函数单调性重难点突破

合集下载

《函数单调性教案》

《函数单调性教案》

《函数单调性教案》一、教学目标:1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。

2. 学会利用单调性判断函数的性质,如极值、最值等。

3. 能够运用单调性解决实际问题,如求函数的极值、最值等。

二、教学内容:1. 函数单调性的概念及单调增、单调减的定义。

2. 单调性的判断方法及应用。

3. 实际问题中的单调性应用。

三、教学重点与难点:1. 函数单调性的概念及判断方法。

2. 单调性在实际问题中的应用。

四、教学方法:1. 讲授法:讲解函数单调性的概念、判断方法及应用。

2. 案例分析法:分析实际问题,引导学生运用单调性解决问题。

3. 互动教学法:提问、讨论,激发学生的思考。

五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的性质。

2. 讲解:讲解函数单调性的概念,引导学生理解单调增、单调减的定义。

3. 举例:分析具体函数的单调性,让学生学会判断。

4. 练习:布置练习题,让学生巩固单调性的判断方法。

5. 案例分析:分析实际问题,引导学生运用单调性解决问题。

6. 总结:回顾本节课的内容,强调单调性的重要性。

7. 作业布置:布置课后作业,巩固所学内容。

六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。

2. 练习题:收集学生练习题的答案,评估学生对单调性判断方法的掌握。

3. 案例分析:评估学生在实际问题中运用单调性的能力。

七、教学拓展:1. 引导学生思考函数单调性在实际生活中的应用,如经济学中的需求曲线、供给曲线等。

2. 介绍函数单调性在数学其他领域的应用,如微分、积分等。

八、教学资源:1. 教材:提供相关教材,为学生提供系统性的学习材料。

2. 课件:制作课件,辅助教学,提高课堂效果。

3. 练习题:准备练习题,巩固所学内容。

4. 实际问题案例:收集实际问题案例,用于教学实践。

九、教学建议:1. 注重概念的理解:在教学过程中,要强调函数单调性概念的理解,让学生明白单调性是什么。

函数的单调性教学与反思 (1)

函数的单调性教学与反思 (1)

函数的单调性教学与反思肥西二中朱德荣一.教学目的1.理解函数的单调性,能判断和证明函数在给定的区间上的单调性;2.体会从特殊到一般,简单到复杂,具体到抽象的研究学习方法;3.渗透数形结合的数学思想.二.教学重点、难点重点:函数单调性的定义难点:函数增减的数学符号语言表述,函数单调性的定义证明通过观察一次、二次函数图像的升(降),形成增(减)直观的认识,比较具体函数图像升降与函数值的大小变化,认识函数值随自变量增大而增大(减小)的规律,由此得出增(减)函数的定义,从而突出了重点,再通过例2的讲解,归纳出用定义证明单调性的一般步骤,进而,突破了难点三.教法学法分析1、教法分析遵循“教师的主导作用与学生的主体地位相统一的教学规律”,本节课采用引导发现式的教学法,并充分利用多媒体辅助教学。

通过教师在教学过程中点拨,启发学生主动观察、思考、对手操作、自主探究来达到对知识的发现和接受。

2、学法分析本节课所面对的是高一年级学生,这个时期的学生思维活跃,求知欲强,但在思维习惯上还有待老师指导,本节课从学生原有的知识和能力出发,教师带领学生创设疑问,通过合作交流、共同探索来寻求解决问题的方法。

四.教学基本流程从观察具体函数图象引入新课—》初步探索、概念形成—》概念深化、延伸拓展—》证法探究、应用定义—》学生小结、教师评价五.教学过程1.问题提出、引入新课画出下列函数的图象,观察其变化规律:(学生动手)请作出函数f(x) = x和f(x) = x2的图象,观察其变化规律?并观察自变量变化时,函数值的变化规律.(学生先自己观察,然后通过多媒体----几何画板形象观察)学生回答教师归纳:从上面的观察分析可以看出:不同的函数图像变化趋势不同,同一函数在不同的区间上是变化趋势也不同。

函数图像的变化规律是函数性质的反映。

这教师我们今天研究的函数的一个性质—单调性(引出课题)2.新课讲解先从二次函数f(x) = x 2研究从二次函数f(x) = x 2图像可以看出图象在y 轴左侧“下降”;图象在y 轴右侧“上升”。

