六年级下册数学总复习资料-知识点汇总 通用版
完整版)六年级数学下册总复习知识点整理版

完整版)六年级数学下册总复习知识点整理版六年级数学下册总复知识点归纳一、常用的数量关系式1.每份数 ×份数 = 总数,总数 ÷每份数 = 份数,总数 ÷份数 = 每份数。
2.速度 ×时间 = 路程,路程 ÷速度 = 时间,路程 ÷时间 = 速度。
3.单价 ×数量 = 总价,总价 ÷单价 = 数量,总价 ÷数量 = 单价。
4.工作效率 ×工作时间 = 工作总量,工作总量 ÷工作效率= 工作时间,工作总量 ÷工作时间 = 工作效率。
5.加数 + 加数 = 和,和 - 一个加数 = 另一个加数。
6.被减数 - 减数 = 差,被减数 - 差 = 减数,差 + 减数 = 被减数。
7.因数 ×因数 = 积,积 ÷一个因数 = 另一个因数。
8.被除数 ÷除数 = 商,被除数 ÷商 = 除数,商 ×除数 =被除数。
二、小学数学图形计算公式1.正方形(C:周长,S:面积,a:边长):周长 = 边长× 4,C = 4a;面积 = 边长 ×边长,S = a × a。
2.正方体(V:体积,a:棱长):表面积 = 棱长 ×棱长 ×6,S表 = a × a × 6;体积 = 棱长 ×棱长 ×棱长,V = a × a × a。
3.长方形(C:周长,S:面积,a:长,b:宽):周长 = (长 + 宽) × 2,C = 2(a + b);面积 = 长 ×宽,S = ab。
4.长方体(V:体积,S:面积,a:长,b:宽,h:高):表面积 = (长 ×宽 + 长 ×高 + 宽 ×高) × 2,S = 2(ab + ah + bh);体积 = 长 ×宽 ×高,V = abh。
六年级下册数学全部知识点总结

六年级下册数学全部知识点总结
1.分数运算:
-分数加减法:同分母、异分母分数的加减法则及其混合运算。
-分数乘法:分数与整数、分数与分数的乘法法则,理解倒数概念,掌握分数乘法的简便算法。
-分数除法:分数除以整数、分数除以分数的运算规则,以及分数除法转化为乘法运算的方法。
2.比和比例:
-比的意义和性质,比的基本性质,求比值和化简比。
-比例的意义,比例的基本性质,解比例方程,正比例和反比例的概念及应用。
3.百分数:
-百分数的意义,百分数与小数、分数之间的互化。
-百分数的应用,如折扣、税率、利率等问题的解决。
4.圆:
-圆的基本概念,直径、半径、周长、面积的计算公式。
-圆心角、弧、扇形、圆锥和圆柱的相关计算。
-圆周率π的认识和应用。
5.统计与概率:
-复式统计表和复式条形统计图的理解和绘制。
-可能性的大小比较,简单事件发生的可能性计算。
6.平面图形与立体图形:
-平行四边形、梯形的性质和面积计算。
-三角形、平行四边形、梯形的高线定义和画法。
-长方体、正方体、圆柱、圆锥的体积和表面积计算。
7.代数初步:
-用字母表示数,列含未知数的等式(方程)解决问题。
-解简易方程,包括一步方程和两步方程。
8.解决问题策略:
-应用所学知识解决生活中实际问题,如行程问题、工程问题、浓度问题等。
六年级下册数学总复习资料-知识点汇总(通用版)

小学数学总复习第一部分数与代数1、整数和小数的意义正整数自然数整数0负整数有限小数小数循环小数无限小数不循环小数2、整数、小数和正、负数的读、写法(1)整数的读、写法(2)小数的读、写法(3)正、负数的读、写法3、小数的相关性质(1)小数的相关性质(2)小数点位置移动引起小数大小变化的规律4、数位顺序表5、数的改写及求近似数(1)把一个数改写成用“万”或“亿”作单位的数。
(2)求近似数6、分数(1)分数的意义(2)分数单位(3)分数的分类:真分数、假分数(4)分数的基本性质(5)分数与除法的关系(6)约分(7)最简分数:分母、分子是互质数的分数(8)通分(9)分数的基本性质和小数的基本性质的关系(10)倒数:乘积为1的两个数互为倒数。
(11)分数的读法和写法(12)百分数7、数的大小比较(1)整数的大小比较(2)小数的大小比较(3)正负数的大小比较(4)分数的大小比较8、各类数之间的联系(1)整数和分数之间的联系(2)小数和分数之间的关系(3)分数和百分数之间的关系(4)分数、小数和百分数之间的关系9、因数、倍数(1)因数、倍数的意义和特征(2)2、3、5的倍数的特征10、奇数、偶数11、质数、合数(1)质数:只有1和它本身两个因数的数。
(2)合数:除了1和它本身还有别的因数的数。
(3)质数、合数的判断(4)分解质因数:把一个合数写成几个质数相乘的形式。
