O的直径,过A点作⊙O的切线,在切线上任取一点C,连结OC交⊙O于D,连结BD并延长交AC 于E,求证:CD是△ADE外接圆的切线。
证明:取AE的中点F,连结FD。
∵AB为直径,∴AD⊥BD∵FD=FE(=FA)∴∠FED=∠FDE∵∠CDE=∠BDO=∠B∠FEB+∠B=90°∴∠FDE+∠CDE=90°即FD⊥CD∴CD是△ADE的外接圆的切线。
圆的切线的判定(教案)

圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线概念,讲解圆的切线是如何与圆相切的。
通过图形和实例,让学生理解圆的切线的特点。
1.2 圆的切线性质讲解圆的切线的性质,包括切线与半径垂直、切线与圆心连线垂直等。
提供相关的定理和公式,让学生能够熟练掌握。
第二章:圆的切线判定定理2.1 第一判定定理讲解第一判定定理,即如果一条直线与圆相切,这条直线的斜率等于过切点的半径的斜率。
提供定理的证明和相关的例题,让学生能够理解和应用。
2.2 第二判定定理讲解第二判定定理,即如果一条直线与圆相切,这条直线与圆的切点处的切线垂直于直线。
提供定理的证明和相关的例题,让学生能够理解和应用。
第三章:圆的切线方程3.1 切线方程的定义讲解切线方程的定义,即切线的一般式和点斜式。
引导学生理解切线方程与圆的切线的关系。
3.2 切线方程的求法讲解如何求解圆的切线方程,包括给定圆的方程和切点的坐标等。
提供相关的例题和练习题,让学生能够熟练掌握。
第四章:圆的切线与圆的位置关系4.1 切线与圆相离讲解切线与圆相离的情况,即切线与圆没有交点。
提供相关的例题和练习题,让学生能够理解和应用。
4.2 切线与圆相切讲解切线与圆相切的情况,即切线与圆只有一个交点。
提供相关的例题和练习题,让学生能够理解和应用。
第五章:圆的切线综合应用5.1 切线与圆的交点问题讲解如何求解切线与圆的交点,包括切线与圆的方程联立等。
提供相关的例题和练习题,让学生能够熟练掌握。
5.2 切线与圆的切点问题讲解如何求解切线与圆的切点,包括切线的斜率和切线方程等。
提供相关的例题和练习题,让学生能够熟练掌握。
第六章:圆的切线与圆的性质6.1 切线与圆的切点性质讲解切线与圆的切点的性质,如切点处的切线与半径垂直。
提供相关的定理和公式,让学生能够熟练掌握。
6.2 切线与圆的切线性质讲解切线与圆的切线的性质,如切线与圆心连线垂直。
提供相关的定理和公式,让学生能够熟练掌握。
圆的切线的判定(教案)

圆的切线的判定(教案)章节一:圆的切线的定义与性质1.1 教学目标让学生了解圆的切线的定义。
让学生掌握圆的切线的性质。
1.2 教学内容圆的切线的定义。
圆的切线的性质。
1.3 教学步骤1.3.1 引入利用实物或图片展示圆和切线,引导学生思考圆的切线的定义。
1.3.2 讲解讲解圆的切线的定义,强调圆的切线与圆的接触点是切点。
讲解圆的切线的性质,如切线与半径垂直,切线与圆的切点处的切线斜率为0等。
1.3.3 练习提供一些图形,让学生判断哪些是圆的切线,并解释原因。
1.4 教学评价通过学生的练习和提问,评估学生对圆的切线的定义和性质的理解程度。
章节二:圆的切线的判定定理2.1 教学目标让学生了解圆的切线的判定定理。
让学生能够运用判定定理判断一条直线是否为圆的切线。
2.2 教学内容圆的切线的判定定理。
判定定理的应用。
2.3 教学步骤2.3.1 引入回顾上一章节的圆的切线的性质,引导学生思考如何判断一条直线是否为圆的切线。
2.3.2 讲解讲解圆的切线的判定定理,包括定理的表述和证明过程。
讲解判定定理的应用,如何通过已知条件判断一条直线是否为圆的切线。
2.3.3 练习提供一些题目,让学生运用判定定理判断直线是否为圆的切线,并提供解题思路和步骤。
2.4 教学评价通过学生的练习和提问,评估学生对圆的切线的判定定理的理解程度和应用能力。
章节三:圆的切线方程的求法3.1 教学目标让学生了解圆的切线方程的求法。
让学生能够运用求法求出圆的切线方程。
3.2 教学内容圆的切线方程的求法。
切线方程的求法应用。
3.3 教学步骤3.3.1 引入回顾上一章节的内容,引导学生思考如何求出圆的切线方程。
3.3.2 讲解讲解圆的切线方程的求法,包括切线方程的一般形式和求法步骤。
讲解切线方程的求法应用,如何根据已知条件求出圆的切线方程。
3.3.3 练习提供一些题目,让学生运用求法求出圆的切线方程,并提供解题思路和步骤。
3.4 教学评价通过学生的练习和提问,评估学生对圆的切线方程的求法的理解程度和应用能力。
数学人教版九年级上册圆的切线证明专题复习教学设计