(完整版)函数的单调性知识点汇总及典型例题(高一必备),推荐文档

(完整版)函数的单调性知识点汇总及典型例题(高一必备),推荐文档

第二讲:函数的单调性一、定义:1.设函数的定义域为,如果对于定义域内的某个区间内的任意两)(x f y =I I D 个自变量的值,当时,都有那么就说在区间上21,x x 21x x <),()(21x f x f <)(x f D 是增函数.区间叫的单调增区间. D )(x f y =注意:增函数的等价式子:;0)()(0)]()()[(21212121>--⇔>--x x x f x f x f x f x x 难点突破:(1)所有函数都具有单调性吗?(2)函数单调性的定义中有三个核心①②③ 函数为21x x <)()(21x f x f <)(x f 增函数,那么①②③中任意两个作为条件,能不能推出第三个?2.设函数的定义域为,如果对于定义域内的某个区间内的任意两)(x f y =I I D 个自变量的值,当时,都有那么就说在区间上21,x x 21x x <),()(21x f x f >)(x f D 是减函数.区间叫的单调减区间.D )(x f y =注意:(1)减函数的等价式子:;0)()(0)]()()[(21212121<--⇔<--x x x f x f x f x f x x (2)若函数为增函数,且.)(x f )()(,2121x f x f x x <<则题型一:函数单调性的判断与证明例1.已知函数的定义域为,如果对于属于定义域内某个区间上的任意)(x f R I 两个不同的自变量都有则( )21,x x .0)()(2121>--x x x f x f A.在这个区间上为增函数 B.在这个区间上为减函数 )(x f )(x f C.在这个区间上的增减性不变 D.在这个区间上为常函数)(x f )(x f变式训练:定义在上的函数对任意都有,且R )(x f 120x x <<1)()(2121<--x x x f x f 函数的图象关于原点对称,若则不等式的解集为)(x f y =,2)2(=f 0)(>-x x f ___.例3.证明:函数在上是增函数.x x x f +=3)(R 变式训练:讨论的单调性.并作出当时函数的图象.)0()(>+=a xax x f 1=a 变式训练:已知并用上的单调性,在判断函数)1,0()()(,2)1(2xx f x g x x x f =-=+定义证明.题型二:函数的单调区间难点突破:(1)函数在某个区间上是单调函数,那么它在整个定义域上也是单调函数吗?(2)函数的单调减区间是上吗?xx f 1)(=),0()0,(+∞-∞ 例1.(图像法)求下列函数的单调区间(1). (2).|2||1|)(-++=x x x f 3||2)(2++-=x x x f (3).|54|)(2+--=x x x f 例2.(直接法)求函数的单调区间.xxx f +-=11)(例3.(复合函数)(2017全国二)函数 的单调递增区间2()ln(28)f x x x =--是( )A. B. C. D. )2,(--∞)1,(--∞),1(+∞),4(+∞变式训练:求下列函数的单调区间.(1) (2)312+-=x x y 652+-=x x y (3)22311x x y ---=题型三:抽象函数的单调性问题例1.设函数是实数集上的增函数,令.)(x f R )2()()(x f x f x F --=(1)证明:是上的增函数;)(x F R (2)若求证:.,0)()(21>+x F x F 221>+x x 例2定义在上的函数满足下面三个条件:),0(+∞)(x f ①对任意正数,都有;b a ,)()()(ab f b f a f =+②当时,;1>x 0)(<x f ③.1)2(-=f (1)求的值;)1(f (2)使用单调性的定义证明:函数在上是减函数;)(x f ),0(+∞(3)求满足的的取值集合.2)13(>+x f x 题型四:函数单调性的应用(1)利用函数的单调性比较大小在解决比较函数值大小的问题时,要注意将对应的自变量转化到同一个单调区间上.①正向应用:②逆向应用:例1.在上单调递减,那么与的大小关系是__________.()x f ()+∞,0()12+-a a f ⎪⎭⎫⎝⎛43f 变式训练:已知函数且对任意的,有),1()1()(x f x f x f -=+满足)(1,2121x x x x ≠>设则的大小关系_________..0)()(2121>--x x x f x f ),3(),2(),21(f c f b f a ==-=c b a ,,(2)利用函数的单调性解不等式例2.设是定义在上的增函数,且成立,求的取值)(x f ]1,1[-)1()2(x f x f -<-x范围.变式训练.①设是定义在上的偶函数,当时,单调递减,)(x f ]3,3[-30≤≤x )(x f 若成立,求的取值范围.)()21(m f m f <-m ②(2015全国二)设函数成立的)12()(,11)1ln()(2->+-+=x f x f xx x f 则使得的取值范围是( )x A. B. C. D. )1,31(),1(31,(+∞-∞ )31,31(-),31()31,(+∞--∞ ③(2018全国一)设函数,则满足的x 的取值范围()201 0x x f x x -⎧=⎨>⎩,≤,()()12f x f x +<是( )A .B .C .D .(]1-∞-,()0+∞,()10-,()0-∞,(3)根据函数的单调性求参数的取值范围例1.如果函数在区间上是增函数,则实数的取1)1(42)(2+--=x a x x f ),3[+∞a 值范围是( )A.(1,2)B.(0,2)C.(0,1)D.[)+∞-,2变式训练:如果函数在区间上是减函数,求实数2)1(2)(2+--=x a x x f )4,[-∞的取值范围.a例2.若函数在上为增函数,则实数的取值范围⎩⎨⎧≤-+->-+-=0,)2(,0,1)12()(2x x b x x b x b x f R b 是__________.例3.若函数在区间上是减函数,求实数的取值范围.||a x y -=]4,(-∞a 第三节:函数的奇偶性一、知识梳理1.函数的奇偶性例1(2014全国二)偶函数的图象关于直线对称,,则)(x f y =2=x 3)3(=f ___________.=-)1(f 例2(2017全国二) 已知函数是定义在R 上的奇函数,当时,()f x (,0)x ∈-∞,则__________.32()2f x x x =+(2)f =例3(2012全国二)设函数的最大值为,最小值为,1sin )1()(22+++=x xx x f M m 奇偶性定 义图象特点备注奇函数★★设函数的定义域为,如果)(x f y =D 对内的任意一个,都有∈D ,且 D x x -,则这个函数叫做奇函数 ()()x f x f -=-关于原点中心对称函数是奇函)(x f 数且在处有0=x 定义,则0)0(=f 偶函数设函数的定义域为,如果对)(x f y =D 内的任意一个,都有,且D x D x ∈-,则这个函数叫做偶函数()()x f x f =-★关于轴对称y则+=______.M m 2.