(5)分解质因数的方法:短除法12、公因数、公倍数(1)公因数和最大公因数的意义、互质数(公因数只有1的两个数叫做互质数)(2)两个数最大公因数的求法:枚举法、缩小倍数法、短除法、分解质因数法(3)公倍数和最小公倍数的意义(4)两个数最小公倍数的求法:枚举法、扩大倍数法、短除法、分解质因数法(5)求两个数的最大公因数和最小公倍数的特殊方法A、两数为倍数关系,较小数是这两个数的最大公因数;较大数是这两个数的最小公倍数。
B、两数是互质数,它们的最大公因数是1,最小公倍数为它们的乘积。
通用版数学六年级下册总复习专题:四则混合运算 含答案

四则混合运算一.知识游乐园里开心填一填。
1.加法、减法、乘法、除法统称()。
一个数加上()还得原数。
2.在计算(2000 - 36×47)÷44时,先算(),再算(),最后算()法。
3.在没有余数的除法里,除数×商-被除数=( )被减数,减数,差相加的和是432,被减数是( )4.在算式630-180÷9中,如果要改变它的运算顺序,想先算减法,就需要给算式加(),这样算式就要变成:(),结果也由原来的()变成()。
5.5人4小时做了80朵纸花,平均每人4小时做()朵纸花,平均每人每小时做()朵纸花。
6.在一个没有括号的等式里,如果只有加减法,或者只有乘除法,要按()的顺序计算,如果既有加减法,又有乘除法,要先算(),后算()。
7. 267除以最大的两位数减去最小的两位数的差,商是 ( )。
8如果把(35+50)×(28-16)的两个小括号去掉,要先算(),再算(),最后算()。
二.我来算一算。
1.口算。
25×4= 7×7÷7×7=52+25-52+25= 180+20=125×8 = 100-50×2= 70×10-400= 64÷64×7= 310-90= 180-80+20= 100+100×0= 72÷9×48÷8=2. 计算。
125+25×6 (135+75)÷(14×5)735÷5-17205÷5×3 (135+415)÷5+16 1200-20×18三.我是公正的小法官。
1.1-(0÷1)+1=2()2.25×25÷25×25=1()3.比90少2的数的2倍是176。
()4.“860-135×3”读作“860与135差的3倍”。
(完整)人教版小学六年级下册数学总复习资料

小升初数学总复习资料归纳常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
(完整版)六年级数学下册整理和复习知识点(最新整理)

实用精品文献资料分享
分数和百分数 一、分数和百分数的意义 1、 分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份 或者几份的数,叫做分数.在分数里,表示把单位“ 1” 平均分成多 少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子; 其中的一份,叫做分数单位。 2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百 分数.也叫百分率或百分比。百分数通常不写成分数的形式,而用特 定的“%”来表示。百分数一般只表示两个数量关系之间的倍数关系,后 面不能带单位名称。 3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。
实用精品文献资料分享
计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时 使用。 3、书写形式不同.百分数通常不写成分数形式,而采用百分号“%” 来表示.如:百分之四十五,写作:45%;百分数的分母固定为 100, 因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百 分数的分子可以是自然数,也可以是小数.而分数的分子只能是自然 数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简 分数的一般要通过约分化成最简分数,是假分数的要化成带分数。 数的整除 整除的意义 整数 a 除以整数 b(b≠0),除得的商正好是整数而没有余数,我们 就说 a 能被 b 整除(也可以说 b 能整除 a) 除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为 0 时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里 的甲数、乙数可以是自然数,也可以是小数(乙数不能为 0)。 约数和倍数 1、如果数 a 能被数 b 整除,a 就叫 b 的倍数,b 就叫 a 的约数。 2、一个数的约数的个数是有限的,其中最小的约数是 1,最大的约数 是它本身。 3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大 的倍数。 奇数和偶数 1、能被 2 整除的数叫偶数.例如:0、2、4、6、8、10……注:0 也 是偶数 2、不能被 2 整除的数叫基数.例如:1、3、5、7、9…… 整除的特征 1、能被 2 整除的数的特征:个位上是 0、2、4、6、8。 2、能被 5 整除的数的特征:个位上是 0 或 5。 3、能被 3 整除的数的特征:一个数的各个数位上的数之和能被 3 整 除,这个数就能被 3 整除。 质数和合数