圆的切线证明专题复习教学设计一、教学目标:1、熟练掌握圆的切线的判定定理及性质定理。
2、灵活掌握圆切线的两个条件。
3、灵活运用切线的判定定理证明圆的切线。
二、知识梳理:1、圆的切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、具备是圆的切线的两个条件:a 、经过半径的外端;b 、垂直于这条半径。
3、圆的切线的性质定理:圆的切线垂直于过切点的半径 。
4、证明圆的切线的方法: (1)连接圆心与切点;(2)证明这条直线与过圆心的半径所成的角是直角。
三、专题例题:例题1,AB 是⊙O 的直径,点C 、D 在圆上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,分别交OA 延长线与OC 延长线与点E 、F,连接BF , 求证:BF 是⊙O 的切线。
例题2,如图,⊙O 的直径为AC ,过点A 作直线MN ,使∠BAM=21∠AOB, 求证:MN 是⊙O 的切线。
例题3、如图,在ΔABC 中,以BC 为直径的⊙O 交AB 于D , 且D 是AB 的中点,过D 作DE ⊥AC ,垂足为E , 求证:DE 是⊙O 的切线。
四、课堂练习:1、如图1,若以 ABCD 的一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C= 度。
M F C D E B C BA O N D OCB A E 例3 例2 例1 DB A O • CO A (1)•2、如图2,直线AB经过⊙O上的C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线。
3、如图,在直角ΔABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC 于点E,求证:AC是⊙O的切线4、如图4,AB是⊙O的直径,过点O作弦BC的垂线交切线BD于点D,OD与⊙O交于点E,交BC于点F,连接AE,CE。
(1)、求证:∠D=∠AEC;(2)、若OB=2.5,BC=4,求DE的长。
五、课堂小结:课外练习:中考先锋相关习题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明圆的切线的两种常用方法
一、教学目的要求:
1.知识目的:
(1)掌握切线的判定定理.
(2)应用切线的判定定理证明直线是圆的切线,掌握圆的切线证明问题中辅助线的添加方法.
2.能力目的:
(1)培养学生动手操作能力.
(2)培养学生观察、探索、分析、总结、推理论证等能力.
3.情感目的:
通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性。
二、教学重点、难点
1.重点:切线的判定定理.
2.难点:圆的切线证明问题中,辅助线的添加方法.
三、教学过程:
(一)复习引入
回答下列问题:(口述)
1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的?
2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直
线是不是一个圆的切线?
①与圆有唯一公共点的直线是圆的切线.
②与圆心的距离等于半径的直线是圆的切线.
③经过半径外端并且垂直于这条半径的直线是圆的切线.
(要求学生举手回答,教师用教具演示)
(二)新课讲解
证明直线与圆相切是一类常见题目,解决这类问题常用的方法有两种。
方法一、连接半径,证明垂直
若图形中已给出直线与圆的公共点,但未给出过点的半径,则可先连结过此点的半径,再证其与直线垂直。
例1 如图(1)所示,在△ABC中,AB=AC,以AB为直径作圆交于BC于D,作DE⊥AC于E。
求证:DE为⊙O的切线。
证明:连结OD
∵OB=OD
∴∠B=∠ODB
∵AB=AC
∴∠B=∠C
∴∠ODB=∠C
∵DE⊥AC
∴∠C+∠CDE=90°
∴∠ODB+∠CDE=90°
∴∠ODE=90°,即DE⊥OD
∴DE是⊙O的切线。
例2 如图(2)所示,AB是⊙O的直径,过A点作⊙O的切线,在切线上任取一点C,连结OC交⊙O于D,连结BD并延长交AC 于E,求证:CD是△ADE外接圆的切线。
证明:取AE的中点F,连结FD。
∵AB为直径,
∴AD⊥BD
∵FD=FE(=FA)
∴∠FED=∠FDE
∵∠CDE=∠BDO=∠B
∠FEB+∠B=90°
∴∠FDE+∠CDE=90°
即FD⊥CD
∴CD是△ADE的外接圆的切线。
方法二、作垂线,证明半径
若图形中未给出直线与圆的公共点,则需先过圆心作该直线的垂线,再证垂足到圆心的距离等于半径。
例3 如图(3)所示,已知AB是⊙O的直径,AC⊥L于C,BD ⊥L于D,且AC+BD=AB。
求证:直线L与⊙O相切。
证明:过O作OE⊥L于E。
∵AC⊥L,BD⊥L,
∴AC∥OE∥BD。
又AO=OB,∴CE=CD
从而OE为梯形ACDB的中位线。
∴OE=(AC+BD)=AB
即垂足E到圆心O的距离等于半径。
故直线L与⊙O相切。
(三)课堂练习:
(2010年天水市适应训练)以RtΔABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE、AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求
sin∠CAE的值.
四、课堂小结:
五、布置作业。