函数的图象(1)平移变换:“上加下减,左加右减”例4(2010全国二)设偶函数满足,则)(x f )0(42)(≥-=x x f x ( )=>-}0)2(|{x f x A. B.}42|{>-<x x x 或}40|{><x x x 或C. D.}22|{>-<x x x 或}42|{>-<x x x 或(2)对称变换①;)()(x f y x f y x -=−−−−→−=轴对称关于②;)()(x f y x f y y -=−−−−→−=轴对称关于③;)()(x f y x f y --=−−−−→−=关于原点对称④;)10(log )10(≠>=−−−−→−≠>==a a x y a a a y a x y x 且且对称关于⑤奇函数的图象关于坐标原点对称;偶函数的额图象关于轴对称.y (3)翻折变换★★①.|)(|)(x f y x f y x x =−−−−−−−−−−−→−=轴下方图象翻折上去轴上方图象,将保留例5(2010全国二)已知函数,若均不相等,且⎪⎩⎪⎨⎧+-≤<=621100|,lg |)(x x x x f c b a ,,则的取值范围是( )),()()(c f b f a f ==c b a ⋅⋅A. B. C D.)10,1()6,5()12,10()24,20(例6(2011全国二)已知函数的周期为2,当时,()y f x =[1,1]x ∈-2()f x x =那么函数的图象与函数的图象的交点共有( )()y f x =|lg |y x =A .10个 B .9个 C .8个D .1个★★★②.)||()()(x f y x f y y x f y y =−−−−−−−−−−−−−−−−−−−→−=轴左侧的图象)在轴对称的图象(去掉原于轴右边图象,并作其关保留例7(2011全国二)下列函数中,既是偶函数又在单调递增的函数是((0,)+∞)A.B .C .D .3y x =||1y x =+21y x =-+||2x y -=例8(2010大纲)直线与曲线有四个交点,则的取值范围1=y a x x y +-=||2a 是____________.(4)函数图象的几种对称关系★①满足图象关于直线为轴对称;R x x f ∈),()()()(x f y x a f x a f =⇔-=+a x =例9(2018全国二)已知是定义域为的奇函数,满足)(x f ),(+∞-∞,若=2,则( ))1()1(x f x f +=-)1(f =++++)50(...)3()2()1(f f f f A .﹣50 B .0 C .2 D .50②图象关于为轴对称;)()()(x f x b f x a f ⇔-=+2ba x +=③函数与函数的图象关于直线对称.)(x a f y +=)(x b f y -=2ab x -= 如:和的图象,关于直线为轴对称.)(x f y =)1(x f y -=21=x 例10(2015全国二)已知函数则),的图像过点(4,1-2)(3x ax x f -==________.a 二、真题演练1.(2014全国一)设函数的定义域为,且是奇函数,是)(),(x g x f R )(x f )(x g 偶函数,则下列结论中正确的是( )A. 是偶函数B. 是奇函数)()(x g x f )(|)(|x g x f C. 是奇函数 D. 是奇函数|)(|)(x g x f |)()(|x g x f 2.(2015全国一)已知函数,且,则⎩⎨⎧>+-≤-=-1),1(log 1,22)(21x x x x f x 3)(-=a f =( ))6(a f -A.- B.- C.- D.-745434143.(2015全国一)设函数的图像关于直线对称,且)(x f y =x y -=,则( )1)4()2(=-+-f f =a A.-1 B.1 C.2 D.44.(2017全国一)函数的部分图像大致为( )xxy cos 12sin -=5.(2017全国一)已知函数,则( ))2ln(ln )(x x x f -+=A. B.)单调递增在(2,0)(x f )单调递减在(2,0)(x f C. D.对称的图像关于直线1)(==x x f y )对称的图像关于点(0,1)(x f y =6.(2017全国三)函数的部分图像大致为( )2sin 1xy x x=++A .B .C .D .二、课后作业1.若奇函数在上是增函数且最大值为5,那么在上是( ))(x f []7,3)(x f []3,7--A.增函数且最小值是 B.增函数且最大值是5-5-C.减函数且最大值是 D.减函数且最小值是5-5-2.若是偶函数,则在上( )32)1()(2++-=mx x m x f )(x f ()1,4--A.是增函数 B.是减函数 C.不具有单调性 D.单调性由的值确定m 3.已知函数若为奇函数,则________.()1,21x f x a =-+()f x a =4.函数是定义在上的奇函数,且,求函数的21xb ax x f ++=)()1,1(-5221=)(f )(x f 解析式___________.第四节:函数的零点一、知识梳理★零点:方程的解;函数图象与轴交点的横坐标.0)(=x f )(x f x 函数的零点是函数与函数图象交点的横坐标.)()()(x g x f x F -=)(x f )(x g 零点存在定理:函数在定义域上连续,若,则在)(x f []b a ,0)()(<⋅b f a f )(x f 定义域上一定存在零点.[]b a ,例(2011全国二)在下列区间中,函数的零点所在的区间为()43x f x e x =+-( )A . B . C . D .1(,0)4-1(0,)411(,4213(,242、真题演练1.(2017全国三)已知函数有唯一零点,则=( 211()2()x x f x x x a e e --+=-++a)A .B .C .D .112-13122.(2018全国一)已知函数,,若存在⎩⎨⎧>≤=0,ln 0,)(x x x e x f x a x x f x g ++=)()()(x g 两个零点,则的取值范围是__________.a 三、课后作业1.关于的方程的根所在大致区间为( )x 015=--x x A. B. C. D.)1,0()2,1()4,3()5,4(2.已知,若)为常数(其中)(R x c b cx bx x x f ∈-++=,,735,)(102=-f 则=________.)(2f。