六年级数学下册知识点归纳总结

六年级数学下册知识点归纳总结一、负数。
1. 负数的定义。
- 为了表示两种相反意义的量,如零上温度和零下温度、收入与支出等,我们引入了负数。
像 -3、-5、-20等这样的数叫做负数,而以前学过的3、5、20等叫做正数(正数前面也可以加“+”号,通常省略不写),0既不是正数也不是负数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 在数轴上,从左到右的顺序就是数从小到大的顺序。
所有的负数都在0的左边,也就是负数都比0小;所有的正数都在0的右边,正数都比0大。
3. 比较大小。
- 负数与负数比较大小,负号后面的数越大,这个负数越小。
例如: -5< -3。
正数大于负数,例如:5> -3。
二、圆柱与圆锥。
1. 圆柱。
- 圆柱的认识。
- 圆柱有两个底面,是完全相同的两个圆。
圆柱有一个侧面,是曲面,沿高展开后是一个长方形(或正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
- 圆柱的表面积。
- 圆柱的表面积 = 侧面积+两个底面积。
圆柱的侧面积 = 底面周长×高,用字母表示为S_侧=Ch(C = 2π r或C=π d),圆柱的底面积S=π r^2,所以圆柱的表面积S = 2π rh+2π r^2。
- 圆柱的体积。
- 圆柱的体积 = 底面积×高,用字母表示为V = π r^2h。
2. 圆锥。
- 圆锥的认识。
- 圆锥有一个底面,是一个圆,圆锥有一个侧面,是曲面,展开后是一个扇形。
圆锥有一个顶点,从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。
- 圆锥的体积。
- 圆锥的体积等于与它等底等高圆柱体积的三分之一,用字母表示为V=(1)/(3)π r^2h。
三、比例。
1. 比例的意义和基本性质。
- 比例的意义。
- 表示两个比相等的式子叫做比例。
例如2:3 = 4:6。
- 比例的基本性质。
- 在比例里,两个外项的积等于两个内项的积。
如果a:b = c:d,那么ad = bc。
小学六年级下册全册知识点

小学六年级下册全册知识点第一章:数与运算1.1 整数与小数- 整数的概念和表示法- 小数的概念和表示法- 整数和小数的相互转换1.2 加法与减法- 加法的定义和性质- 减法的定义和性质- 加减法的运算法则1.3 乘法与除法- 乘法的定义和性质- 除法的定义和性质- 乘除法的运算法则1.4 运算顺序- 括号的运用- 运算顺序的规定- 复杂运算式的计算第二章:分数与比例2.1 分数的概念与表示- 分数的基本概念- 真分数和假分数的区别- 分数的读法和表示法2.2 分数的加减运算- 分数的加法原则- 分数的减法原则- 分数的加减计算步骤2.3 分数的乘除运算- 分数的乘法原则- 分数的除法原则- 分数的乘除计算步骤2.4 比例的认识与运用- 比例的概念和表示法- 比例与图形的关系- 比例的计算方法第三章:图形与计算3.1 运用倍数和约数- 倍数的概念和计算- 整除与倍数的关系- 约数的概念和判断方法3.2 计算长度、面积和容量- 长度的换算方法- 面积的计算公式- 容量的换算和计算3.3 图形的边和顶点- 图形的基本概念- 点、线、面的定义- 图形的分类与特征3.4 计算图形的周长和面积- 不规则图形的周长计算- 正方形和长方形的面积计算- 三角形和梯形的面积计算第四章:数据与概率4.1 数据的收集与整理- 数据的来源和收集方法- 数据的整理和表达方式- 数据的图表表示4.2 数据的分析与运用- 数据的中位数和众数- 数据的极差和平均数- 数据的运用与预测4.3 概率的认识与计算- 概率的基本概念- 事件的可能性及计算- 基于概率的决策第五章:时间与空间5.1 时间的计算和换算- 时间的单位和换算- 时、分、秒的关系- 时间的加减运算5.2 日历和闰年- 日历的基本组成- 判断闰年的方法- 日期的推算和计算5.3 方位与坐标- 方位词的理解和运用- 坐标的概念和计算- 方位与坐标的关系5.4 空间图形的认识- 点、线、面的空间概念- 立体图形的特征和分类- 空间图形的展开和组合以上是小学六年级下册的全册知识点概述,通过掌握和理解这些知识,可以帮助同学们更好地应对学习中的数学、几何等问题,并提高解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学总复习第一部分数与代数1、整数和小数的意义正整数自然数整数0负整数有限小数小数循环小数无限小数不循环小数2、整数、小数和正、负数的读、写法(1)整数的读、写法(2)小数的读、写法(3)正、负数的读、写法3、小数的相关性质(1)小数的相关性质(2)小数点位置移动引起小数大小变化的规律4、数位顺序表5、数的改写及求近似数(1)把一个数改写成用“万”或“亿”作单位的数。