函数的单调性重难点突破

函数的单调性重难点突破

1.3.1函数的单调性教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性.教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性.教学目标和目标解析本节课要求学生理解函数在某区间上单调的意义,掌握用函数的单调性定义证明函数在区间上具有某种单调性的方法(步骤)。

1.要求能够以具体的例子说明函数在某区间上具有某种单调性;2.能够举例说明函数在定义域的子集(区间)上具有单调性,而在整个定义域上未必具有单调性,说明函数的单调性是函数的局部性质;3.对于一个具体的函数,能够按照单调性的定义,证明它的单调性:在区间上任意取x1,x2,x1<x2,作差f(x2)-f(x1),然后判断这个差的符号,从而证明函数在该区间上具有单调性。

重难点分析:学生学习的困难在于,难以把具体的、直观形象的函数单调性的特征抽象出来,以用数学的符号语言描述函数单调性的特征。

即由“随着x的增大y也增大(单调增)这一自然语言到“由(区间上)任意的x1<x2有f(x1)<f(x2)”(单调增)数学符号语言的转换.其中最难理解的是为什么要用“任意”二字,在区间上“任意”取两个大小不等的x1<x2刻画。

当然,应该注意到,企图在一节课中就实现学生对函数单调性的真正理解也是不现实的。

在今后,学生通过判断函数的单调性,寻找函数的单调区间,运用函数的单调性解决具体问题,等一系列学习活动可以逐步理解这个概念。

教学重点是通过一系列具体问题的研究,经过归纳、抽象、概括,逐步由“随着x的增大,y也增大”(单调增)这一自然语言转换成“由(区间上)任意的x1<x2到f(x1)<f(x2)”(单调增)数学符号语言.单调减的数学刻画将会迎刃而解。

教学中,教师要找出建立概念的关键之处,明确学生建立这个概念到底难在哪——————————————第 1 页(共5页)————————————————————————————第 2 页 (共 5页)——————————————里.其次是采取适当的方法,注意启发引导,不以自己的想法代替学生的想法,把单调性的定义告诉学生.注意引导学生积极参与概念形成的关节点处的讨论、交流等活动。

突破10 函数的单调性与最值(重难点突破)(解析版)

突破10 函数的单调性与最值(重难点突破)(解析版)

突破10 函数的单调性与最值重难点突破一、考情分析二、经验分享【知识点一、函数的单调性】 1.函数单调性的定义一般地,设函数f (x )的定义域为I :①如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是增函数;②如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是减函数. 名师解读:对函数单调性的理解:(1)定义中的x 1,x 2有三个特征:①任意性,即不能用特殊值代替;②属于同一个区间;③有大小,一般令x 1<x 2.(2)增、减函数的定义实现自变量的大小关系与函数值的大小关系的直接转化:若()f x 是增函数,则()()1212f x f x x x ⇔<<;若()f x 是减函数,则()()1212f x f x x x ⇔<>.2.函数的单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)___________,区间D 叫做y =f (x )的___________. 名师解读:对函数单调区间的理解(1)一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接.(2)函数的单调性是函数的局部性质,体现在函数的定义域或其子区间上,所以函数的单调区间是其定义域的子集.(3)函数的单调性是对某个区间而言的,在某一点上不存在单调性. (4)并非所有的函数都具有单调性.如函数()1,0,x x f x ⎧=⎨⎩是有理数是无理数就不具有单调性.名师解读:常见函数的单调性【知识点二、函数的最大值与最小值】 1.最大值一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有___________;(2)存在0x I ∈,使得___________. 那么,我们称M 是函数()y f x =的最大值.函数的最大值对应图象最高点的纵坐标. 2.最小值一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有___________;(2)存在0x I ∈,使得___________. 那么,我们称m 是函数()y f x =的最小值.函数的最小值对应图象最低点的纵坐标. 名师解读:函数的最值与单调性的关系如果函数()y f x =在区间(],a b 上是增函数,在区间[),b c 上是减函数,则函数()y f x =,,()x a c ∈在x b =处有最大值()f b .如果函数()y f x =在区间(],a b 上是减函数,在区间[),b c 上是增函数,则函数()y f x =,,()x a c ∈在x b =处有最小值()f b .如果函数()y f x =在区间[],a b 上是增(减)函数,则在区间[],a b 的左、右端点处分别取得最小(大)值和最大(小)值.三、题型分析(一) 证明或判断函数的单调性 例1、证明:函数21()f x x x=-在区间(0,+∞)上是增函数. 【答案】证明详见解析.【变式训练1】.用单调性定义证明:函数在(﹣∞,1)上为增函数.【思路分析】利用单调性的定义进行证明,设x 1<x 2<1,再作差、变形、判断符号,证f (x 2)>f (x 1),把x 1和x 2分别代入函数f (x )进行证明.【答案】解:设x 1<x 2<1, 则f (x 1)﹣f (x 2)∵x 1<x 2<1,∴x 2﹣x 1>0,x 1+x 2<2,x 1+x 2﹣2<0 ∴f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在(﹣∞,1)上是增函数.【变式训练2】.用定义法证明函数f (x )在(,+∞)上是增函数;【思路分析】利用函数单调性的定义即可证明函数f (x )在(,+∞)上是增函数;【答案】解:f (x )1任意设x 1<x 2,则f (x 1)﹣f (x 2)()[]=(),∵x 1<x 2,∴x 1﹣x 2<0,x 1,x 20,∴f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在(,+∞)上是增函数;【名师点睛】函数单调性判断的等价变形:()f x 是增函数⇔对任意12x x <,都有12()()f x f x <,或1212()()0f x f x x x ->-,或1212(()())()0f x f x x x -->;()f x 是减函数⇔对任意12x x <,都有12()()f x f x >,或1212()()0f x f x x x -<-,或1212(()())()0f x f x x x --<.(二) 函数单调性的应用例2、若函数()223()1f x ax a x a -+=-在[1,+∞)上是增函数,求实数a 的取值范围.