(2)求近似数6、分数(1)分数的意义(2)分数单位(3)分数的分类:真分数、假分数(4)分数的基本性质(5)分数与除法的关系(6)约分(7)最简分数:分母、分子是互质数的分数(8)通分(9)分数的基本性质和小数的基本性质的关系(10)倒数:乘积为1的两个数互为倒数。
(11)分数的读法和写法(12)百分数7、数的大小比较(1)整数的大小比较(2)小数的大小比较(3)正负数的大小比较(4)分数的大小比较8、各类数之间的联系(1)整数和分数之间的联系(2)小数和分数之间的关系(3)分数和百分数之间的关系(4)分数、小数和百分数之间的关系9、因数、倍数(1)因数、倍数的意义和特征(2)2、3、5的倍数的特征10、奇数、偶数11、质数、合数(1)质数:只有1和它本身两个因数的数。
(2)合数:除了1和它本身还有别的因数的数。
(3)质数、合数的判断(4)分解质因数:把一个合数写成几个质数相乘的形式。
(5)分解质因数的方法:短除法12、公因数、公倍数(1)公因数和最大公因数的意义、互质数(公因数只有1的两个数叫做互质数)(2)两个数最大公因数的求法:枚举法、缩小倍数法、短除法、分解质因数法(3)公倍数和最小公倍数的意义(4)两个数最小公倍数的求法:枚举法、扩大倍数法、短除法、分解质因数法(5)求两个数的最大公因数和最小公倍数的特殊方法A、两数为倍数关系,较小数是这两个数的最大公因数;较大数是这两个数的最小公倍数。
B、两数是互质数,它们的最大公因数是1,最小公倍数为它们的乘积。
第二部分数的运算1、四则运算的意义及计算方法整数、小数、分数的加法、减法、乘法、除法2、四则运算中各部分间的关系加法:和=加数+加数,加数=和-另一个加数减法:差=被减数-减数,减数=被减数-差,被减数=减数+差乘法:积=因数×因数,一个因数=积÷另一个因数除法:商=被除数÷除数,除数=被除数÷商,被除数=除数×商3、四则混合运算的顺序(1)四则混合运算分为两级:加法、减法叫做第一级运算,乘法、除法叫做第二级运算。
(2)四则混合运算的顺序A.在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,先算第二级运算,再算第一级运算。
B.在一个有括号的算式里,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。
4、运算定律和运算性质(1)运算定律加法交换率:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c(2)运算性质A.减法的运算性质及变式应用a-b-c=a-(b+c) a-(b-c)=a-b+c a+(b-c)=a+b-cB.除法的运算性质(除数不为0)及变式运用a÷b÷c=a÷(b×c) a÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷cC.商不变的性质(a×m)÷(b×m)=a÷b(m≠0,b≠0)(a÷m)÷(b÷m)=a÷b(m≠0,b≠0)D.积不变的规律(a×m)×(b÷m)=a×b(m≠0)5、估算(1)估算的意义(2)常用的估算策略:a.凑整的方法;b.取一个中间数;c.根据特殊数的特点进行估算6、简便运算§6.1 提取公因式:这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)§6.2有借有还法:用此方法时,需要注意观察,发现规律。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
9999+999+99+9=9999+1+999+1+99+1+9+1—4§6.3 拆分法:顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×25§6.4 加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)§6.5 拆分法和乘法分配律结合:这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