【答案】0≤a ≤1【变式训练1】.已知函数f (x )的定义域为R ,且对任意的x 1,x 2且x 1≠x 2都有[f (x 1)﹣f (x 2)](x 1﹣x 2)>0成立,若f (x 2+1)>f (m 2﹣m ﹣1)对x ∈R 恒成立,则实数m 的取值范围是( ) A .(﹣1,2)B .[﹣1,2]C.(﹣∞,﹣1)∪(2,+∞)D.(﹣∞,﹣1]∪[2,+∞)【思路分析】本题可根据题干判断出函数f(x)在定义域R上为增函数,然后根据f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,得出x2+1>m2﹣m﹣1,则m2﹣m﹣1<1,可得实数m的取值范围.【答案】解:由题意,可知:∵对任意的x1,x2且x1≠x2都有[f(x1)﹣f(x2)](x1﹣x2)>0成立,∴函数f(x)在定义域R上为增函数.又∵f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,∴x2+1>m2﹣m﹣1,∴m2﹣m﹣1<1,即:m2﹣m﹣2<0.解得﹣1<m<2.故选:A.【变式训练2】.若函数f(x)是R上的减函数,则下列各式成立的是()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+2)<f(2a)D.f(a2+1)>f(a)【思路分析】由a和2a,a2和a无法确定大小关系,结合函数的单调性判断出A、B错误;由a2+2﹣2a平方后判断出a2+2>2a,结合函数的单调性判断出C正确;与判断C一样的方法判断出D错误.【答案】解:因为a和2a,a2和a无法确定大小关系,所以不能确定相应函数值的大小关系,故A、B错误;因为a2+2﹣2a=(a﹣1)2+1>0,所以a2+2>2a,又因函数f(x)是R上的减函数,所以f(a2+2)<f(2a),故C正确;因为a2+1﹣a0,所以a2+1>a,又因函数f(x)是R上的减函数,所以f(a2+1)<f(a),故D错误.故选:C.【变式训练3】.设f(x)=|x﹣a|a,x∈[1,6],若a∈(1,2],求f(x)的单调区间;【思路分析】运用绝对值的定义,将f(x)转化,讨论a∈(1,2],函数f(x)在[1,a]上,在[a,6]上的单调性即可得到;【答案】解:首先f (x ),因为当1<a ≤2时,f (x )在[1,a ]上是增函数,在[a ,6]上也是增函数. 所以当1<a ≤2时,y =f (x )在[1,6]上是增函数;【名师点睛】本题中()223()1f x ax a x a -+=-不一定是二次函数,所以要对a 进行讨论.另外,需熟练掌握一次函数、反比例函数和二次函数的单调性,并能灵活应用. (三) 求函数的最大值与最小值例3、已知函数()223f x x x =--,若x ∈[t ,t +2],求函数f (x )的最值.【答案】答案详见解析.【解析】易知函数()223f x x x =--的图象的对称轴为直线x =1,(1)当1≥t +2,即t ≤-1时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (t +2)=t 2+2t -3.(2)当22t t ++≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (1)=-4. (3)当t ≤1<22t t ++,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (1)=-4.(4)当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (t )=t 2-2t -3.设函数f (x )的最大值为g (t ),最小值为φ(t ),则有2223,0()23,0t t t g t t t t ⎧--≤⎪=⎨+->⎪⎩ ,2223,1()4,1123,1t t t t t t t t ϕ⎧+-≤-⎪=--<≤⎨⎪-->⎩. 【变式训练1】.对a ,b ∈R ,记max {a ,b },函数f (x )=max {|x +1|,|x ﹣2|}(x ∈R )的最小值是( ) A .0B .C .D .3【思路分析】根据题中所给条件通过比较|x +1|、|x ﹣2|哪一个更大先求出f (x )的解析式,再求出f (x )的最小值.【答案】解:当x <﹣1时,|x +1|=﹣x ﹣1,|x ﹣2|=2﹣x ,因为(﹣x ﹣1)﹣(2﹣x )=﹣3<0,所以2﹣x >﹣x ﹣1; 当﹣1≤x 时,|x +1|=x +1,|x ﹣2|=2﹣x ,因为(x +1)﹣(2﹣x )=2x ﹣1<0,x +1<2﹣x ;当x <2时,x +1>2﹣x ;当x≥2时,|x+1|=x+1,|x﹣2|=x﹣2,显然x+1>x﹣2;故f(x)据此求得最小值为.故选:C.【变式训练2】.已知函数f(x),x∈[1,+∞),(1)当a时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.【思路分析】(1)a时,函数为,f在[1,+∞)上为增函数,故可求得函数f(x)的最小值(2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立,利用分类参数法,通过求函数的最值,从而可确定a的取值范围【答案】解:(1)因为,f(x)在[1,+∞)上为增函数,所以f(x)在[1,+∞)上的最小值为f(1).…(6分)(2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立.即a>﹣(x+1)2+1在[1,+∞)上恒成立.令g(x)=﹣(x+1)2+1,则g(x)在[1,+∞)上递减,当x=1时,g(x)max=﹣3,所以a>﹣3,即实数a的取值范围是(﹣3,+∞).…(6分)【名师点睛】求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,若含有参数,则要根据对称轴与x轴的交点与区间的位置关系对参数进行分类讨论,解题时要注意数形结合.四、迁移应用1.集合{x|x≥2}表示成区间是A.(2,+∞)B.[2,+∞)C.(–∞,2)D.(–∞,2]【答案】B【解析】集合{x|x≥2}表示成区间是[2,+∞),故选B.2.集合{x|x>0且x≠2}用区间表示出来A.(0,2)B.(0,+∞)C.(0,2)∪(2,+∞)D.(2,+∞)【答案】C【解析】集合{x|x>0且x≠2}用区间表示为:(0,2)∪(2,+∞).故选C.3.函数f(x)=(x–1)2的单调递增区间是A.[0,+∞)B.[1,+∞)C.(–∞,0] D.(–∞,1]4.已知函数f(x)=–1+11x(x≠1),则f(x)A.在(–1,+∞)上是增函数B.在(1,+∞)上是增函数C.在(–1,+∞)上是减函数D.在(1,+∞)上是减函数5.函数y=f(x),x∈[–4,4]的图象如图所示,则函数f(x)的所有单调递减区间为A.[–4,–2] B.[1,4]C.[–4,–2]和[1,4] D.[–4,–2]∪[1,4]【答案】C【解析】由如图可得,f(x)在[–4,–2]递减,在[–2,1]递增,在[1,4]递减,可得f(x)的减区间为[–4,–2],[1,4].故选C .6.函数g (x )=|x |的单调递增区间是A .[0,+∞)B .(–∞,0]C .(–∞,–2]D .[–2,+∞)【答案】A【解析】x ≥0,时,g (x )=x ,x <0时,g (x )=–x ,故函数在[0,+∞)递增,故选A .7.已知f (x )是定义在[0,+∞)上单调递增的函数,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是A .1223⎛⎫ ⎪⎝⎭,B .23⎛⎫-∞ ⎪⎝⎭,C .1223⎡⎫⎪⎢⎣⎭,D .23⎛⎤-∞ ⎥⎝⎦,【答案】C【解析】∵f (x )是定义在[0,+∞)上单调递增的函数,∴不等式()1213f x f ⎛⎫-< ⎪⎝⎭等价为0≤2x –1<13,即12≤x <23,即不等式的解集为1223⎡⎫⎪⎢⎣⎭,,故选C . 8.函数f (x )=–|x –2|的单调递减区间为A .(–∞,2]B .[2,+∞)C .[0,2]D .[0,+∞)【答案】B【解析】∵y =|x –2|=2222x x x x -≥⎧⎨-+<⎩,,,∴函数y =|x –2|的单调递减区间是(–∞,2],∴f (x )=–|x –2|的单调递减区间是[2,+∞),故选B . 9.函数f (x )=x +2x(x >0)的单调减区间是A .(2,+∞)B .(0,2)C +∞)D .(0)【答案】D【解析】函数f (x )=x +2x (x >0),根据对勾函数图象及性质可知,函数f (x )=x +2x(x >0),+∞)单调递增,函数f (x )在(0)单调递减.故选D . 10.函数f (x )=x +bx(b >0)的单调减区间为A .()B .(–∞,,+∞)C .(–∞,)D .(,0),(0)【答案】D【解析】函数f (x )=x +b x (b >0),的导数为f ′(x )=1–2bx,由f ′(x )<0,即为x 2<b ,解得<x <0或0<x ,则f (x )的单调减区间为(,0),(0).故选D . 11.函数f (x )=x +3|x –1|的单调递增区间是A .(–∞,+∞)B .(1,+∞)C .(–∞,1)D .(0,+∞)【答案】B【解析】函数f (x )=x +3|x –1|,当x ≥1时,f (x )=x +3x –3=4x –3,可得f (x )在(1,+∞)递增;当x <1时,f (x )=x +3–3x =3–2x ,可得f (x )在(–∞,1)递减.故选B .。