34×9.9=34×(10-0.1)案例再现:57×101=?§6.6利用基准数:在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
2072+2052+2062+2042+2083=(2062x5)+10-10-20+21§6.7利用公式法(必背)(1)加法:交换律,a+b=b+a,结合律,(a+b)+c=a+(b+c).(2)减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c,a-b-c=a-c-b (a+b)-c=a-c+b=b-c+a.(3)乘法(与加法类似):交换律,a*b=b*a,结合律,(a*b)*c=a*(b*c),分配率,(a+b)xc=ac+bc, (a-b)*c=ac-bc.(4)除法运算性质(与减法类似)a÷(b*c)=a÷b÷c a÷(b÷c)=a÷bxc,a÷b÷c=a÷c÷b(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:283+52+117+148=(283+117)+(52+48)(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:657-263-257=657-257-263=400-263(运用减法性质,相当加法交换律。
)例3:195-(95+24)=195-95-24=100-24 (运用减法性质)例4:150-(100-42)=150-100+42(同上) 例5:(0.75+125)*8=0.75*8+125*8=6+1000.(运用乘法分配律))例6:(125-0.25)*8=125*8-0.25*8=1000-2例7:(1.125-0.75)÷0.25=1.125÷0.25-0.75÷0.25=4.5-3=1.5。
(运用除法性质)例8:(450+81)÷9=450÷9+81÷9=50+9=59.(同上,相当乘法分配律)例9:375÷(125÷0.5)=375÷125*0.5=3*0.5=1.5.例10:4.2÷(0。
6*0.35)=4.2÷0.6÷0.35=7÷0.35=20.例11:12*125*0.25*8=(125*8)*(12*0.25)=1000*3=3000.(运用乘法交换律和结合律)例12:(175+45+55+27)-75=175-75+(45+55)+27=100+100+27=227.(运用加法性质和结合律)例13:(48*25*3)÷8=48÷8*25*3=6*25*3=450.(运用除法性质,相当加法性质)第三部分方程一、用字母表示数1、用字母表示数2、用字母表示数量关系3、用字母表示运算定律和运算性质4、用字母表示图形的计算公式5、用字母表示数在书写上的规定6、含字母的式子求值例如:当a=6,b=10时,求2ab。
二、简易方程1、方程:含有未知数的等式。
2、解方程(1)使方程左右两边相等的未知数的值,叫做方程的解。
(2)求方程的解的过程,叫做解方程(3)利用等式的性质解方程A、方程两边同时加上或减去同一个数,左右两边仍然相等。
B、方程两边同时乘以同一个数,左右两边仍然相等。
C、方程两边同时除以同一个不等于0的数,左右两边仍然相等(4)列方程解决问题的步骤:(a)设未知数(b)根据等量关系列方程(c)解方程(d)检验、写答第四部分单位换算1、时间§1.1 时间单位:世纪、年、月、日、时、分、秒;另有季度、旬、星期。
§1.2 年、月、日之间关系一年有12个月,平年365天,闰年366天。
大月:1月、3月、5月、7月、八月、十月、十二月小月:4月、6月、9月、11月二月既不是大月,也不是小月,平年28天,闰年29天。
§1.3 平年、闰年的判断方法根据公历年份判断,整百、整千的年份是400的倍数,其他年份是4的倍数的都是闰年,反之则为平年。
§1.4 日、时、分、秒等时间单位间的关系1世纪=100年,1日=24小时,1小时=60分钟,1分钟=60秒,1小时=3600秒一星期=7天,1年=12个月§1.5 24时计时法A.24时计时法的意义B.普通计时法与24时计时法的换算§1.6 时钟问题一、什么是钟面行程问题?钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;⑵研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.二、钟面问题有哪几种类型?第一类是追及问题(注意时针分针关系的时候往往有两种情况);第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。