《函数的单调性》教学重难点分析

《函数的单调性》教学重难点分析

《函数的单调性》教学重难点
教学重难点:
重点:函数单调性的概念、判断及证明.
难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.
依据:
函数的单调性是函数的重要特性之一,它把自变量的变化方向和函数值的变化方向定性地联系在一起.在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.这节内容的重点是理解函数单调性的概念以及利用函数的单调性的概念证明函数的单调性,难点是理解函数单调性的概念。

这节内容学生在初中已有了较为粗略的认识,即主要根据观察图像得出结论.这节函数增减性的定义,是运用数学符号将自然语言的描述提升到形式化的定义,学生接受起来可能比较困难.在引入定义时,要始终结合具体函数的图像来进行,以增强直观性,采用由具体到抽象,再由抽象到具体的思维方法,便于学生理解.对于定义,要注意对区间上所取两点的“任意性”的理解,多给学生操作与思考的时间和空间。

专题2.2 函数的单调性与最值(重难点突破)(解析版)

专题2.2 函数的单调性与最值(重难点突破)(解析版)

专题2.2 函数的单调性与最值(重难点突破)(理科)一、考纲要求1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。

二、考情分析三、考点梳理【基础知识梳理】1、函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述1/ 112 / 11自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2、函数的最值前提设函数()y f x =的定义域为I ,如果存在实数M 满足 条件(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得()0f x M =(3)对于任意的x I ∈,都有()f x M ≥;(4)存在0x I ∈,使得()0f x M =结论 M 为最大值 M 为最小值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 【知识拓展】1、函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; (2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; (3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; (4)函数()()()0y f x f x =≥在公共定义域内与()y f x =(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反; (6)一些重要函数的单调性: ①1y x x =+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减; ②b y ax x=+(0a >,0b >)的单调性:在,b a ⎛-∞-⎝和,b a ⎫+∞⎪⎪⎭上单调递增,在,0b a ⎛⎫ ⎪ ⎪⎝⎭和b a ⎛ ⎝3 / 11上单调递减.四、题型分析(一) 判断函数的单调性 1.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对1x 或2x 进行适当变形,进而比较出()1f x 与()2f x 的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减. (4)导数法:利用导函数的正负判断函数的单调性.(5)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.2.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例1.(2020·安徽省池州一中模拟)下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |【答案】C【解析】当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.【变式训练1】.(2020届陕西省咸阳市高三第一次模拟)函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是( )A .132,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z B .372,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z C .312,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z D .152,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z4 / 11【答案】C【解析】令()224k x k k Z πππππ-≤-≤∈,解得()312244k x k k Z -≤≤+∈, 因此,函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是()312,244k k k Z ⎡⎤-+∈⎢⎥⎣⎦,故选C 。

函数的单调性重难点解决

函数的单调性重难点解决

函数的单调性重难点解决一、教材分析《函数的单调性》是人教A版《新课标》教材高中数学必修1第一章第三节第一课时的内容,在此之前,学生已学习了函数的概念及函数的表示法,这为过渡到本节课的学习起着铺垫的作用。

本节课的学习为今后学习不等式、导数的应用,函数的极限以及其他学科如物理学科的学习奠定了基础。

因此函数单调性的学习其重要性是不言而喻的。

按照课程标准的要求,根据上述教材分析,我制定了以下三维教学目标:二、教学目标1、知识与技能目标(1)理解函数的单调性并掌握增(减)函数及单调区间的概念;(2)使学生初步掌握会利用函数图象及定义去判断和证明函数的单调性。

2、方法与过程目标通过对函数单调性定义的分析与整理以及对单调性思想的感知与体验,使学生会模仿定义解决问题。

3、情感、态度与价值观目标在本节课的学习过程中,培养学生细心观察,认真分析,严谨论证的良好思维习惯,培养学生善于归纳总结,数形结合的思想。

根据上述教材分析及教学目标,我确定了本节课的重点与难点:三、教学重、难点函数的单调性、增(减)函数以及单调区间的概念的理解与掌握为本节课的重点。

考虑到学生已有的知识基础及认知能力,又函数单调性具有抽象、严谨性等特点。

因此把函数单调性概念的理解及判断和证明函数的单调性以及单调区间的判定作为本节课的教学难点。

由于中学生虽好奇,好动,但更有知道原理明白方法的理性愿望,为了调动学生的积极性,我确定了本节课的教法与学法:四、教法与学法本节课采用了学生广泛参与与启发式教学的教学模式,对函数的知识进行适当的复习回顾以作铺垫,对函数图像进行直观形象分析,以分散难点。

通过探究法结合发现法指导学生学习。

为了实现我的教学目标,我设计了如下的教学过程:五、教学过程1、创设情境,导入课题。

首先给出三个函数的图像,提出从左至右,函数图像有怎样的变化规律?作为问题让学生观察思考回答,以激发学生的学习兴趣为目的。

从而引出课题.2、进一步引导学生根据已有的经历与体验,分析y=x2的图像,讨论在y轴左侧及右侧的图像性质,进过分析,师生交流、讨论,明确解决函数的单调性在于弄清增(减)该函数的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性重难点突破案例
1、给出函数值的变化趋势
突破建议:
画出下列函数的图象,根据图象思考当自变量x的值增大时,函数值是如何变化的?(利用好工具,做一个动图,让学生更直观的看出,函数值随自变量的变化趋势)
问题1
通过上面的观察,如何用图象上动点P(x,y)的横、纵坐标关系来说明上升或下降趋势?
师生活动:小组讨论,给出结果,培养学生的团队合作意识。

问题2
如何用数学符号描述这种上升或下降的趋势?
师生活动:教师点拨,学生尝试归纳,培养学生用数学语言概括问题的能力。

2、函数单调性的证明:例题讲解,学以致用
例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—
5,5)的图像来找出函数的单调区间。

这一例题主要以学生个别回
答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调
区间的掌握。

强调单调区间一般写成半开半闭的形式
例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方
式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理
学的波意尔定理。

这是历年高考的热点跟难点问题,这一例题要采
用教师板演的方式,来对例题进行证明,以规范总结证明步骤。

一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

相关文档
最新文档